/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* this implements a sensors hardware library for the Android emulator.
* the following code should be built as a shared library that will be
* placed into /system/lib/hw/sensors.goldfish.so
*
* it will be loaded by the code in hardware/libhardware/hardware.c
* which is itself called from com_android_server_SensorService.cpp
*/
/* we connect with the emulator through the "sensors" qemud service
*/
#define SENSORS_SERVICE_NAME "sensors"
#define LOG_TAG "QemuSensors"
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
#include <cutils/log.h>
#include <cutils/native_handle.h>
#include <cutils/sockets.h>
#include <hardware/sensors.h>
#if 0
#define D(...) LOGD(__VA_ARGS__)
#else
#define D(...) ((void)0)
#endif
#define E(...) LOGE(__VA_ARGS__)
#include <hardware/qemud.h>
/** SENSOR IDS AND NAMES
**/
#define MAX_NUM_SENSORS 5
#define SUPPORTED_SENSORS ((1<<MAX_NUM_SENSORS)-1)
#define ID_BASE SENSORS_HANDLE_BASE
#define ID_ACCELERATION (ID_BASE+0)
#define ID_MAGNETIC_FIELD (ID_BASE+1)
#define ID_ORIENTATION (ID_BASE+2)
#define ID_TEMPERATURE (ID_BASE+3)
#define ID_PROXIMITY (ID_BASE+4)
#define SENSORS_ACCELERATION (1 << ID_ACCELERATION)
#define SENSORS_MAGNETIC_FIELD (1 << ID_MAGNETIC_FIELD)
#define SENSORS_ORIENTATION (1 << ID_ORIENTATION)
#define SENSORS_TEMPERATURE (1 << ID_TEMPERATURE)
#define SENSORS_PROXIMITY (1 << ID_PROXIMITY)
#define ID_CHECK(x) ((unsigned)((x)-ID_BASE) < MAX_NUM_SENSORS)
#define SENSORS_LIST \
SENSOR_(ACCELERATION,"acceleration") \
SENSOR_(MAGNETIC_FIELD,"magnetic-field") \
SENSOR_(ORIENTATION,"orientation") \
SENSOR_(TEMPERATURE,"temperature") \
SENSOR_(PROXIMITY,"proximity") \
static const struct {
const char* name;
int id; } _sensorIds[MAX_NUM_SENSORS] =
{
#define SENSOR_(x,y) { y, ID_##x },
SENSORS_LIST
#undef SENSOR_
};
static const char*
_sensorIdToName( int id )
{
int nn;
for (nn = 0; nn < MAX_NUM_SENSORS; nn++)
if (id == _sensorIds[nn].id)
return _sensorIds[nn].name;
return "<UNKNOWN>";
}
static int
_sensorIdFromName( const char* name )
{
int nn;
if (name == NULL)
return -1;
for (nn = 0; nn < MAX_NUM_SENSORS; nn++)
if (!strcmp(name, _sensorIds[nn].name))
return _sensorIds[nn].id;
return -1;
}
/** SENSORS POLL DEVICE
**
** This one is used to read sensor data from the hardware.
** We implement this by simply reading the data from the
** emulator through the QEMUD channel.
**/
typedef struct SensorPoll {
struct sensors_poll_device_t device;
sensors_event_t sensors[MAX_NUM_SENSORS];
int events_fd;
uint32_t pendingSensors;
int64_t timeStart;
int64_t timeOffset;
int fd;
uint32_t active_sensors;
} SensorPoll;
/* this must return a file descriptor that will be used to read
* the sensors data (it is passed to data__data_open() below
*/
static native_handle_t*
control__open_data_source(struct sensors_poll_device_t *dev)
{
SensorPoll* ctl = (void*)dev;
native_handle_t* handle;
if (ctl->fd < 0) {
ctl->fd = qemud_channel_open(SENSORS_SERVICE_NAME);
}
D("%s: fd=%d", __FUNCTION__, ctl->fd);
handle = native_handle_create(1, 0);
handle->data[0] = dup(ctl->fd);
return handle;
}
static int
control__activate(struct sensors_poll_device_t *dev,
