/** ******************************************************************************* * Copyright (C) 2006-2008,2011, International Business Machines Corporation * * and others. All Rights Reserved. * ******************************************************************************* */ #include "unicode/utypes.h" #if !UCONFIG_NO_BREAK_ITERATION #include "brkeng.h" #include "dictbe.h" #include "unicode/uniset.h" #include "unicode/chariter.h" #include "unicode/ubrk.h" #include "uvector.h" #include "triedict.h" U_NAMESPACE_BEGIN /* ****************************************************************** */ /*DictionaryBreakEngine::DictionaryBreakEngine() { fTypes = 0; }*/ DictionaryBreakEngine::DictionaryBreakEngine(uint32_t breakTypes) { fTypes = breakTypes; } DictionaryBreakEngine::~DictionaryBreakEngine() { } UBool DictionaryBreakEngine::handles(UChar32 c, int32_t breakType) const { return (breakType >= 0 && breakType < 32 && (((uint32_t)1 << breakType) & fTypes) && fSet.contains(c)); } int32_t DictionaryBreakEngine::findBreaks( UText *text, int32_t startPos, int32_t endPos, UBool reverse, int32_t breakType, UStack &foundBreaks ) const { int32_t result = 0; // Find the span of characters included in the set. int32_t start = (int32_t)utext_getNativeIndex(text); int32_t current; int32_t rangeStart; int32_t rangeEnd; UChar32 c = utext_current32(text); if (reverse) { UBool isDict = fSet.contains(c); while((current = (int32_t)utext_getNativeIndex(text)) > startPos && isDict) { c = utext_previous32(text); isDict = fSet.contains(c); } rangeStart = (current < startPos) ? startPos : current+(isDict ? 0 : 1); rangeEnd = start + 1; } else { while((current = (int32_t)utext_getNativeIndex(text)) < endPos && fSet.contains(c)) { utext_next32(text); // TODO: recast loop for postincrement c = utext_current32(text); } rangeStart = start; rangeEnd = current; } if (breakType >= 0 && breakType < 32 && (((uint32_t)1 << breakType) & fTypes)) { result = divideUpDictionaryRange(text, rangeStart, rangeEnd, foundBreaks); utext_setNativeIndex(text, current); } return result; } void DictionaryBreakEngine::setCharacters( const UnicodeSet &set ) { fSet = set; // Compact for caching fSet.compact(); } /*void DictionaryBreakEngine::setBreakTypes( uint32_t breakTypes ) { fTypes = breakTypes; }*/ /* ****************************************************************** */ // Helper class for improving readability of the Thai word break // algorithm. The implementation is completely inline. // List size, limited by the maximum number of words in the dictionary // that form a nested sequence. #define POSSIBLE_WORD_LIST_MAX 20 class PossibleWord { private: // list of word candidate lengths, in increasing length order int32_t lengths[POSSIBLE_WORD_LIST_MAX]; int count; // Count of candidates int32_t prefix; // The longest match with a dictionary word int32_t offset; // Offset in the text of these candidates int mark; // The preferred candidate's offset int current; // The candidate we're currently looking at public: PossibleWord(); ~PossibleWord(); // Fill the list of candidates if needed, select the longest, and return the number found int candidates( UText *text, const TrieWordDictionary *dict, int32_t rangeEnd ); // Select the currently marked candidate, point after it in the text, and invalidate self int32_t acceptMarked( UText *text ); // Back up from the current candidate to the next shorter one; return TRUE if that exists // and point the text after it UBool backUp( UText *text ); // Return the longest prefix this candidate location shares with a dictionary word int32_t longestPrefix(); // Mark the current candidate as the one we like void markCurrent(); }; inline PossibleWord::PossibleWord() { offset = -1; } inline PossibleWord::~PossibleWord() { } inline int PossibleWord::candidates( UText *text, const TrieWordDictionary *dict, int32_t rangeEnd ) { // TODO: If getIndex is too slow, use offset < 0 and add discardAll() int32_t start = (int32_t)utext_getNativeIndex(text); if (start != offset) { offset = start; prefix = dict->matches(text, rangeEnd-start, lengths, count, sizeof(lengths)/sizeof(lengths[0])); // Dictionary leaves text after longest prefix, not longest word. Back up. if (count <= 0) { utext_setNativeIndex(text, start); } } if (count > 0) { utext_setNativeIndex(text, start+lengths[count-1]); } current = count-1; mark = current; return count; } inline int32_t PossibleWord::acceptMarked( UText *text ) { utext_setNativeIndex(text, offset + lengths[mark]); return lengths[mark]; } inline UBool PossibleWord::backUp( UText *text ) { if (current > 0) { utext_setNativeIndex(text, offset + lengths[--current]); return TRUE; } return FALSE; } inline int32_t PossibleWord::longestPrefix() { return prefix; } inline void