/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <rs_hal.h>
#include <rsContext.h>
#include <rsProgram.h>
#include "rsdCore.h"
#include "rsdAllocation.h"
#include "rsdShader.h"
#include "rsdShaderCache.h"
using namespace android;
using namespace android::renderscript;
RsdShader::RsdShader(const Program *p, uint32_t type,
const char * shaderText, uint32_t shaderLength) {
mUserShader.setTo(shaderText, shaderLength);
mRSProgram = p;
mType = type;
initMemberVars();
initAttribAndUniformArray();
init();
}
RsdShader::~RsdShader() {
if (mShaderID) {
glDeleteShader(mShaderID);
}
delete[] mAttribNames;
delete[] mUniformNames;
delete[] mUniformArraySizes;
delete[] mTextureTargets;
}
void RsdShader::initMemberVars() {
mDirty = true;
mShaderID = 0;
mAttribCount = 0;
mUniformCount = 0;
mAttribNames = NULL;
mUniformNames = NULL;
mUniformArraySizes = NULL;
mTextureTargets = NULL;
mIsValid = false;
}
void RsdShader::init() {
uint32_t attribCount = 0;
uint32_t uniformCount = 0;
for (uint32_t ct=0; ct < mRSProgram->mHal.state.inputElementsCount; ct++) {
initAddUserElement(mRSProgram->mHal.state.inputElements[ct].get(), mAttribNames, NULL, &attribCount, RS_SHADER_ATTR);
}
for (uint32_t ct=0; ct < mRSProgram->mHal.state.constantsCount; ct++) {
initAddUserElement(mRSProgram->mHal.state.constantTypes[ct]->getElement(), mUniformNames, mUniformArraySizes, &uniformCount, RS_SHADER_UNI);
}
mTextureUniformIndexStart = uniformCount;
char buf[256];
for (uint32_t ct=0; ct < mRSProgram->mHal.state.texturesCount; ct++) {
snprintf(buf, sizeof(buf), "UNI_Tex%i", ct);
mUniformNames[uniformCount].setTo(buf);
mUniformArraySizes[uniformCount] = 1;
uniformCount++;
}
}
String8 RsdShader::getGLSLInputString() const {
String8 s;
for (uint32_t ct=0; ct < mRSProgram->mHal.state.inputElementsCount; ct++) {
const Element *e = mRSProgram->mHal.state.inputElements[ct].get();
for (uint32_t field=0; field < e->getFieldCount(); field++) {
const Element *f = e->getField(field);
// Cannot be complex
rsAssert(!f->getFieldCount());
switch (f->getComponent().getVectorSize()) {
case 1: s.append("attribute float ATTRIB_"); break;
case 2: s.append("attribute vec2 ATTRIB_"); break;
case 3: s.append("attribute vec3 ATTRIB_"); break;
case 4: s.append("attribute vec4 ATTRIB_"); break;
default:
rsAssert(0);
}
s.append(e->getFieldName(field));
s.append(";\n");
}
}
return s;
}
void RsdShader::appendAttributes() {
for (uint32_t ct=0; ct < mRSProgram->mHal.state.inputElementsCount; ct++) {
const Element *e = mRSProgram->mHal.state.inputElements[ct].get();
for (uint32_t field=0; field < e->getFieldCount(); field++) {
const Element *f = e->getField(field);
const char *fn = e->getFieldName(field);
if (fn[0] == '#') {
continue;
}
// Cannot be complex
rsAssert(!f->getFieldCount());
switch (f->getComponent().getVectorSize()) {
case 1: mShader.append("attribute float ATTRIB_"); break;
case 2: mShader.append("attribute vec2 ATTRIB_"); break;
case 3: mShader.append("attribute vec3 ATTRIB_"); break;
case 4: mShader.append("attribute vec4 ATTRIB_"); break;
default:
rsAssert(0);
}
mShader.append(fn);
mShader.append(";\n");
}
}
}
void RsdShader::appendTextures() {
char buf[256];
for (uint32_t ct=0; ct < mRSProgram->mHal.state.texturesCount; ct++) {