int handle,
int enabled)
{
SensorPoll* ctl = (void*)dev;
uint32_t mask, sensors, active, new_sensors, changed;
char command[128];
int ret;
D("%s: handle=%s (%d) fd=%d enabled=%d", __FUNCTION__,
_sensorIdToName(handle), handle, ctl->fd, enabled);
if (!ID_CHECK(handle)) {
E("%s: bad handle ID", __FUNCTION__);
return -1;
}
mask = (1<<handle);
sensors = enabled ? mask : 0;
active = ctl->active_sensors;
new_sensors = (active & ~mask) | (sensors & mask);
changed = active ^ new_sensors;
if (!changed)
return 0;
snprintf(command, sizeof command, "set:%s:%d",
_sensorIdToName(handle), enabled != 0);
if (ctl->fd < 0) {
ctl->fd = qemud_channel_open(SENSORS_SERVICE_NAME);
}
ret = qemud_channel_send(ctl->fd, command, -1);
if (ret < 0) {
E("%s: when sending command errno=%d: %s", __FUNCTION__, errno, strerror(errno));
return -1;
}
ctl->active_sensors = new_sensors;
return 0;
}
static int
control__set_delay(struct sensors_poll_device_t *dev, int32_t ms)
{
SensorPoll* ctl = (void*)dev;
char command[128];
D("%s: dev=%p delay-ms=%d", __FUNCTION__, dev, ms);
snprintf(command, sizeof command, "set-delay:%d", ms);
return qemud_channel_send(ctl->fd, command, -1);
}
static int
control__close(struct hw_device_t *dev)
{
SensorPoll* ctl = (void*)dev;
close(ctl->fd);
free(ctl);
return 0;
}
/* return the current time in nanoseconds */
static int64_t
data__now_ns(void)
{
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return (int64_t)ts.tv_sec * 1000000000 + ts.tv_nsec;
}
static int
data__data_open(struct sensors_poll_device_t *dev, native_handle_t* handle)
{
SensorPoll* data = (void*)dev;
int i;
D("%s: dev=%p fd=%d", __FUNCTION__, dev, handle->data[0]);
memset(&data->sensors, 0, sizeof(data->sensors));
for (i=0 ; i<MAX_NUM_SENSORS ; i++) {
data->sensors[i].acceleration.status = SENSOR_STATUS_ACCURACY_HIGH;
}
data->pendingSensors = 0;
data->timeStart = 0;
data->timeOffset = 0;
data->events_fd = dup(handle->data[0]);
D("%s: dev=%p fd=%d (was %d)", __FUNCTION__, dev, data->events_fd, handle->data[0]);
native_handle_close(handle);
native_handle_delete(handle);
return 0;
}
static int
data__data_close(struct sensors_poll_device_t *dev)
{
SensorPoll* data = (void*)dev;
D("%s: dev=%p", __FUNCTION__, dev);
if (data->events_fd >= 0) {
close(data->events_fd);
data->events_fd = -1;
}
return 0;
}
static int
pick_sensor(SensorPoll* data,
sensors_event_t* values)
{
uint32_t mask = SUPPORTED_SENSORS;
while (mask) {
uint32_t i = 31 - __builtin_clz(mask);
mask &= ~(1<<i);
if (data->pendingSensors & (1<<i)) {
data->pendingSensors &= ~(1<<i);
*values = data->sensors[i];
values->sensor = i;
values->version = sizeof(*values);
D("%s: %d [%f, %f, %f]", __FUNCTION__,
i,
values->data[0],
values->data[1],
values->data[2]);
return i;
}
}
LOGE("No sensor to return!!! pendingSensors=%08x", data->pendingSensors);
// we may end-up in a busy loop, slow things down, just in case.
usleep(100000);
return -EINVAL;
}
static int
data__poll(struct sensors_poll_device_t *dev, sensors_event_t* values)
{
SensorPoll* data = (void*)dev;
int fd = data->events_fd;
D("%s: data=%p", __FUNCTION__, dev);
// there are pending sensors, returns them now...
