/*
* Copyright (C) 2005, 2006, 2007, 2008 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef RefPtrHashMap_h
#define RefPtrHashMap_h
namespace WTF {
// This specialization is a direct copy of HashMap, with overloaded functions
// to allow for lookup by pointer instead of RefPtr, avoiding ref-count churn.
// FIXME: Find a better way that doesn't require an entire copy of the HashMap template.
template<typename RawKeyType, typename ValueType, typename ValueTraits, typename HashFunctions>
struct RefPtrHashMapRawKeyTranslator {
typedef typename ValueType::first_type KeyType;
typedef typename ValueType::second_type MappedType;
typedef typename ValueTraits::FirstTraits KeyTraits;
typedef typename ValueTraits::SecondTraits MappedTraits;
static unsigned hash(RawKeyType key) { return HashFunctions::hash(key); }
static bool equal(const KeyType& a, RawKeyType b) { return HashFunctions::equal(a, b); }
static void translate(ValueType& location, RawKeyType key, const MappedType& mapped)
{
location.first = key;
location.second = mapped;
}
};
template<typename T, typename MappedArg, typename HashArg, typename KeyTraitsArg, typename MappedTraitsArg>
class HashMap<RefPtr<T>, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg> {
WTF_MAKE_FAST_ALLOCATED;
private:
typedef KeyTraitsArg KeyTraits;
typedef MappedTraitsArg MappedTraits;
typedef PairHashTraits<KeyTraits, MappedTraits> ValueTraits;
public:
typedef typename KeyTraits::TraitType KeyType;
typedef T* RawKeyType;
typedef typename MappedTraits::TraitType MappedType;
typedef typename ValueTraits::TraitType ValueType;
private:
typedef HashArg HashFunctions;
typedef HashTable<KeyType, ValueType, PairFirstExtractor<ValueType>,
HashFunctions, ValueTraits, KeyTraits> HashTableType;
typedef RefPtrHashMapRawKeyTranslator<RawKeyType, ValueType, ValueTraits, HashFunctions>
RawKeyTranslator;
public:
typedef HashTableIteratorAdapter<HashTableType, ValueType> iterator;
typedef HashTableConstIteratorAdapter<HashTableType, ValueType> const_iterator;
void swap(HashMap&);
int size() const;
int capacity() const;
bool isEmpty() const;
// iterators iterate over pairs of keys and values
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;
iterator find(const KeyType&);
iterator find(RawKeyType);
const_iterator find(const KeyType&) const;
const_iterator find(RawKeyType) const;
bool contains(const KeyType&) const;
bool contains(RawKeyType) const;
MappedType get(const KeyType&) const;
MappedType get(RawKeyType) const;
MappedType inlineGet(RawKeyType) const;
// replaces value but not key if key is already present
// return value is a pair of the iterator to the key location,
// and a boolean that's true if a new value was actually added
pair<iterator, bool> set(const KeyType&, const MappedType&);
pair<iterator, bool> set(RawKeyType, const MappedType&);
// does nothing if key is already present
// return value is a pair of the iterator to the key location,
// and a boolean that's true if a new value was actually added
pair<iterator, bool> add(const KeyType&, const MappedType&);
pair<iterator, bool> add(RawKeyType, const MappedType&);
void remove(const KeyType&);
void remove(RawKeyType);
void remove(iterator);
void clear();
MappedType take(const KeyType&); // efficient combination of get with remove
MappedType take(RawKeyType); // efficient combination of get with remove
private:
pair<iterator, bool> inlineAdd(const KeyType&, const MappedType&);
pair<iterator, bool> inlineAdd(RawKeyType, const MappedType&);
HashTableType m_impl;
};
template<typename T, typename U, typename V, typename W, typename X>
