/*- * Copyright (c) 2005 David Schultz <das@FreeBSD.ORG> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> /* __FBSDID("$FreeBSD: src/lib/msun/src/s_fma.c,v 1.4 2005/03/18 02:27:59 das Exp $"); */ #include <fenv.h> #include <float.h> #include <math.h> /* * Fused multiply-add: Compute x * y + z with a single rounding error. * * We use scaling to avoid overflow/underflow, along with the * canonical precision-doubling technique adapted from: * * Dekker, T. A Floating-Point Technique for Extending the * Available Precision. Numer. Math. 18, 224-242 (1971). * * This algorithm is sensitive to the rounding precision. FPUs such * as the i387 must be set in double-precision mode if variables are * to be stored in FP registers in order to avoid incorrect results. * This is the default on FreeBSD, but not on many other systems. * * Hardware instructions should be used on architectures that support it, * since this implementation will likely be several times slower. */ #if LDBL_MANT_DIG != 113 double fma(double x, double y, double z) { static const double split = 0x1p27 + 1.0; double xs, ys, zs; double c, cc, hx, hy, p, q, tx, ty; double r, rr, s; int oround; int ex, ey, ez; int spread; if (z == 0.0) return (x * y); if (x == 0.0 || y == 0.0) return (x * y + z); /* Results of frexp() are undefined for these cases. */ if (!isfinite(x) || !isfinite(y) || !isfinite(z)) return (x * y + z); xs = frexp(x, &ex); ys = frexp(y, &ey); zs = frexp(z, &ez); oround = fegetround(); spread = ex + ey - ez; /* * If x * y and z are many orders of magnitude apart, the scaling * will overflow, so we handle these cases specially. Rounding * modes other than FE_TONEAREST are painful. */ if (spread > DBL_MANT_DIG * 2) { fenv_t env; feraiseexcept(FE_INEXACT); switch(oround) { case FE_TONEAREST: return (x * y); case FE_TOWARDZERO: if (x > 0.0 ^ y < 0.0 ^ z < 0.0) return (x * y); feholdexcept(&env); r = x * y; if (!fetestexcept(FE_INEXACT)) r = nextafter(r, 0); feupdateenv(&env); return (r); case FE_DOWNWARD: if (z > 0.0) return (x * y); feholdexcept(&env); r = x * y; if (!fetestexcept(FE_INEXACT)) r = nextafter(r, -INFINITY); feupdateenv(&env); return (r); default: /* FE_UPWARD */ if (z < 0.0) return (x * y); feholdexcept(&env); r = x * y; if (!fetestexcept(FE_INEXACT)) r = nextafter(r, INFINITY); feupdateenv(&env); return (r); } } if (spread < -DBL_MANT_DIG) { feraiseexcept(FE_INEXACT); if (!isnormal(z)) feraiseexcept(FE_UNDERFLOW); switch (oround) { case FE_TONEAREST: return (z); case FE_TOWARDZERO: if (x > 0.0 ^ y < 0.0 ^ z < 0.0) return (z); else return (nextafter(z, 0)); case FE_DOWNWARD: if (x > 0.0 ^ y < 0.0) return (z); else return (nextafter(z, -INFINITY)); default: /* FE_UPWARD */ if (x > 0.0 ^ y < 0.0) return (nextafter(z, INFINITY)); else return (z); } } /* * Use Dekker's algorithm to perform the multiplication and * subsequent addition in twice the machine precision. * Arrange so that x * y = c + cc, and x * y + z = r + rr. */ fesetround(FE_TONEAREST); p = xs * split; hx = xs - p; hx += p; tx = xs - hx; p = ys * split; hy = ys - p; hy += p; ty = ys - hy; p = hx * hy; q = hx * ty + tx * hy; c = p + q; cc = p - c + q + tx * ty; zs = ldexp(zs, -spread); r = c + zs; s = r - c; rr = (c - (r - s)) + (zs - s) + cc; spread = ex + ey; if (spread + ilogb(r) > -1023) { fesetround(oround); r = r + rr; } else { /* * The result is subnormal, so we round before scaling to * avoid double rounding. */ p = ldexp(copysign(0x1p-1022, r), -spread); c = r + p; s = c - r; cc = (r - (c - s)) + (p - s) + rr; fesetround(oround); r = (c + cc) - p; } return (ldexp(r, spread)); } #else /* LDBL_MANT_DIG == 113 */ /* * 113 bits of precision is more than twice the precision of a double, * so it is enough to represent the intermediate product exactly. */ double fma(double x, double y, double z) { return ((long double)x * y + z); } #endif /* LDBL_MANT_DIG != 113 */ #if (LDBL_MANT_DIG == 53) __weak_reference(fma, fmal); #endif