if (data->pendingSensors) {
return pick_sensor(data, values);
}
// wait until we get a complete event for an enabled sensor
uint32_t new_sensors = 0;
while (1) {
/* read the next event */
char buff[256];
int len = qemud_channel_recv(data->events_fd, buff, sizeof buff-1);
float params[3];
int64_t event_time;
if (len < 0) {
E("%s: len=%d, errno=%d: %s", __FUNCTION__, len, errno, strerror(errno));
return -errno;
}
buff[len] = 0;
/* "wake" is sent from the emulator to exit this loop. */
if (!strcmp((const char*)data, "wake")) {
return 0x7FFFFFFF;
}
/* "acceleration:<x>:<y>:<z>" corresponds to an acceleration event */
if (sscanf(buff, "acceleration:%g:%g:%g", params+0, params+1, params+2) == 3) {
new_sensors |= SENSORS_ACCELERATION;
data->sensors[ID_ACCELERATION].acceleration.x = params[0];
data->sensors[ID_ACCELERATION].acceleration.y = params[1];
data->sensors[ID_ACCELERATION].acceleration.z = params[2];
continue;
}
/* "orientation:<azimuth>:<pitch>:<roll>" is sent when orientation changes */
if (sscanf(buff, "orientation:%g:%g:%g", params+0, params+1, params+2) == 3) {
new_sensors |= SENSORS_ORIENTATION;
data->sensors[ID_ORIENTATION].orientation.azimuth = params[0];
data->sensors[ID_ORIENTATION].orientation.pitch = params[1];
data->sensors[ID_ORIENTATION].orientation.roll = params[2];
continue;
}
/* "magnetic-field:<x>:<y>:<z>" is sent for the params of the magnetic field */
if (sscanf(buff, "magnetic-field:%g:%g:%g", params+0, params+1, params+2) == 3) {
new_sensors |= SENSORS_MAGNETIC_FIELD;
data->sensors[ID_MAGNETIC_FIELD].magnetic.x = params[0];
data->sensors[ID_MAGNETIC_FIELD].magnetic.y = params[1];
data->sensors[ID_MAGNETIC_FIELD].magnetic.z = params[2];
continue;
}
/* "temperature:<celsius>" */
if (sscanf(buff, "temperature:%g", params+0) == 2) {
new_sensors |= SENSORS_TEMPERATURE;
data->sensors[ID_TEMPERATURE].temperature = params[0];
continue;
}
/* "proximity:<value>" */
if (sscanf(buff, "proximity:%g", params+0) == 1) {
new_sensors |= SENSORS_PROXIMITY;
data->sensors[ID_PROXIMITY].distance = params[0];
continue;
}
/* "sync:<time>" is sent after a series of sensor events.
* where 'time' is expressed in micro-seconds and corresponds
* to the VM time when the real poll occured.
*/
if (sscanf(buff, "sync:%lld", &event_time) == 1) {
if (new_sensors) {
data->pendingSensors = new_sensors;
int64_t t = event_time * 1000LL; /* convert to nano-seconds */
/* use the time at the first sync: as the base for later
* time values */
if (data->timeStart == 0) {
data->timeStart = data__now_ns();
data->timeOffset = data->timeStart - t;
}
t += data->timeOffset;
while (new_sensors) {
uint32_t i = 31 - __builtin_clz(new_sensors);
new_sensors &= ~(1<<i);
data->sensors[i].timestamp = t;
}
return pick_sensor(data, values);
} else {
D("huh ? sync without any sensor data ?");
}
continue;
}
D("huh ? unsupported command");
}
return -1;
}
static int
data__close(struct hw_device_t *dev)
{
SensorPoll* data = (SensorPoll*)dev;
if (data) {
if (data->events_fd >= 0) {
//LOGD("(device close) about to close fd=%d", data->events_fd);
close(data->events_fd);
}
free(data);
}
return 0;
}
/** SENSORS POLL DEVICE FUNCTIONS **/
static int poll__close(struct hw_device_t* dev)
{
SensorPoll* ctl = (void*)dev;
close(ctl->fd);
if (ctl->fd >= 0) {
close(ctl->fd);
}
if (ctl->events_fd >= 0) {
close(ctl->events_fd);
}
free(ctl);
return 0;
}
static int poll__poll(struct sensors_poll_device_t *dev,
sensors_event_t* data, int count)
{
SensorPoll* datadev = (void*)dev;
int ret;
int i;
D("%s: dev=%p data=%p count=%d ", __FUNCTION__, dev, data, count);
for (i = 0; i < count; i++) {
ret = data__poll(dev, data);
data++;
if (ret > MAX_NUM_SENSORS || ret < 0) {
return i;
}
if (!datadev->pendingSensors) {
return i + 1;
}
}
return count;
}
static int poll__activate(struct sensors_poll_device_t *dev,
int handle, int enabled)
{
int ret;
native_handle_t* hdl;
SensorPoll* ctl = (void*)dev;
D("%s: dev=%p handle=%x enable=%d ", __FUNCTION__, dev, handle, enabled);
if (ctl->fd < 0) {
D("%s: OPEN CTRL and DATA ", __FUNCTION__);
hdl = control__open_data_source(dev);
ret = data__data_open(dev,hdl);
}
ret = control__activate(dev, handle, enabled);
return ret;
}
static int poll__setDelay(struct sensors_poll_device_t *dev,
int handle, int64_t ns)
{
// TODO
return 0;
}
/** MODULE REGISTRATION SUPPORT
**
** This is required so that hardware/libhardware/hardware.c
** will dlopen() this library appropriately.
**/
/*
* the following is the list of all supported sensors.