inline void HashMap<RefPtr<T>, U, V, W, X>::swap(HashMap& other)
{
m_impl.swap(other.m_impl);
}
template<typename T, typename U, typename V, typename W, typename X>
inline int HashMap<RefPtr<T>, U, V, W, X>::size() const
{
return m_impl.size();
}
template<typename T, typename U, typename V, typename W, typename X>
inline int HashMap<RefPtr<T>, U, V, W, X>::capacity() const
{
return m_impl.capacity();
}
template<typename T, typename U, typename V, typename W, typename X>
inline bool HashMap<RefPtr<T>, U, V, W, X>::isEmpty() const
{
return m_impl.isEmpty();
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<RefPtr<T>, U, V, W, X>::iterator HashMap<RefPtr<T>, U, V, W, X>::begin()
{
return m_impl.begin();
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<RefPtr<T>, U, V, W, X>::iterator HashMap<RefPtr<T>, U, V, W, X>::end()
{
return m_impl.end();
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<RefPtr<T>, U, V, W, X>::const_iterator HashMap<RefPtr<T>, U, V, W, X>::begin() const
{
return m_impl.begin();
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<RefPtr<T>, U, V, W, X>::const_iterator HashMap<RefPtr<T>, U, V, W, X>::end() const
{
return m_impl.end();
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<RefPtr<T>, U, V, W, X>::iterator HashMap<RefPtr<T>, U, V, W, X>::find(const KeyType& key)
{
return m_impl.find(key);
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<RefPtr<T>, U, V, W, X>::iterator HashMap<RefPtr<T>, U, V, W, X>::find(RawKeyType key)
{
return m_impl.template find<RawKeyType, RawKeyTranslator>(key);
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<RefPtr<T>, U, V, W, X>::const_iterator HashMap<RefPtr<T>, U, V, W, X>::find(const KeyType& key) const
{
return m_impl.find(key);
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<RefPtr<T>, U, V, W, X>::const_iterator HashMap<RefPtr<T>, U, V, W, X>::find(RawKeyType key) const
{
return m_impl.template find<RawKeyType, RawKeyTranslator>(key);
}
template<typename T, typename U, typename V, typename W, typename X>
inline bool HashMap<RefPtr<T>, U, V, W, X>::contains(const KeyType& key) const
{
return m_impl.contains(key);
}
template<typename T, typename U, typename V, typename W, typename X>
inline bool HashMap<RefPtr<T>, U, V, W, X>::contains(RawKeyType key) const
{
return m_impl.template contains<RawKeyType, RawKeyTranslator>(key);
}
template<typename T, typename U, typename V, typename W, typename X>
inline pair<typename HashMap<RefPtr<T>, U, V, W, X>::iterator, bool>
HashMap<RefPtr<T>, U, V, W, X>::inlineAdd(const KeyType& key, const MappedType& mapped)
{
typedef HashMapTranslator<ValueType, ValueTraits, HashFunctions> TranslatorType;
return m_impl.template add<KeyType, MappedType, TranslatorType>(key, mapped);
}
template<typename T, typename U, typename V, typename W, typename X>
inline pair<typename HashMap<RefPtr<T>, U, V, W, X>::iterator, bool>
HashMap<RefPtr<T>, U, V, W, X>::inlineAdd(RawKeyType key, const MappedType& mapped)
{
return m_impl.template add<RawKeyType, MappedType, RawKeyTranslator>(key, mapped);
}
template<typename T, typename U, typename V, typename W, typename X>
pair<typename HashMap<RefPtr<T>, U, V, W, X>::iterator, bool>
HashMap<RefPtr<T>, U, V, W, X>::set(const KeyType& key, const MappedType& mapped)
{
pair<iterator, bool> result = inlineAdd(key, mapped);
if (!result.second) {
// add call above didn't change anything, so set the mapped value
result.first->second = mapped;
}
return result;
}
template<typename T, typename U, typename V, typename W, typename X>