if (mRSProgram->mHal.state.textureTargets[ct] == RS_TEXTURE_2D) {
snprintf(buf, sizeof(buf), "uniform sampler2D UNI_Tex%i;\n", ct);
mTextureTargets[ct] = GL_TEXTURE_2D;
} else {
snprintf(buf, sizeof(buf), "uniform samplerCube UNI_Tex%i;\n", ct);
mTextureTargets[ct] = GL_TEXTURE_CUBE_MAP;
}
mShader.append(buf);
}
}
bool RsdShader::createShader() {
if (mType == GL_FRAGMENT_SHADER) {
mShader.append("precision mediump float;\n");
}
appendUserConstants();
appendAttributes();
appendTextures();
mShader.append(mUserShader);
return true;
}
bool RsdShader::loadShader(const Context *rsc) {
mShaderID = glCreateShader(mType);
rsAssert(mShaderID);
if (rsc->props.mLogShaders) {
LOGV("Loading shader type %x, ID %i", mType, mShaderID);
LOGV("%s", mShader.string());
}
if (mShaderID) {
const char * ss = mShader.string();
RSD_CALL_GL(glShaderSource, mShaderID, 1, &ss, NULL);
RSD_CALL_GL(glCompileShader, mShaderID);
GLint compiled = 0;
RSD_CALL_GL(glGetShaderiv, mShaderID, GL_COMPILE_STATUS, &compiled);
if (!compiled) {
GLint infoLen = 0;
RSD_CALL_GL(glGetShaderiv, mShaderID, GL_INFO_LOG_LENGTH, &infoLen);
if (infoLen) {
char* buf = (char*) malloc(infoLen);
if (buf) {
RSD_CALL_GL(glGetShaderInfoLog, mShaderID, infoLen, NULL, buf);
LOGE("Could not compile shader \n%s\n", buf);
free(buf);
}
RSD_CALL_GL(glDeleteShader, mShaderID);
mShaderID = 0;
rsc->setError(RS_ERROR_BAD_SHADER, "Error returned from GL driver loading shader text,");
return false;
}
}
}
if (rsc->props.mLogShaders) {
LOGV("--Shader load result %x ", glGetError());
}
mIsValid = true;
return true;
}
void RsdShader::appendUserConstants() {
for (uint32_t ct=0; ct < mRSProgram->mHal.state.constantsCount; ct++) {
const Element *e = mRSProgram->mHal.state.constantTypes[ct]->getElement();
for (uint32_t field=0; field < e->getFieldCount(); field++) {
const Element *f = e->getField(field);
const char *fn = e->getFieldName(field);
if (fn[0] == '#') {
continue;
}
// Cannot be complex
rsAssert(!f->getFieldCount());
if (f->getType() == RS_TYPE_MATRIX_4X4) {
mShader.append("uniform mat4 UNI_");
} else if (f->getType() == RS_TYPE_MATRIX_3X3) {
mShader.append("uniform mat3 UNI_");
} else if (f->getType() == RS_TYPE_MATRIX_2X2) {
mShader.append("uniform mat2 UNI_");
} else {
switch (f->getComponent().getVectorSize()) {
case 1: mShader.append("uniform float UNI_"); break;
case 2: mShader.append("uniform vec2 UNI_"); break;
case 3: mShader.append("uniform vec3 UNI_"); break;
case 4: mShader.append("uniform vec4 UNI_"); break;
default:
rsAssert(0);
}
}
mShader.append(fn);
if (e->getFieldArraySize(field) > 1) {
mShader.appendFormat("[%d]", e->getFieldArraySize(field));
}
mShader.append(";\n");
}
}
}
void RsdShader::logUniform(const Element *field, const float *fd, uint32_t arraySize ) {
RsDataType dataType = field->getType();
uint32_t elementSize = field->getSizeBytes() / sizeof(float);
for (uint32_t i = 0; i < arraySize; i ++) {
if (arraySize > 1) {
LOGV("Array Element [%u]", i);
}
if (dataType == RS_TYPE_MATRIX_4X4) {
LOGV("Matrix4x4");
LOGV("{%f, %f, %f, %f", fd[0], fd[4], fd[8], fd[12]);
LOGV(" %f, %f, %f, %f", fd[1], fd[5], fd[9], fd[13]);
LOGV(" %f, %f, %f, %f", fd[2], fd[6], fd[10], fd[14]);
LOGV(" %f, %f, %f, %f}", fd[3], fd[7], fd[11], fd[15]);
