// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_X64_MACRO_ASSEMBLER_X64_H_
#define V8_X64_MACRO_ASSEMBLER_X64_H_
#include "assembler.h"
namespace v8 {
namespace internal {
// Flags used for the AllocateInNewSpace functions.
enum AllocationFlags {
// No special flags.
NO_ALLOCATION_FLAGS = 0,
// Return the pointer to the allocated already tagged as a heap object.
TAG_OBJECT = 1 << 0,
// The content of the result register already contains the allocation top in
// new space.
RESULT_CONTAINS_TOP = 1 << 1
};
// Default scratch register used by MacroAssembler (and other code that needs
// a spare register). The register isn't callee save, and not used by the
// function calling convention.
static const Register kScratchRegister = { 10 }; // r10.
static const Register kSmiConstantRegister = { 12 }; // r12 (callee save).
static const Register kRootRegister = { 13 }; // r13 (callee save).
// Value of smi in kSmiConstantRegister.
static const int kSmiConstantRegisterValue = 1;
// Actual value of root register is offset from the root array's start
// to take advantage of negitive 8-bit displacement values.
static const int kRootRegisterBias = 128;
// Convenience for platform-independent signatures.
typedef Operand MemOperand;
// Forward declaration.
class JumpTarget;
class CallWrapper;
struct SmiIndex {
SmiIndex(Register index_register, ScaleFactor scale)
: reg(index_register),
scale(scale) {}
Register reg;
ScaleFactor scale;
};
// MacroAssembler implements a collection of frequently used macros.
class MacroAssembler: public Assembler {
public:
// The isolate parameter can be NULL if the macro assembler should
// not use isolate-dependent functionality. In this case, it's the
// responsibility of the caller to never invoke such function on the
// macro assembler.
MacroAssembler(Isolate* isolate, void* buffer, int size);
// Prevent the use of the RootArray during the lifetime of this
// scope object.
class NoRootArrayScope BASE_EMBEDDED {
public:
explicit NoRootArrayScope(MacroAssembler* assembler)
: variable_(&assembler->root_array_available_),
old_value_(assembler->root_array_available_) {
assembler->root_array_available_ = false;
}
~NoRootArrayScope() {
*variable_ = old_value_;
}
private:
bool* variable_;
bool old_value_;
};
// Operand pointing to an external reference.
// May emit code to set up the scratch register. The operand is
// only guaranteed to be correct as long as the scratch register
// isn't changed.
// If the operand is used more than once, use a scratch register
// that is guaranteed not to be clobbered.
Operand ExternalOperand(ExternalReference reference,
Register scratch = kScratchRegister);
// Loads and stores the value of an external reference.
// Special case code for load and store to take advantage of
// load_rax/store_rax if possible/necessary.
// For other operations, just use:
// Operand operand = ExternalOperand(extref);
// operation(operand, ..);
void Load(Register destination, ExternalReference source);
void Store(ExternalReference destination, Register source);
// Loads the address of the external reference into the destination
// register.
void LoadAddress(Register destination, ExternalReference source);
// Returns the size of the code generated by LoadAddress.
// Used by CallSize(ExternalReference) to find the size of a call.
int LoadAddressSize(ExternalReference source);
// Operations on roots in the root-array.
void LoadRoot(Register destination, Heap::RootListIndex index);
void StoreRoot(Register source, Heap::RootListIndex index);
// Load a root value where the index (or part of it) is variable.
// The variable_offset register is added to the fixed_offset value
// to get the index into the root-array.
void LoadRootIndexed(Register destination,
Register variable_offset,
int fixed_offset);
void CompareRoot(Register with, Heap::RootListIndex index);
void CompareRoot(const Operand& with, Heap::RootListIndex index);
void PushRoot(Heap::RootListIndex index);
// ---------------------------------------------------------------------------
// GC Support
// For page containing |object| mark region covering |addr| dirty.
// RecordWriteHelper only works if the object is not in new
// space.
void RecordWriteHelper(Register object,
Register addr,
Register scratch);
// Check if object is in new space. The condition cc can be equal or
// not_equal. If it is equal a jump will be done if the object is on new
// space. The register scratch can be object itself, but it will be clobbered.
template <typename LabelType>
void InNewSpace(Register object,
Register scratch,
Condition cc,
LabelType* branch);
// For page containing |object| mark region covering [object+offset]
// dirty. |object| is the object being stored into, |value| is the
// object being stored. If |offset| is zero, then the |scratch|
// register contains the array index into the elements array
// represented as an untagged 32-bit integer. All registers are
// clobbered by the operation. RecordWrite filters out smis so it
// does not update the write barrier if the value is a smi.
void RecordWrite(Register object,
int offset,
Register value,
Register scratch);
// For page containing |object| mark region covering [address]
// dirty. |object| is the object being stored into, |value| is the
// object being stored. All registers are clobbered by the
// operation. RecordWrite filters out smis so it does not update
// the write barrier if the value is a smi.
void RecordWrite(Register object,
Register address,
Register value);
// For page containing |object| mark region covering [object+offset] dirty.
// The value is known to not be a smi.
// object is the object being stored into, value is the object being stored.
// If offset is zero, then the scratch register contains the array index into
// the elements array represented as an untagged 32-bit integer.
// All registers are clobbered by the operation.
void RecordWriteNonSmi(Register object,
int offset,
Register value,
Register scratch);
#ifdef ENABLE_DEBUGGER_SUPPORT
// ---------------------------------------------------------------------------
// Debugger Support
void DebugBreak();
#endif
// ---------------------------------------------------------------------------
// Activation frames
void EnterInternalFrame() { EnterFrame(StackFrame::INTERNAL); }
void LeaveInternalFrame() { LeaveFrame(StackFrame::INTERNAL); }
void EnterConstructFrame() { EnterFrame(StackFrame::CONSTRUCT); }
void LeaveConstructFrame() { LeaveFrame(StackFrame::CONSTRUCT); }
// Enter specific kind of exit frame; either in normal or
// debug mode. Expects the number of arguments in register rax and
// sets up the number of arguments in register rdi and the pointer
// to the first argument in register rsi.
