/*
* WPA Supplicant / wrapper functions for libcrypto
* Copyright (c) 2004-2005, Jouni Malinen <j@w1.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Alternatively, this software may be distributed under the terms of BSD
* license.
*
* See README and COPYING for more details.
*/
#include "includes.h"
#include <openssl/opensslv.h>
#include <openssl/md4.h>
#include <openssl/md5.h>
#include <openssl/sha.h>
#include <openssl/des.h>
#include <openssl/aes.h>
#include <openssl/bn.h>
#include <openssl/evp.h>
#include "common.h"
#include "crypto.h"
#if OPENSSL_VERSION_NUMBER < 0x00907000
#define DES_key_schedule des_key_schedule
#define DES_cblock des_cblock
#define DES_set_key(key, schedule) des_set_key((key), *(schedule))
#define DES_ecb_encrypt(input, output, ks, enc) \
des_ecb_encrypt((input), (output), *(ks), (enc))
#endif /* openssl < 0.9.7 */
void md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
{
MD4_CTX ctx;
size_t i;
MD4_Init(&ctx);
for (i = 0; i < num_elem; i++)
MD4_Update(&ctx, addr[i], len[i]);
MD4_Final(mac, &ctx);
}
void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
{
u8 pkey[8], next, tmp;
int i;
DES_key_schedule ks;
/* Add parity bits to the key */
next = 0;
for (i = 0; i < 7; i++) {
tmp = key[i];
pkey[i] = (tmp >> i) | next | 1;
next = tmp << (7 - i);
}
pkey[i] = next | 1;
DES_set_key(&pkey, &ks);
DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks,
DES_ENCRYPT);
}
void md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
{
MD5_CTX ctx;
size_t i;
MD5_Init(&ctx);
for (i = 0; i < num_elem; i++)
MD5_Update(&ctx, addr[i], len[i]);
MD5_Final(mac, &ctx);
}
void sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
{
SHA_CTX ctx;
size_t i;
SHA1_Init(&ctx);
for (i = 0; i < num_elem; i++)
SHA1_Update(&ctx, addr[i], len[i]);
SHA1_Final(mac, &ctx);
}
#ifndef CONFIG_NO_FIPS186_2_PRF
static void sha1_transform(u8 *state, const u8 data[64])
{
SHA_CTX context;
os_memset(&context, 0, sizeof(context));
os_memcpy(&context.h0, state, 5 * 4);
SHA1_Transform(&context, data);
os_memcpy(state, &context.h0, 5 * 4);
}
int fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x, size_t xlen)
{
u8 xkey[64];
u32 t[5], _t[5];
int i, j, m, k;
u8 *xpos = x;
u32 carry;
if (seed_len > sizeof(xkey))
seed_len = sizeof(xkey);
/* FIPS 186-2 + change notice 1 */
os_memcpy(xkey, seed, seed_len);
os_memset(xkey + seed_len, 0, 64 - seed_len);
t[0] = 0x67452301;
t[1] = 0xEFCDAB89;
t[2] = 0x98BADCFE;
t[3] = 0x10325476;
t[4] = 0xC3D2E1F0;
m = xlen / 40;
for (j = 0; j < m; j++) {
/* XSEED_j = 0 */
for (i = 0; i < 2; i++) {
/* XVAL = (XKEY + XSEED_j) mod 2^b */
/* w_i = G(t, XVAL) */
os_memcpy(_t, t, 20);
sha1_transform((u8 *) _t, xkey);
_t[0] = host_to_be32(_t[0]);
_t[1] = host_to_be32(_t[1]);
_t[2] = host_to_be32(_t[2]);
_t[3] = host_to_be32(_t[3]);
_t[4] = host_to_be32(_t[4]);
os_memcpy(xpos, _t, 20);
/* XKEY = (1 + XKEY + w_i) mod 2^b */
carry = 1;
for (k = 19; k >= 0; k--) {
carry += xkey[k] + xpos[k];
xkey[k] = carry & 0xff;
carry >>= 8;
}
xpos += 20;
}
/* x_j = w_0|w_1 */
}
return 0;
}
#endif /* CONFIG_NO_FIPS186_2_PRF */
void * aes_encrypt_init(const u8 *key, size_t len)
{
AES_KEY *ak;
ak = os_malloc(sizeof(*ak));
if (ak == NULL)
return NULL;
if (AES_set_encrypt_key(key, 8 * len, ak) < 0) {
os_free(ak);
return NULL;
}
return ak;
}
void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
{
AES_encrypt(plain, crypt, ctx);