} else if (dataType == RS_TYPE_MATRIX_3X3) {
LOGV("Matrix3x3");
LOGV("{%f, %f, %f", fd[0], fd[3], fd[6]);
LOGV(" %f, %f, %f", fd[1], fd[4], fd[7]);
LOGV(" %f, %f, %f}", fd[2], fd[5], fd[8]);
} else if (dataType == RS_TYPE_MATRIX_2X2) {
LOGV("Matrix2x2");
LOGV("{%f, %f", fd[0], fd[2]);
LOGV(" %f, %f}", fd[1], fd[3]);
} else {
switch (field->getComponent().getVectorSize()) {
case 1:
LOGV("Uniform 1 = %f", fd[0]);
break;
case 2:
LOGV("Uniform 2 = %f %f", fd[0], fd[1]);
break;
case 3:
LOGV("Uniform 3 = %f %f %f", fd[0], fd[1], fd[2]);
break;
case 4:
LOGV("Uniform 4 = %f %f %f %f", fd[0], fd[1], fd[2], fd[3]);
break;
default:
rsAssert(0);
}
}
LOGE("Element size %u data=%p", elementSize, fd);
fd += elementSize;
LOGE("New data=%p", fd);
}
}
void RsdShader::setUniform(const Context *rsc, const Element *field, const float *fd,
int32_t slot, uint32_t arraySize ) {
RsDataType dataType = field->getType();
if (dataType == RS_TYPE_MATRIX_4X4) {
RSD_CALL_GL(glUniformMatrix4fv, slot, arraySize, GL_FALSE, fd);
} else if (dataType == RS_TYPE_MATRIX_3X3) {
RSD_CALL_GL(glUniformMatrix3fv, slot, arraySize, GL_FALSE, fd);
} else if (dataType == RS_TYPE_MATRIX_2X2) {
RSD_CALL_GL(glUniformMatrix2fv, slot, arraySize, GL_FALSE, fd);
} else {
switch (field->getComponent().getVectorSize()) {
case 1:
RSD_CALL_GL(glUniform1fv, slot, arraySize, fd);
break;
case 2:
RSD_CALL_GL(glUniform2fv, slot, arraySize, fd);
break;
case 3:
RSD_CALL_GL(glUniform3fv, slot, arraySize, fd);
break;
case 4:
RSD_CALL_GL(glUniform4fv, slot, arraySize, fd);
break;
default:
rsAssert(0);
}
}
}
void RsdShader::setupSampler(const Context *rsc, const Sampler *s, const Allocation *tex) {
RsdHal *dc = (RsdHal *)rsc->mHal.drv;
GLenum trans[] = {
GL_NEAREST, //RS_SAMPLER_NEAREST,
GL_LINEAR, //RS_SAMPLER_LINEAR,
GL_LINEAR_MIPMAP_LINEAR, //RS_SAMPLER_LINEAR_MIP_LINEAR,
GL_REPEAT, //RS_SAMPLER_WRAP,
GL_CLAMP_TO_EDGE, //RS_SAMPLER_CLAMP
GL_LINEAR_MIPMAP_NEAREST, //RS_SAMPLER_LINEAR_MIP_NEAREST
};
GLenum transNP[] = {
GL_NEAREST, //RS_SAMPLER_NEAREST,
GL_LINEAR, //RS_SAMPLER_LINEAR,
GL_LINEAR, //RS_SAMPLER_LINEAR_MIP_LINEAR,
GL_CLAMP_TO_EDGE, //RS_SAMPLER_WRAP,
GL_CLAMP_TO_EDGE, //RS_SAMPLER_CLAMP
GL_LINEAR, //RS_SAMPLER_LINEAR_MIP_NEAREST,
};
// This tells us the correct texture type
DrvAllocation *drvTex = (DrvAllocation *)tex->mHal.drv;
const GLenum target = drvTex->glTarget;
if (!dc->gl.gl.OES_texture_npot && tex->getType()->getIsNp2()) {
if (tex->getHasGraphicsMipmaps() &&
(dc->gl.gl.GL_NV_texture_npot_2D_mipmap || dc->gl.gl.GL_IMG_texture_npot)) {
if (dc->gl.gl.GL_NV_texture_npot_2D_mipmap) {
RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_MIN_FILTER,
trans[s->mHal.state.minFilter]);
} else {
switch (trans[s->mHal.state.minFilter]) {
case GL_LINEAR_MIPMAP_LINEAR:
RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_MIN_FILTER,
GL_LINEAR_MIPMAP_NEAREST);
break;
default:
RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_MIN_FILTER,
trans[s->mHal.state.minFilter]);
break;
}
}
} else {
RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_MIN_FILTER,
transNP[s->mHal.state.minFilter]);
}
RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_MAG_FILTER,
transNP[s->mHal.state.magFilter]);
RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_WRAP_S, transNP[s->mHal.state.wrapS]);
RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_WRAP_T, transNP[s->mHal.state.wrapT]);
} else {
if (tex->getHasGraphicsMipmaps()) {
RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_MIN_FILTER,
trans[s->mHal.state.minFilter]);
} else {
RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_MIN_FILTER,
transNP[s->mHal.state.minFilter]);
}
RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_MAG_FILTER, trans[s->mHal.state.magFilter]);
RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_WRAP_S, trans[s->mHal.state.wrapS]);
RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_WRAP_T, trans[s->mHal.state.wrapT]);
}
float anisoValue = rsMin(dc->gl.gl.EXT_texture_max_aniso, s->mHal.state.aniso);
if (dc->gl.gl.EXT_texture_max_aniso > 1.0f) {
RSD_CALL_GL(glTexParameterf, target, GL_TEXTURE_MAX_ANISOTROPY_EXT, anisoValue);
}
rsdGLCheckError(rsc, "Sampler::setup tex env");
}
void RsdShader::setupTextures(const Context *rsc, RsdShaderCache *sc) {
if (mRSProgram->mHal.state.texturesCount == 0) {
return;
}
RsdHal *dc = (RsdHal *)rsc->mHal.drv;
uint32_t numTexturesToBind = mRSProgram->mHal.state.texturesCount;
uint32_t numTexturesAvailable = dc->gl.gl.maxFragmentTextureImageUnits;
if (numTexturesToBind >= numTexturesAvailable) {
LOGE("Attempting to bind %u textures on shader id %u, but only %u are available",
mRSProgram->mHal.state.texturesCount, (uint32_t)this, numTexturesAvailable);
rsc->setError(RS_ERROR_BAD_SHADER, "Cannot bind more textuers than available");
numTexturesToBind = numTexturesAvailable;
}
for (uint32_t ct=0; ct < numTexturesToBind; ct++) {
RSD_CALL_GL(glActiveTexture, GL_TEXTURE0 + ct);
RSD_CALL_GL(glUniform1i, sc->fragUniformSlot(mTextureUniformIndexStart + ct), ct);
if (!mRSProgram->mHal.state.textures[ct].get()) {
// if nothing is bound, reset to default GL texture
RSD_CALL_GL(glBindTexture, mTextureTargets[ct], 0);
continue;
}
DrvAllocation *drvTex = (DrvAllocation *)mRSProgram->mHal.state.textures[ct]->mHal.drv;
if (drvTex->glTarget != GL_TEXTURE_2D && drvTex->glTarget != GL_TEXTURE_CUBE_MAP) {
LOGE("Attempting to bind unknown texture to shader id %u, texture unit %u", (uint)this, ct);
rsc->setError(RS_ERROR_BAD_SHADER, "Non-texture allocation bound to a shader");
}
RSD_CALL_GL(glBindTexture, drvTex->glTarget, drvTex->textureID);
rsdGLCheckError(rsc, "ProgramFragment::setup tex bind");
if (mRSProgram->mHal.state.samplers[ct].get()) {
setupSampler(rsc, mRSProgram->mHal.state.samplers[ct].get(),
mRSProgram->mHal.state.textures[ct].get());
} else {
RSD_CALL_GL(glTexParameteri, drvTex->glTarget, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
RSD_CALL_GL(glTexParameteri, drvTex->glTarget, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
RSD_CALL_GL(glTexParameteri, drvTex->glTarget, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
RSD_CALL_GL(glTexParameteri, drvTex->glTarget, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
rsdGLCheckError(rsc, "ProgramFragment::setup tex env");
}
rsdGLCheckError(rsc, "ProgramFragment::setup uniforms");
}
RSD_CALL_GL(glActiveTexture, GL_TEXTURE0);
mDirty = false;
rsdGLCheckError(rsc, "ProgramFragment::setup");