//
// Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
// accessible via StackSpaceOperand.
void EnterExitFrame(int arg_stack_space = 0, bool save_doubles = false);
// Enter specific kind of exit frame. Allocates arg_stack_space * kPointerSize
// memory (not GCed) on the stack accessible via StackSpaceOperand.
void EnterApiExitFrame(int arg_stack_space);
// Leave the current exit frame. Expects/provides the return value in
// register rax:rdx (untouched) and the pointer to the first
// argument in register rsi.
void LeaveExitFrame(bool save_doubles = false);
// Leave the current exit frame. Expects/provides the return value in
// register rax (untouched).
void LeaveApiExitFrame();
// Push and pop the registers that can hold pointers.
void PushSafepointRegisters() { Pushad(); }
void PopSafepointRegisters() { Popad(); }
// Store the value in register src in the safepoint register stack
// slot for register dst.
void StoreToSafepointRegisterSlot(Register dst, Register src);
void LoadFromSafepointRegisterSlot(Register dst, Register src);
void InitializeRootRegister() {
ExternalReference roots_address =
ExternalReference::roots_address(isolate());
movq(kRootRegister, roots_address);
addq(kRootRegister, Immediate(kRootRegisterBias));
}
// ---------------------------------------------------------------------------
// JavaScript invokes
// Invoke the JavaScript function code by either calling or jumping.
void InvokeCode(Register code,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
CallWrapper* call_wrapper = NULL);
void InvokeCode(Handle<Code> code,
const ParameterCount& expected,
const ParameterCount& actual,
RelocInfo::Mode rmode,
InvokeFlag flag,
CallWrapper* call_wrapper = NULL);
// Invoke the JavaScript function in the given register. Changes the
// current context to the context in the function before invoking.
void InvokeFunction(Register function,
const ParameterCount& actual,
InvokeFlag flag,
CallWrapper* call_wrapper = NULL);
void InvokeFunction(JSFunction* function,
const ParameterCount& actual,
InvokeFlag flag,
CallWrapper* call_wrapper = NULL);
// Invoke specified builtin JavaScript function. Adds an entry to
// the unresolved list if the name does not resolve.
void InvokeBuiltin(Builtins::JavaScript id,
InvokeFlag flag,
CallWrapper* call_wrapper = NULL);
// Store the function for the given builtin in the target register.
void GetBuiltinFunction(Register target, Builtins::JavaScript id);
// Store the code object for the given builtin in the target register.
void GetBuiltinEntry(Register target, Builtins::JavaScript id);
// ---------------------------------------------------------------------------
// Smi tagging, untagging and operations on tagged smis.
void InitializeSmiConstantRegister() {
movq(kSmiConstantRegister,
reinterpret_cast<uint64_t>(Smi::FromInt(kSmiConstantRegisterValue)),
RelocInfo::NONE);
}
// Conversions between tagged smi values and non-tagged integer values.
// Tag an integer value. The result must be known to be a valid smi value.
// Only uses the low 32 bits of the src register. Sets the N and Z flags
// based on the value of the resulting smi.
void Integer32ToSmi(Register dst, Register src);
// Stores an integer32 value into a memory field that already holds a smi.
void Integer32ToSmiField(const Operand& dst, Register src);
// Adds constant to src and tags the result as a smi.
// Result must be a valid smi.
void Integer64PlusConstantToSmi(Register dst, Register src, int constant);
// Convert smi to 32-bit integer. I.e., not sign extended into
// high 32 bits of destination.
void SmiToInteger32(Register dst, Register src);
void SmiToInteger32(Register dst, const Operand& src);
// Convert smi to 64-bit integer (sign extended if necessary).
void SmiToInteger64(Register dst, Register src);
void SmiToInteger64(Register dst, const Operand& src);
// Multiply a positive smi's integer value by a power of two.
// Provides result as 64-bit integer value.
void PositiveSmiTimesPowerOfTwoToInteger64(Register dst,
Register src,
int power);
// Divide a positive smi's integer value by a power of two.
// Provides result as 32-bit integer value.
void PositiveSmiDivPowerOfTwoToInteger32(Register dst,
Register src,
int power);
// Perform the logical or of two smi values and return a smi value.
// If either argument is not a smi, jump to on_not_smis and retain
// the original values of source registers. The destination register
// may be changed if it's not one of the source registers.
template <typename LabelType>
void SmiOrIfSmis(Register dst,
Register src1,
Register src2,
LabelType* on_not_smis);
// Simple comparison of smis. Both sides must be known smis to use these,
// otherwise use Cmp.
void SmiCompare(Register smi1, Register smi2);
void SmiCompare(Register dst, Smi* src);
void SmiCompare(Register dst, const Operand& src);
void SmiCompare(const Operand& dst, Register src);
void SmiCompare(const Operand& dst, Smi* src);
// Compare the int32 in src register to the value of the smi stored at dst.
void SmiCompareInteger32(const Operand& dst, Register src);
// Sets sign and zero flags depending on value of smi in register.
void SmiTest(Register src);
// Functions performing a check on a known or potential smi. Returns
// a condition that is satisfied if the check is successful.
// Is the value a tagged smi.
Condition CheckSmi(Register src);
Condition CheckSmi(const Operand& src);
// Is the value a non-negative tagged smi.
Condition CheckNonNegativeSmi(Register src);
// Are both values tagged smis.