pair<typename HashMap<RefPtr<T>, U, V, W, X>::iterator, bool>
HashMap<RefPtr<T>, U, V, W, X>::set(RawKeyType key, const MappedType& mapped)
{
pair<iterator, bool> result = inlineAdd(key, mapped);
if (!result.second) {
// add call above didn't change anything, so set the mapped value
result.first->second = mapped;
}
return result;
}
template<typename T, typename U, typename V, typename W, typename X>
pair<typename HashMap<RefPtr<T>, U, V, W, X>::iterator, bool>
HashMap<RefPtr<T>, U, V, W, X>::add(const KeyType& key, const MappedType& mapped)
{
return inlineAdd(key, mapped);
}
template<typename T, typename U, typename V, typename W, typename X>
pair<typename HashMap<RefPtr<T>, U, V, W, X>::iterator, bool>
HashMap<RefPtr<T>, U, V, W, X>::add(RawKeyType key, const MappedType& mapped)
{
return inlineAdd(key, mapped);
}
template<typename T, typename U, typename V, typename W, typename MappedTraits>
typename HashMap<RefPtr<T>, U, V, W, MappedTraits>::MappedType
HashMap<RefPtr<T>, U, V, W, MappedTraits>::get(const KeyType& key) const
{
ValueType* entry = const_cast<HashTableType&>(m_impl).lookup(key);
if (!entry)
return MappedTraits::emptyValue();
return entry->second;
}
template<typename T, typename U, typename V, typename W, typename MappedTraits>
typename HashMap<RefPtr<T>, U, V, W, MappedTraits>::MappedType
inline HashMap<RefPtr<T>, U, V, W, MappedTraits>::inlineGet(RawKeyType key) const
{
ValueType* entry = const_cast<HashTableType&>(m_impl).template lookup<RawKeyType, RawKeyTranslator>(key);
if (!entry)
return MappedTraits::emptyValue();
return entry->second;
}
template<typename T, typename U, typename V, typename W, typename MappedTraits>
typename HashMap<RefPtr<T>, U, V, W, MappedTraits>::MappedType
HashMap<RefPtr<T>, U, V, W, MappedTraits>::get(RawKeyType key) const
{
return inlineGet(key);
}
template<typename T, typename U, typename V, typename W, typename X>
inline void HashMap<RefPtr<T>, U, V, W, X>::remove(iterator it)
{
if (it.m_impl == m_impl.end())
return;
m_impl.internalCheckTableConsistency();
m_impl.removeWithoutEntryConsistencyCheck(it.m_impl);
}
template<typename T, typename U, typename V, typename W, typename X>
inline void HashMap<RefPtr<T>, U, V, W, X>::remove(const KeyType& key)
{
remove(find(key));
}
template<typename T, typename U, typename V, typename W, typename X>
inline void HashMap<RefPtr<T>, U, V, W, X>::remove(RawKeyType key)
{
remove(find(key));
}
template<typename T, typename U, typename V, typename W, typename X>
inline void HashMap<RefPtr<T>, U, V, W, X>::clear()
{
m_impl.clear();
}
template<typename T, typename U, typename V, typename W, typename MappedTraits>
typename HashMap<RefPtr<T>, U, V, W, MappedTraits>::MappedType
HashMap<RefPtr<T>, U, V, W, MappedTraits>::take(const KeyType& key)
{
// This can probably be made more efficient to avoid ref/deref churn.
iterator it = find(key);
if (it == end())
return MappedTraits::emptyValue();
typename HashMap<RefPtr<T>, U, V, W, MappedTraits>::MappedType result = it->second;
remove(it);
return result;
}
template<typename T, typename U, typename V, typename W, typename MappedTraits>
typename HashMap<RefPtr<T>, U, V, W, MappedTraits>::MappedType
HashMap<RefPtr<T>, U, V, W, MappedTraits>::take(RawKeyType key)
{
// This can probably be made more efficient to avoid ref/deref churn.
iterator it = find(key);
if (it == end())
return MappedTraits::emptyValue();
typename HashMap<RefPtr<T>, U, V, W, MappedTraits>::MappedType result = it->second;
remove(it);
return result;
}
} // namespace WTF
#endif // RefPtrHashMap_h