}
void aes_encrypt_deinit(void *ctx)
{
os_free(ctx);
}
void * aes_decrypt_init(const u8 *key, size_t len)
{
AES_KEY *ak;
ak = os_malloc(sizeof(*ak));
if (ak == NULL)
return NULL;
if (AES_set_decrypt_key(key, 8 * len, ak) < 0) {
os_free(ak);
return NULL;
}
return ak;
}
void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
{
AES_decrypt(crypt, plain, ctx);
}
void aes_decrypt_deinit(void *ctx)
{
os_free(ctx);
}
int crypto_mod_exp(const u8 *base, size_t base_len,
const u8 *power, size_t power_len,
const u8 *modulus, size_t modulus_len,
u8 *result, size_t *result_len)
{
BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result;
int ret = -1;
BN_CTX *ctx;
ctx = BN_CTX_new();
if (ctx == NULL)
return -1;
bn_base = BN_bin2bn(base, base_len, NULL);
bn_exp = BN_bin2bn(power, power_len, NULL);
bn_modulus = BN_bin2bn(modulus, modulus_len, NULL);
bn_result = BN_new();
if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
bn_result == NULL)
goto error;
if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1)
goto error;
*result_len = BN_bn2bin(bn_result, result);
ret = 0;
error:
BN_free(bn_base);
BN_free(bn_exp);
BN_free(bn_modulus);
BN_free(bn_result);
BN_CTX_free(ctx);
return ret;
}
struct crypto_cipher {
EVP_CIPHER_CTX enc;
EVP_CIPHER_CTX dec;
};
struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
const u8 *iv, const u8 *key,
size_t key_len)
{
struct crypto_cipher *ctx;
const EVP_CIPHER *cipher;
ctx = os_zalloc(sizeof(*ctx));
if (ctx == NULL)
return NULL;
switch (alg) {
#ifndef OPENSSL_NO_RC4
case CRYPTO_CIPHER_ALG_RC4:
cipher = EVP_rc4();
break;
#endif /* OPENSSL_NO_RC4 */
#ifndef OPENSSL_NO_AES
case CRYPTO_CIPHER_ALG_AES:
switch (key_len) {
case 16:
cipher = EVP_aes_128_cbc();
break;
case 24:
cipher = EVP_aes_192_cbc();
break;
case 32:
cipher = EVP_aes_256_cbc();
break;
default:
os_free(ctx);
return NULL;
}
break;
#endif /* OPENSSL_NO_AES */
#ifndef OPENSSL_NO_DES
case CRYPTO_CIPHER_ALG_3DES:
cipher = EVP_des_ede3_cbc();
break;
case CRYPTO_CIPHER_ALG_DES:
cipher = EVP_des_cbc();
break;
#endif /* OPENSSL_NO_DES */
#ifndef OPENSSL_NO_RC2
case CRYPTO_CIPHER_ALG_RC2:
cipher = EVP_rc2_ecb();
break;
#endif /* OPENSSL_NO_RC2 */
default:
os_free(ctx);
return NULL;
}
EVP_CIPHER_CTX_init(&ctx->enc);
EVP_CIPHER_CTX_set_padding(&ctx->enc, 0);
if (!EVP_EncryptInit_ex(&ctx->enc, cipher, NULL, NULL, NULL) ||
!EVP_CIPHER_CTX_set_key_length(&ctx->enc, key_len) ||
!EVP_EncryptInit_ex(&ctx->enc, cipher, NULL, key, iv)) {
EVP_CIPHER_CTX_cleanup(&ctx->enc);
os_free(ctx);
return NULL;
}
EVP_CIPHER_CTX_init(&ctx->dec);
EVP_CIPHER_CTX_set_padding(&ctx->dec, 0);
if (!EVP_DecryptInit_ex(&ctx->dec, cipher, NULL, NULL, NULL) ||
!EVP_CIPHER_CTX_set_key_length(&ctx->dec, key_len) ||
!EVP_DecryptInit_ex(&ctx->dec, cipher, NULL, key, iv)) {
EVP_CIPHER_CTX_cleanup(&ctx->enc);
EVP_CIPHER_CTX_cleanup(&ctx->dec);
os_free(ctx);
return NULL;
}
return ctx;
}
int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
u8 *crypt, size_t len)
{
int outl;
if (!EVP_EncryptUpdate(&ctx->enc, crypt, &outl, plain, len))
return -1;
return 0;
}
int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
u8 *plain, size_t len)
{
int outl;
outl = len;
if (!EVP_DecryptUpdate(&ctx->dec, plain, &outl, crypt, len))
return -1;
return 0;
}
void crypto_cipher_deinit(struct crypto_cipher *ctx)
{
EVP_CIPHER_CTX_cleanup(&ctx->enc);
EVP_CIPHER_CTX_cleanup(&ctx->dec);
os_free(ctx);
}