Condition CheckBothSmi(Register first, Register second);
// Are both values non-negative tagged smis.
Condition CheckBothNonNegativeSmi(Register first, Register second);
// Are either value a tagged smi.
Condition CheckEitherSmi(Register first,
Register second,
Register scratch = kScratchRegister);
// Is the value the minimum smi value (since we are using
// two's complement numbers, negating the value is known to yield
// a non-smi value).
Condition CheckIsMinSmi(Register src);
// Checks whether an 32-bit integer value is a valid for conversion
// to a smi.
Condition CheckInteger32ValidSmiValue(Register src);
// Checks whether an 32-bit unsigned integer value is a valid for
// conversion to a smi.
Condition CheckUInteger32ValidSmiValue(Register src);
// Check whether src is a Smi, and set dst to zero if it is a smi,
// and to one if it isn't.
void CheckSmiToIndicator(Register dst, Register src);
void CheckSmiToIndicator(Register dst, const Operand& src);
// Test-and-jump functions. Typically combines a check function
// above with a conditional jump.
// Jump if the value cannot be represented by a smi.
template <typename LabelType>
void JumpIfNotValidSmiValue(Register src, LabelType* on_invalid);
// Jump if the unsigned integer value cannot be represented by a smi.
template <typename LabelType>
void JumpIfUIntNotValidSmiValue(Register src, LabelType* on_invalid);
// Jump to label if the value is a tagged smi.
template <typename LabelType>
void JumpIfSmi(Register src, LabelType* on_smi);
// Jump to label if the value is not a tagged smi.
template <typename LabelType>
void JumpIfNotSmi(Register src, LabelType* on_not_smi);
// Jump to label if the value is not a non-negative tagged smi.
template <typename LabelType>
void JumpUnlessNonNegativeSmi(Register src, LabelType* on_not_smi);
// Jump to label if the value, which must be a tagged smi, has value equal
// to the constant.
template <typename LabelType>
void JumpIfSmiEqualsConstant(Register src,
Smi* constant,
LabelType* on_equals);
// Jump if either or both register are not smi values.
template <typename LabelType>
void JumpIfNotBothSmi(Register src1,
Register src2,
LabelType* on_not_both_smi);
// Jump if either or both register are not non-negative smi values.
template <typename LabelType>
void JumpUnlessBothNonNegativeSmi(Register src1, Register src2,
LabelType* on_not_both_smi);
// Operations on tagged smi values.
// Smis represent a subset of integers. The subset is always equivalent to
// a two's complement interpretation of a fixed number of bits.
// Optimistically adds an integer constant to a supposed smi.
// If the src is not a smi, or the result is not a smi, jump to
// the label.
template <typename LabelType>
void SmiTryAddConstant(Register dst,
Register src,
Smi* constant,
LabelType* on_not_smi_result);
// Add an integer constant to a tagged smi, giving a tagged smi as result.
// No overflow testing on the result is done.
void SmiAddConstant(Register dst, Register src, Smi* constant);
// Add an integer constant to a tagged smi, giving a tagged smi as result.
// No overflow testing on the result is done.
void SmiAddConstant(const Operand& dst, Smi* constant);
// Add an integer constant to a tagged smi, giving a tagged smi as result,
// or jumping to a label if the result cannot be represented by a smi.
template <typename LabelType>
void SmiAddConstant(Register dst,
Register src,
Smi* constant,
LabelType* on_not_smi_result);
// Subtract an integer constant from a tagged smi, giving a tagged smi as
// result. No testing on the result is done. Sets the N and Z flags
// based on the value of the resulting integer.
void SmiSubConstant(Register dst, Register src, Smi* constant);
// Subtract an integer constant from a tagged smi, giving a tagged smi as
// result, or jumping to a label if the result cannot be represented by a smi.
template <typename LabelType>
void SmiSubConstant(Register dst,
Register src,
Smi* constant,
LabelType* on_not_smi_result);
// Negating a smi can give a negative zero or too large positive value.
// NOTICE: This operation jumps on success, not failure!
template <typename LabelType>
void SmiNeg(Register dst,
Register src,
LabelType* on_smi_result);
// Adds smi values and return the result as a smi.
// If dst is src1, then src1 will be destroyed, even if
// the operation is unsuccessful.
template <typename LabelType>
void SmiAdd(Register dst,
Register src1,
Register src2,
LabelType* on_not_smi_result);
template <typename LabelType>
void SmiAdd(Register dst,
Register src1,
const Operand& src2,
LabelType* on_not_smi_result);
void SmiAdd(Register dst,
Register src1,
Register src2);
// Subtracts smi values and return the result as a smi.
// If dst is src1, then src1 will be destroyed, even if
// the operation is unsuccessful.
template <typename LabelType>
void SmiSub(Register dst,
Register src1,
Register src2,
LabelType* on_not_smi_result);
void SmiSub(Register dst,
Register src1,
Register src2);
template <typename LabelType>
void SmiSub(Register dst,
Register src1,
const Operand& src2,
LabelType* on_not_smi_result);
void SmiSub(Register dst,
Register src1,
const Operand& src2);
// Multiplies smi values and return the result as a smi,
// if possible.
// If dst is src1, then src1 will be destroyed, even if
// the operation is unsuccessful.
template <typename LabelType>
void SmiMul(Register dst,
Register src1,
Register src2,
LabelType* on_not_smi_result);
// Divides one smi by another and returns the quotient.
// Clobbers rax and rdx registers.
template <typename LabelType>
void SmiDiv(Register dst,
Register src1,
Register src2,
LabelType* on_not_smi_result);
// Divides one smi by another and returns the remainder.