}
void RsdShader::setupUserConstants(const Context *rsc, RsdShaderCache *sc, bool isFragment) {
uint32_t uidx = 0;
for (uint32_t ct=0; ct < mRSProgram->mHal.state.constantsCount; ct++) {
Allocation *alloc = mRSProgram->mHal.state.constants[ct].get();
if (!alloc) {
LOGE("Attempting to set constants on shader id %u, but alloc at slot %u is not set",
(uint32_t)this, ct);
rsc->setError(RS_ERROR_BAD_SHADER, "No constant allocation bound");
continue;
}
const uint8_t *data = static_cast<const uint8_t *>(alloc->getPtr());
const Element *e = mRSProgram->mHal.state.constantTypes[ct]->getElement();
for (uint32_t field=0; field < e->getFieldCount(); field++) {
const Element *f = e->getField(field);
const char *fieldName = e->getFieldName(field);
// If this field is padding, skip it
if (fieldName[0] == '#') {
continue;
}
uint32_t offset = e->getFieldOffsetBytes(field);
const float *fd = reinterpret_cast<const float *>(&data[offset]);
int32_t slot = -1;
uint32_t arraySize = 1;
if (!isFragment) {
slot = sc->vtxUniformSlot(uidx);
arraySize = sc->vtxUniformSize(uidx);
} else {
slot = sc->fragUniformSlot(uidx);
arraySize = sc->fragUniformSize(uidx);
}
if (rsc->props.mLogShadersUniforms) {
LOGV("Uniform slot=%i, offset=%i, constant=%i, field=%i, uidx=%i, name=%s",
slot, offset, ct, field, uidx, fieldName);
}
uidx ++;
if (slot < 0) {
continue;
}
if (rsc->props.mLogShadersUniforms) {
logUniform(f, fd, arraySize);
}
setUniform(rsc, f, fd, slot, arraySize);
}
}
}
void RsdShader::setup(const android::renderscript::Context *rsc, RsdShaderCache *sc) {
setupUserConstants(rsc, sc, mType == GL_FRAGMENT_SHADER);
setupTextures(rsc, sc);
}
void RsdShader::initAttribAndUniformArray() {
mAttribCount = 0;
for (uint32_t ct=0; ct < mRSProgram->mHal.state.inputElementsCount; ct++) {
const Element *elem = mRSProgram->mHal.state.inputElements[ct].get();
for (uint32_t field=0; field < elem->getFieldCount(); field++) {
if (elem->getFieldName(field)[0] != '#') {
mAttribCount ++;
}
}
}
mUniformCount = 0;
for (uint32_t ct=0; ct < mRSProgram->mHal.state.constantsCount; ct++) {
const Element *elem = mRSProgram->mHal.state.constantTypes[ct]->getElement();
for (uint32_t field=0; field < elem->getFieldCount(); field++) {
if (elem->getFieldName(field)[0] != '#') {
mUniformCount ++;
}
}
}
mUniformCount += mRSProgram->mHal.state.texturesCount;
if (mAttribCount) {
mAttribNames = new String8[mAttribCount];
}
if (mUniformCount) {
mUniformNames = new String8[mUniformCount];
mUniformArraySizes = new uint32_t[mUniformCount];
}
mTextureCount = mRSProgram->mHal.state.texturesCount;
if (mTextureCount) {
mTextureTargets = new uint32_t[mTextureCount];
}
}
void RsdShader::initAddUserElement(const Element *e, String8 *names, uint32_t *arrayLengths,
uint32_t *count, const char *prefix) {
rsAssert(e->getFieldCount());
for (uint32_t ct=0; ct < e->getFieldCount(); ct++) {
const Element *ce = e->getField(ct);
if (ce->getFieldCount()) {
initAddUserElement(ce, names, arrayLengths, count, prefix);
} else if (e->getFieldName(ct)[0] != '#') {
String8 tmp(prefix);
tmp.append(e->getFieldName(ct));
names[*count].setTo(tmp.string());
if (arrayLengths) {
arrayLengths[*count] = e->getFieldArraySize(ct);
}
(*count)++;
}
}
}