/******************************************************************** * COPYRIGHT: * Copyright (c) 1997-2010, International Business Machines Corporation and * others. All Rights Reserved. ********************************************************************/ /* file name: strtest.cpp * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 1999nov22 * created by: Markus W. Scherer */ #include <string.h> #include "unicode/utypes.h" #include "unicode/putil.h" #include "unicode/std_string.h" #include "unicode/stringpiece.h" #include "unicode/unistr.h" #include "unicode/ustring.h" #include "charstr.h" #include "intltest.h" #include "strtest.h" StringTest::~StringTest() {} void StringTest::TestEndian(void) { union { uint8_t byte; uint16_t word; } u; u.word=0x0100; if(U_IS_BIG_ENDIAN!=u.byte) { errln("TestEndian: U_IS_BIG_ENDIAN needs to be fixed in platform.h"); } } void StringTest::TestSizeofTypes(void) { if(U_SIZEOF_WCHAR_T!=sizeof(wchar_t)) { errln("TestSizeofWCharT: U_SIZEOF_WCHAR_T!=sizeof(wchar_t) - U_SIZEOF_WCHAR_T needs to be fixed in platform.h"); } #ifdef U_INT64_T_UNAVAILABLE errln("int64_t and uint64_t are undefined."); #else if(8!=sizeof(int64_t)) { errln("TestSizeofTypes: 8!=sizeof(int64_t) - int64_t needs to be fixed in platform.h"); } if(8!=sizeof(uint64_t)) { errln("TestSizeofTypes: 8!=sizeof(uint64_t) - uint64_t needs to be fixed in platform.h"); } #endif if(8!=sizeof(double)) { errln("8!=sizeof(double) - putil.c code may not work"); } if(4!=sizeof(int32_t)) { errln("4!=sizeof(int32_t)"); } if(4!=sizeof(uint32_t)) { errln("4!=sizeof(uint32_t)"); } if(2!=sizeof(int16_t)) { errln("2!=sizeof(int16_t)"); } if(2!=sizeof(uint16_t)) { errln("2!=sizeof(uint16_t)"); } if(2!=sizeof(UChar)) { errln("2!=sizeof(UChar)"); } if(1!=sizeof(int8_t)) { errln("1!=sizeof(int8_t)"); } if(1!=sizeof(uint8_t)) { errln("1!=sizeof(uint8_t)"); } if(1!=sizeof(UBool)) { errln("1!=sizeof(UBool)"); } } void StringTest::TestCharsetFamily(void) { unsigned char c='A'; if( (U_CHARSET_FAMILY==U_ASCII_FAMILY && c!=0x41) || (U_CHARSET_FAMILY==U_EBCDIC_FAMILY && c!=0xc1) ) { errln("TestCharsetFamily: U_CHARSET_FAMILY needs to be fixed in platform.h"); } } U_STRING_DECL(ustringVar, "aZ0 -", 5); void StringTest::Test_U_STRING() { U_STRING_INIT(ustringVar, "aZ0 -", 5); if( sizeof(ustringVar)/sizeof(*ustringVar)!=6 || ustringVar[0]!=0x61 || ustringVar[1]!=0x5a || ustringVar[2]!=0x30 || ustringVar[3]!=0x20 || ustringVar[4]!=0x2d || ustringVar[5]!=0 ) { errln("Test_U_STRING: U_STRING_DECL with U_STRING_INIT does not work right! " "See putil.h and utypes.h with platform.h."); } } void StringTest::Test_UNICODE_STRING() { UnicodeString ustringVar=UNICODE_STRING("aZ0 -", 5); if( ustringVar.length()!=5 || ustringVar[0]!=0x61 || ustringVar[1]!=0x5a || ustringVar[2]!=0x30 || ustringVar[3]!=0x20 || ustringVar[4]!=0x2d ) { errln("Test_UNICODE_STRING: UNICODE_STRING does not work right! " "See unistr.h and utypes.h with platform.h."); } } void StringTest::Test_UNICODE_STRING_SIMPLE() { UnicodeString ustringVar=UNICODE_STRING_SIMPLE("aZ0 -"); if( ustringVar.length()!=5 || ustringVar[0]!=0x61 || ustringVar[1]!=0x5a || ustringVar[2]!=0x30 || ustringVar[3]!=0x20 || ustringVar[4]!