// Clobbers rax and rdx registers.
template <typename LabelType>
void SmiMod(Register dst,
Register src1,
Register src2,
LabelType* on_not_smi_result);
// Bitwise operations.
void SmiNot(Register dst, Register src);
void SmiAnd(Register dst, Register src1, Register src2);
void SmiOr(Register dst, Register src1, Register src2);
void SmiXor(Register dst, Register src1, Register src2);
void SmiAndConstant(Register dst, Register src1, Smi* constant);
void SmiOrConstant(Register dst, Register src1, Smi* constant);
void SmiXorConstant(Register dst, Register src1, Smi* constant);
void SmiShiftLeftConstant(Register dst,
Register src,
int shift_value);
template <typename LabelType>
void SmiShiftLogicalRightConstant(Register dst,
Register src,
int shift_value,
LabelType* on_not_smi_result);
void SmiShiftArithmeticRightConstant(Register dst,
Register src,
int shift_value);
// Shifts a smi value to the left, and returns the result if that is a smi.
// Uses and clobbers rcx, so dst may not be rcx.
void SmiShiftLeft(Register dst,
Register src1,
Register src2);
// Shifts a smi value to the right, shifting in zero bits at the top, and
// returns the unsigned intepretation of the result if that is a smi.
// Uses and clobbers rcx, so dst may not be rcx.
template <typename LabelType>
void SmiShiftLogicalRight(Register dst,
Register src1,
Register src2,
LabelType* on_not_smi_result);
// Shifts a smi value to the right, sign extending the top, and
// returns the signed intepretation of the result. That will always
// be a valid smi value, since it's numerically smaller than the
// original.
// Uses and clobbers rcx, so dst may not be rcx.
void SmiShiftArithmeticRight(Register dst,
Register src1,
Register src2);
// Specialized operations
// Select the non-smi register of two registers where exactly one is a
// smi. If neither are smis, jump to the failure label.
template <typename LabelType>
void SelectNonSmi(Register dst,
Register src1,
Register src2,
LabelType* on_not_smis);
// Converts, if necessary, a smi to a combination of number and
// multiplier to be used as a scaled index.
// The src register contains a *positive* smi value. The shift is the
// power of two to multiply the index value by (e.g.
// to index by smi-value * kPointerSize, pass the smi and kPointerSizeLog2).
// The returned index register may be either src or dst, depending
// on what is most efficient. If src and dst are different registers,
// src is always unchanged.
SmiIndex SmiToIndex(Register dst, Register src, int shift);
// Converts a positive smi to a negative index.
SmiIndex SmiToNegativeIndex(Register dst, Register src, int shift);
// Add the value of a smi in memory to an int32 register.
// Sets flags as a normal add.
void AddSmiField(Register dst, const Operand& src);
// Basic Smi operations.
void Move(Register dst, Smi* source) {
LoadSmiConstant(dst, source);
}
void Move(const Operand& dst, Smi* source) {
Register constant = GetSmiConstant(source);
movq(dst, constant);
}
void Push(Smi* smi);
void Test(const Operand& dst, Smi* source);
// ---------------------------------------------------------------------------
// String macros.
// If object is a string, its map is loaded into object_map.
template <typename LabelType>
void JumpIfNotString(Register object,
Register object_map,
LabelType* not_string);
template <typename LabelType>
void JumpIfNotBothSequentialAsciiStrings(Register first_object,
Register second_object,
Register scratch1,
Register scratch2,
LabelType* on_not_both_flat_ascii);
// Check whether the instance type represents a flat ascii string. Jump to the
// label if not. If the instance type can be scratched specify same register
// for both instance type and scratch.
template <typename LabelType>
void JumpIfInstanceTypeIsNotSequentialAscii(
Register instance_type,
Register scratch,
LabelType *on_not_flat_ascii_string);
template <typename LabelType>
void JumpIfBothInstanceTypesAreNotSequentialAscii(
Register first_object_instance_type,
Register second_object_instance_type,
Register scratch1,
Register scratch2,
LabelType* on_fail);
// ---------------------------------------------------------------------------
// Macro instructions.
// Load a register with a long value as efficiently as possible.
void Set(Register dst, int64_t x);
void Set(const Operand& dst, int64_t x);
// Move if the registers are not identical.
void Move(Register target, Register source);
// Handle support
void Move(Register dst, Handle<Object> source);
void Move(const Operand& dst, Handle<Object> source);
void Cmp(Register dst, Handle<Object> source);
void Cmp(const Operand& dst, Handle<Object> source);
void Cmp(Register dst, Smi* src);
void Cmp(const Operand& dst, Smi* src);
void Push(Handle<Object> source);
// Emit code to discard a non-negative number of pointer-sized elements
// from the stack, clobbering only the rsp register.
void Drop(int stack_elements);
void Call(Label* target) { call(target); }
// Control Flow
void Jump(Address destination, RelocInfo::Mode rmode);
void Jump(ExternalReference ext);
void Jump(Handle<Code> code_object, RelocInfo::Mode rmode);
void Call(Address destination, RelocInfo::Mode rmode);
void Call(ExternalReference ext);
void Call(Handle<Code> code_object, RelocInfo::Mode rmode);
// The size of the code generated for different call instructions.
int CallSize(Address destination, RelocInfo::Mode rmode) {
return kCallInstructionLength;
}
int CallSize(ExternalReference ext);
int CallSize(Handle<Code> code_object) {
// Code calls use 32-bit relative addressing.
return kShortCallInstructionLength;
}
int CallSize(Register target) {
// Opcode: REX_opt FF /2 m64
return (target.high_bit() != 0) ? 3 : 2;
}
int CallSize(const Operand& target) {
// Opcode: REX_opt FF /2 m64
return (target.requires_rex() ? 2 : 1) + target.operand_size();
}
// Emit call to the code we are currently generating.
void CallSelf() {
Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
Call(self, RelocInfo::CODE_TARGET);
}
// Non-x64 instructions.