* this table is used to build sSensorList declared below
* according to which hardware sensors are reported as
* available from the emulator (see get_sensors_list below)
*
* note: numerical values for maxRange/resolution/power were
* taken from the reference AK8976A implementation
*/
static const struct sensor_t sSensorListInit[] = {
{ .name = "Goldfish 3-axis Accelerometer",
.vendor = "The Android Open Source Project",
.version = 1,
.handle = ID_ACCELERATION,
.type = SENSOR_TYPE_ACCELEROMETER,
.maxRange = 2.8f,
.resolution = 1.0f/4032.0f,
.power = 3.0f,
.reserved = {}
},
{ .name = "Goldfish 3-axis Magnetic field sensor",
.vendor = "The Android Open Source Project",
.version = 1,
.handle = ID_MAGNETIC_FIELD,
.type = SENSOR_TYPE_MAGNETIC_FIELD,
.maxRange = 2000.0f,
.resolution = 1.0f,
.power = 6.7f,
.reserved = {}
},
{ .name = "Goldfish Orientation sensor",
.vendor = "The Android Open Source Project",
.version = 1,
.handle = ID_ORIENTATION,
.type = SENSOR_TYPE_ORIENTATION,
.maxRange = 360.0f,
.resolution = 1.0f,
.power = 9.7f,
.reserved = {}
},
{ .name = "Goldfish Temperature sensor",
.vendor = "The Android Open Source Project",
.version = 1,
.handle = ID_TEMPERATURE,
.type = SENSOR_TYPE_TEMPERATURE,
.maxRange = 80.0f,
.resolution = 1.0f,
.power = 0.0f,
.reserved = {}
},
{ .name = "Goldfish Proximity sensor",
.vendor = "The Android Open Source Project",
.version = 1,
.handle = ID_PROXIMITY,
.type = SENSOR_TYPE_PROXIMITY,
.maxRange = 1.0f,
.resolution = 1.0f,
.power = 20.0f,
.reserved = {}
},
};
static struct sensor_t sSensorList[MAX_NUM_SENSORS];
static int sensors__get_sensors_list(struct sensors_module_t* module,
struct sensor_t const** list)
{
int fd = qemud_channel_open(SENSORS_SERVICE_NAME);
char buffer[12];
int mask, nn, count;
int ret;
if (fd < 0) {
E("%s: no qemud connection", __FUNCTION__);
return 0;
}
ret = qemud_channel_send(fd, "list-sensors", -1);
if (ret < 0) {
E("%s: could not query sensor list: %s", __FUNCTION__,
strerror(errno));
close(fd);
return 0;
}
ret = qemud_channel_recv(fd, buffer, sizeof buffer-1);
if (ret < 0) {
E("%s: could not receive sensor list: %s", __FUNCTION__,
strerror(errno));
close(fd);
return 0;
}
buffer[ret] = 0;
close(fd);
/* the result is a integer used as a mask for available sensors */
mask = atoi(buffer);
count = 0;
for (nn = 0; nn < MAX_NUM_SENSORS; nn++) {
if (((1 << nn) & mask) == 0)
continue;
sSensorList[count++] = sSensorListInit[nn];
}
D("%s: returned %d sensors (mask=%d)", __FUNCTION__, count, mask);
*list = sSensorList;
return count;
}
static int
open_sensors(const struct hw_module_t* module,
const char* name,
struct hw_device_t* *device)
{
int status = -EINVAL;
D("%s: name=%s", __FUNCTION__, name);
if (!strcmp(name, SENSORS_HARDWARE_POLL)) {
SensorPoll *dev = malloc(sizeof(*dev));
memset(dev, 0, sizeof(*dev));
dev->device.common.tag = HARDWARE_DEVICE_TAG;
dev->device.common.version = 0;
dev->device.common.module = (struct hw_module_t*) module;
dev->device.common.close = poll__close;
dev->device.poll = poll__poll;
dev->device.activate = poll__activate;
dev->device.setDelay = poll__setDelay;
dev->events_fd = -1;
dev->fd = -1;
*device = &dev->device.common;
status = 0;
}
return status;
}
static struct hw_module_methods_t sensors_module_methods = {
.open = open_sensors
};
const struct sensors_module_t HAL_MODULE_INFO_SYM = {
.common = {
.tag = HARDWARE_MODULE_TAG,
.version_major = 1,
.version_minor = 0,
.id = SENSORS_HARDWARE_MODULE_ID,
.name = "Goldfish SENSORS Module",
.author = "The Android Open Source Project",
.methods = &sensors_module_methods,
},
.get_sensors_list = sensors__get_sensors_list
};