=0x2d ) { errln("Test_UNICODE_STRING_SIMPLE: UNICODE_STRING_SIMPLE does not work right! " "See unistr.h and utypes.h with platform.h."); } } void StringTest::Test_UTF8_COUNT_TRAIL_BYTES() { if(UTF8_COUNT_TRAIL_BYTES(0x7F) != 0 || UTF8_COUNT_TRAIL_BYTES(0xC0) != 1 || UTF8_COUNT_TRAIL_BYTES(0xE0) != 2 || UTF8_COUNT_TRAIL_BYTES(0xF0) != 3) { errln("Test_UTF8_COUNT_TRAIL_BYTES: UTF8_COUNT_TRAIL_BYTES does not work right! " "See utf8.h."); } } void StringTest::runIndexedTest(int32_t index, UBool exec, const char *&name, char * /*par*/) { if(exec) { logln("TestSuite Character and String Test: "); } TESTCASE_AUTO_BEGIN; TESTCASE_AUTO(TestEndian); TESTCASE_AUTO(TestSizeofTypes); TESTCASE_AUTO(TestCharsetFamily); TESTCASE_AUTO(Test_U_STRING); TESTCASE_AUTO(Test_UNICODE_STRING); TESTCASE_AUTO(Test_UNICODE_STRING_SIMPLE); TESTCASE_AUTO(Test_UTF8_COUNT_TRAIL_BYTES); TESTCASE_AUTO(TestSTLCompatibility); TESTCASE_AUTO(TestStdNamespaceQualifier); TESTCASE_AUTO(TestUsingStdNamespace); TESTCASE_AUTO(TestStringPiece); TESTCASE_AUTO(TestStringPieceComparisons); TESTCASE_AUTO(TestByteSink); TESTCASE_AUTO(TestCheckedArrayByteSink); TESTCASE_AUTO(TestStringByteSink); TESTCASE_AUTO(TestCharString); TESTCASE_AUTO_END; } // Syntax check for the correct namespace qualifier for the standard string class. void StringTest::TestStdNamespaceQualifier() { #if U_HAVE_STD_STRING U_STD_NSQ string s="abc xyz"; U_STD_NSQ string t="abc"; t.append(" "); t.append("xyz"); if(s!=t) { errln("standard string concatenation error: %s != %s", s.c_str(), t.c_str()); } #endif } void StringTest::TestUsingStdNamespace() { #if U_HAVE_STD_STRING // Now test that "using namespace std;" is defined correctly. U_STD_NS_USE string s="abc xyz"; string t="abc"; t.append(" "); t.append("xyz"); if(s!=t) { errln("standard string concatenation error: %s != %s", s.c_str(), t.c_str()); } #endif } void StringTest::TestStringPiece() { // Default constructor. StringPiece empty; if(!empty.empty() || empty.data()!=NULL || empty.length()!=0 || empty.size()!=0) { errln("StringPiece() failed"); } // Construct from NULL const char * pointer. StringPiece null(NULL); if(!null.empty() || null.data()!=NULL || null.length()!=0 || null.size()!=0) { errln("StringPiece(NULL) failed"); } // Construct from const char * pointer. static const char *abc_chars="abc"; StringPiece abc(abc_chars); if(abc.empty() || abc.data()!=abc_chars || abc.length()!=3 || abc.size()!=3) { errln("StringPiece(abc_chars) failed"); } // Construct from const char * pointer and length. static const char *abcdefg_chars="abcdefg"; StringPiece abcd(abcdefg_chars, 4); if(abcd.empty() || abcd.data()!=abcdefg_chars || abcd.length()!=4 || abcd.size()!=4) { errln("StringPiece(abcdefg_chars, 4) failed"); } #if U_HAVE_STD_STRING // Construct from std::string. U_STD_NSQ string uvwxyz_string("uvwxyz"); StringPiece uvwxyz(uvwxyz_string); if(uvwxyz.empty() || uvwxyz.data()!=uvwxyz_string.data() || uvwxyz.length()!=6 || uvwxyz.size()!=6) { errln("StringPiece(uvwxyz_string) failed"); } #endif // Substring constructor with pos. StringPiece sp(abcd, -1); if(sp.empty() || sp.data()!=abcdefg_chars || sp.length()!=4 || sp.size()!=4) { errln("StringPiece(abcd, -1) failed"); } sp=StringPiece(abcd, 5); if(!sp.empty() || sp.length()!=0 || sp.size()!