// Push/pop all general purpose registers.
// Does not push rsp/rbp nor any of the assembler's special purpose registers
// (kScratchRegister, kSmiConstantRegister, kRootRegister).
void Pushad();
void Popad();
// Sets the stack as after performing Popad, without actually loading the
// registers.
void Dropad();
// Compare object type for heap object.
// Always use unsigned comparisons: above and below, not less and greater.
// Incoming register is heap_object and outgoing register is map.
// They may be the same register, and may be kScratchRegister.
void CmpObjectType(Register heap_object, InstanceType type, Register map);
// Compare instance type for map.
// Always use unsigned comparisons: above and below, not less and greater.
void CmpInstanceType(Register map, InstanceType type);
// Check if the map of an object is equal to a specified map and
// branch to label if not. Skip the smi check if not required
// (object is known to be a heap object)
void CheckMap(Register obj,
Handle<Map> map,
Label* fail,
bool is_heap_object);
// Check if the object in register heap_object is a string. Afterwards the
// register map contains the object map and the register instance_type
// contains the instance_type. The registers map and instance_type can be the
// same in which case it contains the instance type afterwards. Either of the
// registers map and instance_type can be the same as heap_object.
Condition IsObjectStringType(Register heap_object,
Register map,
Register instance_type);
// FCmp compares and pops the two values on top of the FPU stack.
// The flag results are similar to integer cmp, but requires unsigned
// jcc instructions (je, ja, jae, jb, jbe, je, and jz).
void FCmp();
// Abort execution if argument is not a number. Used in debug code.
void AbortIfNotNumber(Register object);
// Abort execution if argument is a smi. Used in debug code.
void AbortIfSmi(Register object);
// Abort execution if argument is not a smi. Used in debug code.
void AbortIfNotSmi(Register object);
void AbortIfNotSmi(const Operand& object);
// Abort execution if argument is a string. Used in debug code.
void AbortIfNotString(Register object);
// Abort execution if argument is not the root value with the given index.
void AbortIfNotRootValue(Register src,
Heap::RootListIndex root_value_index,
const char* message);
// ---------------------------------------------------------------------------
// Exception handling
// Push a new try handler and link into try handler chain. The return
// address must be pushed before calling this helper.
void PushTryHandler(CodeLocation try_location, HandlerType type);
// Unlink the stack handler on top of the stack from the try handler chain.
void PopTryHandler();
// Activate the top handler in the try hander chain and pass the
// thrown value.
void Throw(Register value);
// Propagate an uncatchable exception out of the current JS stack.
void ThrowUncatchable(UncatchableExceptionType type, Register value);
// ---------------------------------------------------------------------------
// Inline caching support
// Generate code for checking access rights - used for security checks
// on access to global objects across environments. The holder register
// is left untouched, but the scratch register and kScratchRegister,
// which must be different, are clobbered.
void CheckAccessGlobalProxy(Register holder_reg,
Register scratch,
Label* miss);
// ---------------------------------------------------------------------------
// Allocation support
// Allocate an object in new space. If the new space is exhausted control
// continues at the gc_required label. The allocated object is returned in
// result and end of the new object is returned in result_end. The register
// scratch can be passed as no_reg in which case an additional object
// reference will be added to the reloc info. The returned pointers in result
// and result_end have not yet been tagged as heap objects. If
// result_contains_top_on_entry is true the content of result is known to be
// the allocation top on entry (could be result_end from a previous call to
// AllocateInNewSpace). If result_contains_top_on_entry is true scratch
// should be no_reg as it is never used.
void AllocateInNewSpace(int object_size,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags);
void AllocateInNewSpace(int header_size,
ScaleFactor element_size,
Register element_count,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags);
void AllocateInNewSpace(Register object_size,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags);
// Undo allocation in new space. The object passed and objects allocated after
// it will no longer be allocated. Make sure that no pointers are left to the
// object(s) no longer allocated as they would be invalid when allocation is
// un-done.
void UndoAllocationInNewSpace(Register object);
// Allocate a heap number in new space with undefined value. Returns
// tagged pointer in result register, or jumps to gc_required if new
// space is full.
void AllocateHeapNumber(Register result,
Register scratch,
Label* gc_required);
// Allocate a sequential string. All the header fields of the string object
// are initialized.
void AllocateTwoByteString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required);
void AllocateAsciiString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required);
// Allocate a raw cons string object. Only the map field of the result is
// initialized.
void AllocateConsString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required);
void AllocateAsciiConsString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required);
// ---------------------------------------------------------------------------
// Support functions.
// Check if result is zero and op is negative.
void NegativeZeroTest(Register result, Register op, Label* then_label);
// Check if result is zero and op is negative in code using jump targets.
void NegativeZeroTest(CodeGenerator* cgen,
Register result,
Register op,
JumpTarget* then_target);
// Check if result is zero and any of op1 and op2 are negative.
// Register scratch is destroyed, and it must be different from op2.
void NegativeZeroTest(Register result, Register op1, Register op2,
Register scratch, Label* then_label);
// Try to get function prototype of a function and puts the value in
// the result register. Checks that the function really is a
// function and jumps to the miss label if the fast checks fail. The
// function register will be untouched; the other register may be
// clobbered.
void TryGetFunctionPrototype(Register function,
Register result,
Label* miss);
// Generates code for reporting that an illegal operation has
// occurred.
void IllegalOperation(int num_arguments);
// Picks out an array index from the hash field.
// Register use:
// hash - holds the index's hash. Clobbered.