PossibleWord::markCurrent() { mark = current; } // How many words in a row are "good enough"? #define THAI_LOOKAHEAD 3 // Will not combine a non-word with a preceding dictionary word longer than this #define THAI_ROOT_COMBINE_THRESHOLD 3 // Will not combine a non-word that shares at least this much prefix with a // dictionary word, with a preceding word #define THAI_PREFIX_COMBINE_THRESHOLD 3 // Ellision character #define THAI_PAIYANNOI 0x0E2F // Repeat character #define THAI_MAIYAMOK 0x0E46 // Minimum word size #define THAI_MIN_WORD 2 // Minimum number of characters for two words #define THAI_MIN_WORD_SPAN (THAI_MIN_WORD * 2) ThaiBreakEngine::ThaiBreakEngine(const TrieWordDictionary *adoptDictionary, UErrorCode &status) : DictionaryBreakEngine((1<<UBRK_WORD) | (1<<UBRK_LINE)), fDictionary(adoptDictionary) { fThaiWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]]"), status); if (U_SUCCESS(status)) { setCharacters(fThaiWordSet); } fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]&[:M:]]"), status); fMarkSet.add(0x0020); fEndWordSet = fThaiWordSet; fEndWordSet.remove(0x0E31); // MAI HAN-AKAT fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI fSuffixSet.add(THAI_PAIYANNOI); fSuffixSet.add(THAI_MAIYAMOK); // Compact for caching. fMarkSet.compact(); fEndWordSet.compact(); fBeginWordSet.compact(); fSuffixSet.compact(); } ThaiBreakEngine::~ThaiBreakEngine() { delete fDictionary; } int32_t ThaiBreakEngine::divideUpDictionaryRange( UText *text, int32_t rangeStart, int32_t rangeEnd, UStack &foundBreaks ) const { if ((rangeEnd - rangeStart) < THAI_MIN_WORD_SPAN) { return 0; // Not enough characters for two words } uint32_t wordsFound = 0; int32_t wordLength; int32_t current; UErrorCode status = U_ZERO_ERROR; PossibleWord words[THAI_LOOKAHEAD]; UChar32 uc; utext_setNativeIndex(text, rangeStart); while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { wordLength = 0; // Look for candidate words at the current position int candidates = words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); // If we found exactly one, use that if (candidates == 1) { wordLength = words[wordsFound%THAI_LOOKAHEAD].acceptMarked(text); wordsFound += 1; } // If there was more than one, see which one can take us forward the most words else if (candidates > 1) { // If we're already at the end of the range, we're done if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { goto foundBest; } do { int wordsMatched = 1; if (words[(wordsFound+1)%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { if (wordsMatched < 2) { // Followed by another dictionary word; mark first word as a good candidate words[wordsFound%THAI_LOOKAHEAD].markCurrent(); wordsMatched = 2; } // If we're already at the end of the range, we're done if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { goto foundBest; } // See if any of the possible second words is followed by a third word do { // If we find a third word, stop right away if (words[(wordsFound+2)%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { words[wordsFound%THAI_LOOKAHEAD].markCurrent(); goto foundBest; } } while (words[(wordsFound+1)%THAI_LOOKAHEAD].backUp(text)); } } while (words[wordsFound%THAI_LOOKAHEAD].backUp(text)); foundBest: wordLength = words[wordsFound%THAI_LOOKAHEAD].acceptMarked(text); wordsFound += 1; } // We come here after having either found a word or not. We look ahead to the // next word. If it's not a dictionary word, we will combine it withe the word we // just found (if there is one), but only if the preceding word does not exceed // the threshold. // The text iterator should now be positioned at the end of the word we found. if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength < THAI_ROOT_COMBINE_THRESHOLD) { // if it is a dictionary word, do nothing. If it isn't, then if there is // no preceding word, or the non-word shares less than the minimum threshold // of characters with a dictionary word, then scan to resynchronize if (words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 && (wordLength == 0 || words[wordsFound%THAI_LOOKAHEAD].longestPrefix() < THAI_PREFIX_COMBINE_THRESHOLD)) { // Look for a plausible word boundary //TODO: This section will need a rework for UText. int32_t remaining = rangeEnd - (current+wordLength); UChar32 pc = utext_current32(text); int32_t chars = 0; for (;;) { utext_next32(text); uc = utext_current32(text); // TODO: Here we're counting on the fact that the SA languages are all // in the BMP. This should get fixed with the UText rework. chars += 1; if (--remaining <= 0) { break; } if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { // Maybe. See if it's in the dictionary. // NOTE: In the original Apple code, checked that the next // two characters after uc were not 0x0E4C