=0) { errln("StringPiece(abcd, 5) failed"); } sp=StringPiece(abcd, 2); if(sp.empty() || sp.data()!=abcdefg_chars+2 || sp.length()!=2 || sp.size()!=2) { errln("StringPiece(abcd, -1) failed"); } // Substring constructor with pos and len. sp=StringPiece(abcd, -1, 8); if(sp.empty() || sp.data()!=abcdefg_chars || sp.length()!=4 || sp.size()!=4) { errln("StringPiece(abcd, -1, 8) failed"); } sp=StringPiece(abcd, 5, 8); if(!sp.empty() || sp.length()!=0 || sp.size()!=0) { errln("StringPiece(abcd, 5, 8) failed"); } sp=StringPiece(abcd, 2, 8); if(sp.empty() || sp.data()!=abcdefg_chars+2 || sp.length()!=2 || sp.size()!=2) { errln("StringPiece(abcd, -1) failed"); } sp=StringPiece(abcd, 2, -1); if(!sp.empty() || sp.length()!=0 || sp.size()!=0) { errln("StringPiece(abcd, 5, -1) failed"); } // static const npos const int32_t *ptr_npos=&StringPiece::npos; if(StringPiece::npos!=0x7fffffff || *ptr_npos!=0x7fffffff) { errln("StringPiece::npos!=0x7fffffff"); } // substr() method with pos, using len=npos. sp=abcd.substr(-1); if(sp.empty() || sp.data()!=abcdefg_chars || sp.length()!=4 || sp.size()!=4) { errln("abcd.substr(-1) failed"); } sp=abcd.substr(5); if(!sp.empty() || sp.length()!=0 || sp.size()!=0) { errln("abcd.substr(5) failed"); } sp=abcd.substr(2); if(sp.empty() || sp.data()!=abcdefg_chars+2 || sp.length()!=2 || sp.size()!=2) { errln("abcd.substr(-1) failed"); } // substr() method with pos and len. sp=abcd.substr(-1, 8); if(sp.empty() || sp.data()!=abcdefg_chars || sp.length()!=4 || sp.size()!=4) { errln("abcd.substr(-1, 8) failed"); } sp=abcd.substr(5, 8); if(!sp.empty() || sp.length()!=0 || sp.size()!=0) { errln("abcd.substr(5, 8) failed"); } sp=abcd.substr(2, 8); if(sp.empty() || sp.data()!=abcdefg_chars+2 || sp.length()!=2 || sp.size()!=2) { errln("abcd.substr(-1) failed"); } sp=abcd.substr(2, -1); if(!sp.empty() || sp.length()!=0 || sp.size()!=0) { errln("abcd.substr(5, -1) failed"); } // clear() sp=abcd; sp.clear(); if(!sp.empty() || sp.data()!=NULL || sp.length()!=0 || sp.size()!=0) { errln("abcd.clear() failed"); } // remove_prefix() sp=abcd; sp.remove_prefix(-1); if(sp.empty() || sp.data()!=abcdefg_chars || sp.length()!=4 || sp.size()!=4) { errln("abcd.remove_prefix(-1) failed"); } sp=abcd; sp.remove_prefix(2); if(sp.empty() || sp.data()!=abcdefg_chars+2 || sp.length()!=2 || sp.size()!=2) { errln("abcd.remove_prefix(2) failed"); } sp=abcd; sp.remove_prefix(5); if(!sp.empty() || sp.length()!=0 || sp.size()!=0) { errln("abcd.remove_prefix(5) failed"); } // remove_suffix() sp=abcd; sp.remove_suffix(-1); if(sp.empty() || sp.data()!=abcdefg_chars || sp.length()!=4 || sp.size()!=4) { errln("abcd.remove_suffix(-1) failed"); } sp=abcd; sp.remove_suffix(2); if(sp.empty() || sp.data()!=abcdefg_chars || sp.length()!=2 || sp.size()!=2) { errln("abcd.remove_suffix(2) failed"); } sp=abcd; sp.remove_suffix(5); if(!sp.empty() || sp.length()!=0 || sp.size()!=0) { errln("abcd.remove_suffix(5) failed"); } } void StringTest::TestStringPieceComparisons() { StringPiece empty; StringPiece null(NULL); StringPiece abc("abc"); StringPiece abcd("abcdefg", 4); StringPiece abx("abx"); if(empty!=null) { errln("empty!=null"); } if(empty==abc) { errln("empty==abc"); } if(abc==abcd) { errln("abc==abcd"); } abcd.remove_suffix(1); if(abc!=abcd) { errln("abc!