// index - holds the overwritten index on exit.
void IndexFromHash(Register hash, Register index);
// Find the function context up the context chain.
void LoadContext(Register dst, int context_chain_length);
// Load the global function with the given index.
void LoadGlobalFunction(int index, Register function);
// Load the initial map from the global function. The registers
// function and map can be the same.
void LoadGlobalFunctionInitialMap(Register function, Register map);
// ---------------------------------------------------------------------------
// Runtime calls
// Call a code stub.
void CallStub(CodeStub* stub);
// Call a code stub and return the code object called. Try to generate
// the code if necessary. Do not perform a GC but instead return a retry
// after GC failure.
MUST_USE_RESULT MaybeObject* TryCallStub(CodeStub* stub);
// Tail call a code stub (jump).
void TailCallStub(CodeStub* stub);
// Tail call a code stub (jump) and return the code object called. Try to
// generate the code if necessary. Do not perform a GC but instead return
// a retry after GC failure.
MUST_USE_RESULT MaybeObject* TryTailCallStub(CodeStub* stub);
// Return from a code stub after popping its arguments.
void StubReturn(int argc);
// Call a runtime routine.
void CallRuntime(const Runtime::Function* f, int num_arguments);
// Call a runtime function and save the value of XMM registers.
void CallRuntimeSaveDoubles(Runtime::FunctionId id);
// Call a runtime function, returning the CodeStub object called.
// Try to generate the stub code if necessary. Do not perform a GC
// but instead return a retry after GC failure.
MUST_USE_RESULT MaybeObject* TryCallRuntime(const Runtime::Function* f,
int num_arguments);
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId id, int num_arguments);
// Convenience function: Same as above, but takes the fid instead.
MUST_USE_RESULT MaybeObject* TryCallRuntime(Runtime::FunctionId id,
int num_arguments);
// Convenience function: call an external reference.
void CallExternalReference(const ExternalReference& ext,
int num_arguments);
// Tail call of a runtime routine (jump).
// Like JumpToExternalReference, but also takes care of passing the number
// of parameters.
void TailCallExternalReference(const ExternalReference& ext,
int num_arguments,
int result_size);
MUST_USE_RESULT MaybeObject* TryTailCallExternalReference(
const ExternalReference& ext, int num_arguments, int result_size);
// Convenience function: tail call a runtime routine (jump).
void TailCallRuntime(Runtime::FunctionId fid,
int num_arguments,
int result_size);
MUST_USE_RESULT MaybeObject* TryTailCallRuntime(Runtime::FunctionId fid,
int num_arguments,
int result_size);
// Jump to a runtime routine.
void JumpToExternalReference(const ExternalReference& ext, int result_size);
// Jump to a runtime routine.
MaybeObject* TryJumpToExternalReference(const ExternalReference& ext,
int result_size);
// Prepares stack to put arguments (aligns and so on).
// WIN64 calling convention requires to put the pointer to the return value
// slot into rcx (rcx must be preserverd until TryCallApiFunctionAndReturn).
// Saves context (rsi). Clobbers rax. Allocates arg_stack_space * kPointerSize
// inside the exit frame (not GCed) accessible via StackSpaceOperand.
void PrepareCallApiFunction(int arg_stack_space);
// Calls an API function. Allocates HandleScope, extracts
// returned value from handle and propagates exceptions.
// Clobbers r14, r15, rbx and caller-save registers. Restores context.
// On return removes stack_space * kPointerSize (GCed).
MUST_USE_RESULT MaybeObject* TryCallApiFunctionAndReturn(
ApiFunction* function, int stack_space);
// Before calling a C-function from generated code, align arguments on stack.
// After aligning the frame, arguments must be stored in esp[0], esp[4],
// etc., not pushed. The argument count assumes all arguments are word sized.
// The number of slots reserved for arguments depends on platform. On Windows
// stack slots are reserved for the arguments passed in registers. On other
// platforms stack slots are only reserved for the arguments actually passed
// on the stack.
void PrepareCallCFunction(int num_arguments);
// Calls a C function and cleans up the space for arguments allocated
// by PrepareCallCFunction. The called function is not allowed to trigger a
// garbage collection, since that might move the code and invalidate the
// return address (unless this is somehow accounted for by the called
// function).
void CallCFunction(ExternalReference function, int num_arguments);
void CallCFunction(Register function, int num_arguments);
// Calculate the number of stack slots to reserve for arguments when calling a
// C function.
int ArgumentStackSlotsForCFunctionCall(int num_arguments);
// ---------------------------------------------------------------------------
// Utilities
void Ret();
// Return and drop arguments from stack, where the number of arguments
// may be bigger than 2^16 - 1. Requires a scratch register.
void Ret(int bytes_dropped, Register scratch);
Handle<Object> CodeObject() {
ASSERT(!code_object_.is_null());
return code_object_;
}
// Copy length bytes from source to destination.
// Uses scratch register internally (if you have a low-eight register
// free, do use it, otherwise kScratchRegister will be used).
// The min_length is a minimum limit on the value that length will have.
// The algorithm has some special cases that might be omitted if the string
// is known to always be long.
void CopyBytes(Register destination,
Register source,
Register length,
int min_length = 0,
Register scratch = kScratchRegister);
// ---------------------------------------------------------------------------
// StatsCounter support
void SetCounter(StatsCounter* counter, int value);
void IncrementCounter(StatsCounter* counter, int value);
void DecrementCounter(StatsCounter* counter, int value);
// ---------------------------------------------------------------------------
// Debugging
// Calls Abort(msg) if the condition cc is not satisfied.