THANTHAKHAT before // checking the dictionary. That is just a performance filter, // but it's not clear it's faster than checking the trie. int candidates = words[(wordsFound+1)%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); utext_setNativeIndex(text, current+wordLength+chars); if (candidates > 0) { break; } } pc = uc; } // Bump the word count if there wasn't already one if (wordLength <= 0) { wordsFound += 1; } // Update the length with the passed-over characters wordLength += chars; } else { // Back up to where we were for next iteration utext_setNativeIndex(text, current+wordLength); } } // Never stop before a combining mark. int32_t currPos; while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { utext_next32(text); wordLength += (int32_t)utext_getNativeIndex(text) - currPos; } // Look ahead for possible suffixes if a dictionary word does not follow. // We do this in code rather than using a rule so that the heuristic // resynch continues to function. For example, one of the suffix characters // could be a typo in the middle of a word. if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) { if (words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 && fSuffixSet.contains(uc = utext_current32(text))) { if (uc == THAI_PAIYANNOI) { if (!fSuffixSet.contains(utext_previous32(text))) { // Skip over previous end and PAIYANNOI utext_next32(text); utext_next32(text); wordLength += 1; // Add PAIYANNOI to word uc = utext_current32(text); // Fetch next character } else { // Restore prior position utext_next32(text); } } if (uc == THAI_MAIYAMOK) { if (utext_previous32(text) != THAI_MAIYAMOK) { // Skip over previous end and MAIYAMOK utext_next32(text); utext_next32(text); wordLength += 1; // Add MAIYAMOK to word } else { // Restore prior position utext_next32(text); } } } else { utext_setNativeIndex(text, current+wordLength); } } // Did we find a word on this iteration? If so, push it on the break stack if (wordLength > 0) { foundBreaks.push((current+wordLength), status); } } // Don't return a break for the end of the dictionary range if there is one there. if (foundBreaks.peeki() >= rangeEnd) { (void) foundBreaks.popi(); wordsFound -= 1; } return wordsFound; } // How many words in a row are "good enough"? #define KHMER_LOOKAHEAD 3 // Will not combine a non-word with a preceding dictionary word longer than this #define KHMER_ROOT_COMBINE_THRESHOLD 3 // Will not combine a non-word that shares at least this much prefix with a // dictionary word, with a preceding word #define KHMER_PREFIX_COMBINE_THRESHOLD 3 // Minimum word size #define KHMER_MIN_WORD 2 // Minimum number of characters for two words #define KHMER_MIN_WORD_SPAN (KHMER_MIN_WORD * 2) KhmerBreakEngine::KhmerBreakEngine(const TrieWordDictionary *adoptDictionary, UErrorCode &status) : DictionaryBreakEngine((1<<UBRK_WORD) | (1<<UBRK_LINE)), fDictionary(adoptDictionary) { fKhmerWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]]"), status); if (U_SUCCESS(status)) { setCharacters(fKhmerWordSet); } fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]&[:M:]]"), status); fMarkSet.add(0x0020); fEndWordSet = fKhmerWordSet; fBeginWordSet.add(0x1780, 0x17B3); //fBeginWordSet.add(0x17A3, 0x17A4); // deprecated vowels //fEndWordSet.remove(0x17A5, 0x17A9); // Khmer independent vowels that can't end a word //fEndWordSet.remove(0x17B2); // Khmer independent vowel that can't end a word fEndWordSet.remove(0x17D2); // KHMER SIGN COENG that combines some following characters //fEndWordSet.remove(0x17B6, 0x17C5); // Remove dependent vowels // fEndWordSet.remove(0x0E31); // MAI HAN-AKAT // fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI // fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK // fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI // fSuffixSet.add(THAI_PAIYANNOI); // fSuffixSet.add(THAI_MAIYAMOK); // Compact for caching. fMarkSet.compact(); fEndWordSet.compact(); fBeginWordSet.compact(); // fSuffixSet.compact(); } KhmerBreakEngine::~KhmerBreakEngine() { delete fDictionary; } int32_t KhmerBreakEngine::divideUpDictionaryRange( UText *text, int32_t rangeStart, int32_t rangeEnd, UStack &foundBreaks ) const { if ((rangeEnd - rangeStart) < KHMER_MIN_WORD_SPAN) { return 0; // Not enough characters for two words } uint32_t wordsFound = 0; int32_t wordLength; int32_t current; UErrorCode status = U_ZERO_ERROR; PossibleWord words[KHMER_LOOKAHEAD]; UChar32 uc; utext_setNativeIndex(text, rangeStart); while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { wordLength = 0; // Look for candidate words at the current position int candidates = words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); // If we found exactly one, use that if (candidates == 1) { wordLength = words[wordsFound%KHMER_LOOKAHEAD].acceptMarked(text); wordsFound += 1; } // If there was more than one, see which one can take us forward the most words else if (candidates > 1) { // If we're already at the end of the range, we're done if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { goto foundBest; } do { int wordsMatched = 1; if (words[(wordsFound+1)%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { if (wordsMatched < 2) { // Followed by another dictionary word; mark first word as a good candidate words[wordsFound%KHMER_LOOKAHEAD].markCurrent(); wordsMatched = 2; } // If we're already at the end of the range, we're done if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { goto foundBest; } // See if any of the possible second words is followed by a third word do { // If we find a third word, stop right away if (words[(wordsFound+2)%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { words[wordsFound%KHMER_LOOKAHEAD].markCurrent(); goto foundBest; } } while (words[(wordsFound+1)%KHMER_LOOKAHEAD].backUp(text)); } } while (words[wordsFound%KHMER_LOOKAHEAD].backUp(text)); foundBest: wordLength = words[wordsFound%KHMER_LOOKAHEAD].acceptMarked(text); wordsFound += 1; } // We come here after having either found a word or not. We look ahead to the // next word. If it's not a dictionary word, we will combine it with the word we // just found (if there is one), but only if the preceding word does not exceed // the threshold. // The text iterator should now be positioned at the end of the word we found. if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength < KHMER_ROOT_COMBINE_THRESHOLD) { // if it is a dictionary word, do nothing. If it isn't, then if there is // no preceding word, or the non-word shares less than the minimum threshold // of characters with a dictionary word, then scan to resynchronize if (words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 && (wordLength == 0 || words[wordsFound%KHMER_LOOKAHEAD].longestPrefix() < KHMER_PREFIX_COMBINE_THRESHOLD)) { // Look for a plausible word boundary //TODO: This section will need a rework for UText. int32_t remaining = rangeEnd - (current+wordLength); UChar32 pc = utext_current32(text); int32_t chars = 0; for (;;) { utext_next32(text); uc = utext_current32(text); // TODO: Here we're counting on the fact that the SA languages are all // in the BMP. This should get fixed with the UText rework. chars += 1; if (--remaining <= 0) { break; } if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { // Maybe. See if it's in the dictionary. int candidates = words[(wordsFound+1)%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); utext_setNativeIndex(text, current+wordLength+chars); if (candidates > 0) { break; } } pc = uc; } // Bump the word count if there wasn't already one if (wordLength <= 0) { wordsFound += 1; } // Update the length with the passed-over characters wordLength += chars; } else { // Back up to where we were for next iteration utext_setNativeIndex(text, current+wordLength); } } // Never stop before a combining mark. int32_t currPos; while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { utext_next32(text); wordLength += (int32_t)utext_getNativeIndex(text) - currPos; } // Look ahead for possible suffixes if a dictionary word does not follow. // We do this in code rather than using a rule so that the heuristic // resynch continues to function. For example, one of the suffix characters // could be a typo in the middle of a word. // if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) { // if (words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 // && fSuffixSet.contains(uc = utext_current32(text))) { // if (uc == KHMER_PAIYANNOI) { // if (!fSuffixSet.contains(utext_previous32(text))) { // // Skip over previous end and PAIYANNOI // utext_next32(text); // utext_next32(text); // wordLength += 1; // Add PAIYANNOI to word // uc = utext_current32(text); // Fetch next character // } // else { // // Restore prior position // utext_next32(text); // } // } // if (uc == KHMER_MAIYAMOK) { // if (utext_previous32(text) != KHMER_MAIYAMOK) { // // Skip over previous end and MAIYAMOK // utext_next32(text); // utext_next32(text); // wordLength += 1; // Add MAIYAMOK to word // } // else { // // Restore prior position // utext_next32(text); // } // } // } // else { // utext_setNativeIndex(text, current+wordLength); // } // } // Did we find a word on this iteration? If so, push it on the break stack if (wordLength > 0) { foundBreaks.push((current+wordLength), status); } } // Don't return a break for the end of the dictionary range if there is one there. if (foundBreaks.peeki() >= rangeEnd) { (void) foundBreaks.popi(); wordsFound -= 1; } return wordsFound; } U_NAMESPACE_END #endif /* #if !UCONFIG_NO_BREAK_ITERATION */