=abcd.remove_suffix(1)"); } if(abc==abx) { errln("abc==abx"); } } // Verify that ByteSink is subclassable and Flush() overridable. class SimpleByteSink : public ByteSink { public: SimpleByteSink(char *outbuf) : fOutbuf(outbuf), fLength(0) {} virtual void Append(const char *bytes, int32_t n) { if(fOutbuf != bytes) { memcpy(fOutbuf, bytes, n); } fOutbuf += n; fLength += n; } virtual void Flush() { Append("z", 1); } int32_t length() { return fLength; } private: char *fOutbuf; int32_t fLength; }; // Test the ByteSink base class. void StringTest::TestByteSink() { char buffer[20]; buffer[4] = '!'; SimpleByteSink sink(buffer); sink.Append("abc", 3); sink.Flush(); if(!(sink.length() == 4 && 0 == memcmp("abcz", buffer, 4) && buffer[4] == '!')) { errln("ByteSink (SimpleByteSink) did not Append() or Flush() as expected"); return; } char scratch[20]; int32_t capacity = -1; char *dest = sink.GetAppendBuffer(0, 50, scratch, (int32_t)sizeof(scratch), &capacity); if(dest != NULL || capacity != 0) { errln("ByteSink.GetAppendBuffer(min_capacity<1) did not properly return NULL[0]"); return; } dest = sink.GetAppendBuffer(10, 50, scratch, 9, &capacity); if(dest != NULL || capacity != 0) { errln("ByteSink.GetAppendBuffer(scratch_capacity<min_capacity) did not properly return NULL[0]"); return; } dest = sink.GetAppendBuffer(5, 50, scratch, (int32_t)sizeof(scratch), &capacity); if(dest != scratch || capacity != (int32_t)sizeof(scratch)) { errln("ByteSink.GetAppendBuffer() did not properly return the scratch buffer"); } } void StringTest::TestCheckedArrayByteSink() { char buffer[20]; // < 26 for the test code to work buffer[3] = '!'; CheckedArrayByteSink sink(buffer, (int32_t)sizeof(buffer)); sink.Append("abc", 3); if(!(sink.NumberOfBytesAppended() == 3 && sink.NumberOfBytesWritten() == 3 && 0 == memcmp("abc", buffer, 3) && buffer[3] == '!') && !sink.Overflowed() ) { errln("CheckedArrayByteSink did not Append() as expected"); return; } char scratch[10]; int32_t capacity = -1; char *dest = sink.GetAppendBuffer(0, 50, scratch, (int32_t)sizeof(scratch), &capacity); if(dest != NULL || capacity != 0) { errln("CheckedArrayByteSink.GetAppendBuffer(min_capacity<1) did not properly return NULL[0]"); return; } dest = sink.GetAppendBuffer(10, 50, scratch, 9, &capacity); if(dest != NULL || capacity != 0) { errln("CheckedArrayByteSink.GetAppendBuffer(scratch_capacity<min_capacity) did not properly return NULL[0]"); return; } dest = sink.GetAppendBuffer(10, 50, scratch, (int32_t)sizeof(scratch), &capacity); if(dest != buffer + 3 || capacity != (int32_t)sizeof(buffer) - 3) { errln("CheckedArrayByteSink.GetAppendBuffer() did not properly return its own buffer"); return; } memcpy(dest, "defghijklm", 10); sink.Append(dest, 10); if(!(sink.NumberOfBytesAppended() == 13 && sink.NumberOfBytesWritten() == 13 && 0 == memcmp("abcdefghijklm", buffer, 13) && !sink.Overflowed()) ) { errln("CheckedArrayByteSink did not Append(its own buffer) as expected"); return; } dest = sink.GetAppendBuffer(10, 50, scratch, (int32_t)sizeof(scratch), &capacity); if(dest != scratch || capacity != (int32_t)sizeof(scratch)) { errln("CheckedArrayByteSink.GetAppendBuffer() did not properly return the scratch buffer"); } memcpy(dest, "nopqrstuvw", 10); sink.Append(dest, 10); if(!