// Use --debug_code to enable.
void Assert(Condition cc, const char* msg);
void AssertFastElements(Register elements);
// Like Assert(), but always enabled.
void Check(Condition cc, const char* msg);
// Print a message to stdout and abort execution.
void Abort(const char* msg);
// Check that the stack is aligned.
void CheckStackAlignment();
// Verify restrictions about code generated in stubs.
void set_generating_stub(bool value) { generating_stub_ = value; }
bool generating_stub() { return generating_stub_; }
void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; }
bool allow_stub_calls() { return allow_stub_calls_; }
static int SafepointRegisterStackIndex(Register reg) {
return SafepointRegisterStackIndex(reg.code());
}
private:
// Order general registers are pushed by Pushad.
// rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r14, r15.
static int kSafepointPushRegisterIndices[Register::kNumRegisters];
static const int kNumSafepointSavedRegisters = 11;
bool generating_stub_;
bool allow_stub_calls_;
bool root_array_available_;
// Returns a register holding the smi value. The register MUST NOT be
// modified. It may be the "smi 1 constant" register.
Register GetSmiConstant(Smi* value);
// Moves the smi value to the destination register.
void LoadSmiConstant(Register dst, Smi* value);
// This handle will be patched with the code object on installation.
Handle<Object> code_object_;
// Helper functions for generating invokes.
template <typename LabelType>
void InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual,
Handle<Code> code_constant,
Register code_register,
LabelType* done,
InvokeFlag flag,
CallWrapper* call_wrapper);
// Activation support.
void EnterFrame(StackFrame::Type type);
void LeaveFrame(StackFrame::Type type);
void EnterExitFramePrologue(bool save_rax);
// Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
// accessible via StackSpaceOperand.
void EnterExitFrameEpilogue(int arg_stack_space, bool save_doubles);
void LeaveExitFrameEpilogue();
// Allocation support helpers.
// Loads the top of new-space into the result register.
// Otherwise the address of the new-space top is loaded into scratch (if
// scratch is valid), and the new-space top is loaded into result.
void LoadAllocationTopHelper(Register result,
Register scratch,
AllocationFlags flags);
// Update allocation top with value in result_end register.
// If scratch is valid, it contains the address of the allocation top.
void UpdateAllocationTopHelper(Register result_end, Register scratch);
// Helper for PopHandleScope. Allowed to perform a GC and returns
// NULL if gc_allowed. Does not perform a GC if !gc_allowed, and
// possibly returns a failure object indicating an allocation failure.
Object* PopHandleScopeHelper(Register saved,
Register scratch,
bool gc_allowed);
// Compute memory operands for safepoint stack slots.
Operand SafepointRegisterSlot(Register reg);
static int SafepointRegisterStackIndex(int reg_code) {
return kNumSafepointRegisters - kSafepointPushRegisterIndices[reg_code] - 1;
}
// Needs access to SafepointRegisterStackIndex for optimized frame
// traversal.
friend class OptimizedFrame;
};
// The code patcher is used to patch (typically) small parts of code e.g. for
// debugging and other types of instrumentation. When using the code patcher
// the exact number of bytes specified must be emitted. Is not legal to emit
// relocation information. If any of these constraints are violated it causes
// an assertion.
class CodePatcher {
public:
CodePatcher(byte* address, int size);
virtual ~CodePatcher();
// Macro assembler to emit code.
MacroAssembler* masm() { return &masm_; }
private:
byte* address_; // The address of the code being patched.
int size_; // Number of bytes of the expected patch size.
MacroAssembler masm_; // Macro assembler used to generate the code.
};
// Helper class for generating code or data associated with the code
// right before or after a call instruction. As an example this can be used to
// generate safepoint data after calls for crankshaft.
class CallWrapper {
public:
CallWrapper() { }
virtual ~CallWrapper() { }
// Called just before emitting a call. Argument is the size of the generated
// call code.
virtual void BeforeCall(int call_size) = 0;
// Called just after emitting a call, i.e., at the return site for the call.
virtual void AfterCall() = 0;
};
// -----------------------------------------------------------------------------
// Static helper functions.
// Generate an Operand for loading a field from an object.
static inline Operand FieldOperand(Register object, int offset) {
return Operand(object, offset - kHeapObjectTag);
}
// Generate an Operand for loading an indexed field from an object.
static inline Operand FieldOperand(Register object,
Register index,
ScaleFactor scale,
int offset) {
return Operand(object, index, scale, offset - kHeapObjectTag);
}
static inline Operand ContextOperand(Register context, int index) {
return Operand(context, Context::SlotOffset(index));
}
static inline Operand GlobalObjectOperand() {
return ContextOperand(rsi, Context::GLOBAL_INDEX);
}
// Provides access to exit frame stack space (not GCed).
static inline Operand StackSpaceOperand(int index) {
#ifdef _WIN64
const int kShaddowSpace = 4;
return Operand(rsp, (index + kShaddowSpace) * kPointerSize);
#else
return Operand(rsp, index * kPointerSize);
#endif
}
#ifdef GENERATED_CODE_COVERAGE
extern void LogGeneratedCodeCoverage(const char* file_line);
#define CODE_COVERAGE_STRINGIFY(x) #x
#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
#define ACCESS_MASM(masm) { \
byte* x64_coverage_function = \
reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
masm->pushfd(); \
masm->pushad(); \
masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__))); \
masm->call(x64_coverage_function, RelocInfo::RUNTIME_ENTRY); \
masm->pop(rax); \
masm->popad(); \
masm->popfd(); \
} \
masm->
#else
#define ACCESS_MASM(masm) masm->
#endif
// -----------------------------------------------------------------------------
// Template implementations.
static int kSmiShift = kSmiTagSize + kSmiShiftSize;
template <typename LabelType>
void MacroAssembler::SmiNeg(Register dst,
Register src,
LabelType* on_smi_result) {
if (dst.is(src)) {
ASSERT(!dst.is(kScratchRegister));
movq(kScratchRegister, src);
neg(dst); // Low 32 bits are retained as zero by negation.