(sink.NumberOfBytesAppended() == 23 && sink.NumberOfBytesWritten() == (int32_t)sizeof(buffer) && 0 == memcmp("abcdefghijklmnopqrstuvwxyz", buffer, (int32_t)sizeof(buffer)) && sink.Overflowed()) ) { errln("CheckedArrayByteSink did not Append(scratch buffer) as expected"); return; } sink.Reset().Append("123", 3); if(!(sink.NumberOfBytesAppended() == 3 && sink.NumberOfBytesWritten() == 3 && 0 == memcmp("123defghijklmnopqrstuvwxyz", buffer, (int32_t)sizeof(buffer)) && !sink.Overflowed()) ) { errln("CheckedArrayByteSink did not Reset().Append() as expected"); return; } } void StringTest::TestStringByteSink() { #if U_HAVE_STD_STRING // Not much to test because only the constructor and Append() // are implemented, and trivially so. U_STD_NSQ string result("abc"); // std::string StringByteSink<U_STD_NSQ string> sink(&result); sink.Append("def", 3); if(result != "abcdef") { errln("StringByteSink did not Append() as expected"); } #endif } #if defined(U_WINDOWS) && defined(_MSC_VER) #include <vector> #endif void StringTest::TestSTLCompatibility() { #if defined(U_WINDOWS) && defined(_MSC_VER) /* Just make sure that it compiles with STL's placement new usage. */ std::vector<UnicodeString> myvect; myvect.push_back(UnicodeString("blah")); #endif } void StringTest::TestCharString() { IcuTestErrorCode errorCode(*this, "TestCharString()"); char expected[400]; static const char longStr[] = "This is a long string that is meant to cause reallocation of the internal buffer of CharString."; CharString chStr(longStr, errorCode); if (0 != strcmp(longStr, chStr.data()) || (int32_t)strlen(longStr) != chStr.length()) { errln("CharString(longStr) failed."); } CharString test("Test", errorCode); CharString copy(test,errorCode); copy.copyFrom(chStr, errorCode); if (0 != strcmp(longStr, copy.data()) || (int32_t)strlen(longStr) != copy.length()) { errln("CharString.copyFrom() failed."); } StringPiece sp(chStr.toStringPiece()); sp.remove_prefix(4); chStr.append(sp, errorCode).append(chStr, errorCode); strcpy(expected, longStr); strcat(expected, longStr+4); strcat(expected, longStr); strcat(expected, longStr+4); if (0 != strcmp(expected, chStr.data()) || (int32_t)strlen(expected) != chStr.length()) { errln("CharString(longStr).append(substring of self).append(self) failed."); } chStr.clear().append("abc", errorCode).append("defghij", 3, errorCode); if (0 != strcmp("abcdef", chStr.data()) || 6 != chStr.length()) { errln("CharString.clear().append(abc).append(defghij, 3) failed."); } chStr.appendInvariantChars(UNICODE_STRING_SIMPLE( "This is a long string that is meant to cause reallocation of the internal buffer of CharString."), errorCode); strcpy(expected, "abcdef"); strcat(expected, longStr); if (0 != strcmp(expected, chStr.data()) || (int32_t)strlen(expected) != chStr.length()) { errln("CharString.appendInvariantChars(longStr) failed."); } int32_t appendCapacity = 0; char *buffer = chStr.getAppendBuffer(5, 10, appendCapacity, errorCode); if (errorCode.isFailure()) { return; } memcpy(buffer, "*****", 5); chStr.append(buffer, 5, errorCode); chStr.truncate(chStr.length()-3); strcat(expected, "**"); if (0 != strcmp(expected, chStr.data()) || (int32_t)strlen(expected) != chStr.length()) { errln("CharString.getAppendBuffer().append(**) failed."); } }