// Test if result is zero or Smi::kMinValue.
cmpq(dst, kScratchRegister);
j(not_equal, on_smi_result);
movq(src, kScratchRegister);
} else {
movq(dst, src);
neg(dst);
cmpq(dst, src);
// If the result is zero or Smi::kMinValue, negation failed to create a smi.
j(not_equal, on_smi_result);
}
}
template <typename LabelType>
void MacroAssembler::SmiAdd(Register dst,
Register src1,
Register src2,
LabelType* on_not_smi_result) {
ASSERT_NOT_NULL(on_not_smi_result);
ASSERT(!dst.is(src2));
if (dst.is(src1)) {
movq(kScratchRegister, src1);
addq(kScratchRegister, src2);
j(overflow, on_not_smi_result);
movq(dst, kScratchRegister);
} else {
movq(dst, src1);
addq(dst, src2);
j(overflow, on_not_smi_result);
}
}
template <typename LabelType>
void MacroAssembler::SmiAdd(Register dst,
Register src1,
const Operand& src2,
LabelType* on_not_smi_result) {
ASSERT_NOT_NULL(on_not_smi_result);
if (dst.is(src1)) {
movq(kScratchRegister, src1);
addq(kScratchRegister, src2);
j(overflow, on_not_smi_result);
movq(dst, kScratchRegister);
} else {
ASSERT(!src2.AddressUsesRegister(dst));
movq(dst, src1);
addq(dst, src2);
j(overflow, on_not_smi_result);
}
}
template <typename LabelType>
void MacroAssembler::SmiSub(Register dst,
Register src1,
Register src2,
LabelType* on_not_smi_result) {
ASSERT_NOT_NULL(on_not_smi_result);
ASSERT(!dst.is(src2));
if (dst.is(src1)) {
cmpq(dst, src2);
j(overflow, on_not_smi_result);
subq(dst, src2);
} else {
movq(dst, src1);
subq(dst, src2);
j(overflow, on_not_smi_result);
}
}
template <typename LabelType>
void MacroAssembler::SmiSub(Register dst,
Register src1,
const Operand& src2,
LabelType* on_not_smi_result) {
ASSERT_NOT_NULL(on_not_smi_result);
if (dst.is(src1)) {
movq(kScratchRegister, src2);
cmpq(src1, kScratchRegister);
j(overflow, on_not_smi_result);
subq(src1, kScratchRegister);
} else {
movq(dst, src1);
subq(dst, src2);
j(overflow, on_not_smi_result);
}
}
template <typename LabelType>
void MacroAssembler::SmiMul(Register dst,
Register src1,
Register src2,
LabelType* on_not_smi_result) {
ASSERT(!dst.is(src2));
ASSERT(!dst.is(kScratchRegister));
ASSERT(!src1.is(kScratchRegister));
ASSERT(!src2.is(kScratchRegister));
if (dst.is(src1)) {
NearLabel failure, zero_correct_result;
movq(kScratchRegister, src1); // Create backup for later testing.
SmiToInteger64(dst, src1);
imul(dst, src2);
j(overflow, &failure);
// Check for negative zero result. If product is zero, and one
// argument is negative, go to slow case.
NearLabel correct_result;
testq(dst, dst);
j(not_zero, &correct_result);
movq(dst, kScratchRegister);
xor_(dst, src2);
j(positive, &zero_correct_result); // Result was positive zero.
bind(&failure); // Reused failure exit, restores src1.
movq(src1, kScratchRegister);
jmp(on_not_smi_result);
bind(&zero_correct_result);
Set(dst, 0);
bind(&correct_result);
} else {
SmiToInteger64(dst, src1);
imul(dst, src2);
j(overflow, on_not_smi_result);
// Check for negative zero result. If product is zero, and one
// argument is negative, go to slow case.
NearLabel correct_result;
testq(dst, dst);
j(not_zero, &correct_result);
// One of src1 and src2 is zero, the check whether the other is
// negative.
movq(kScratchRegister, src1);
xor_(kScratchRegister, src2);
j(negative, on_not_smi_result);
bind(&correct_result);
}
}
template <typename LabelType>
void MacroAssembler::SmiTryAddConstant(Register dst,
Register src,
Smi* constant,
LabelType* on_not_smi_result) {
// Does not assume that src is a smi.
ASSERT_EQ(static_cast<int>(1), static_cast<int>(kSmiTagMask));
ASSERT_EQ(0, kSmiTag);
ASSERT(!dst.is(kScratchRegister));
ASSERT(!src.is(kScratchRegister));
JumpIfNotSmi(src, on_not_smi_result);
Register tmp = (dst.is(src) ? kScratchRegister : dst);
LoadSmiConstant(tmp, constant);
addq(tmp, src);
j(overflow, on_not_smi_result);
if (dst.is(src)) {
movq(dst, tmp);
}
}
template <typename LabelType>
void MacroAssembler::SmiAddConstant(Register dst,
Register src,
Smi* constant,
LabelType* on_not_smi_result) {
if (constant->value() == 0) {
if (!dst.is(src)) {
movq(dst, src);
}
} else if (dst.is(src)) {
ASSERT(!dst.is(kScratchRegister));
LoadSmiConstant(kScratchRegister, constant);
addq(kScratchRegister, src);
j(overflow, on_not_smi_result);
movq(dst, kScratchRegister);
} else {
LoadSmiConstant(dst, constant);
addq(dst, src);
j(overflow, on_not_smi_result);
}
}
template <typename LabelType>
void MacroAssembler::SmiSubConstant(Register dst,
Register src,
Smi* constant,
LabelType* on_not_smi_result) {
if (constant->value() == 0) {
if (!dst.is(src)) {
movq(dst, src);
}
} else if (dst.is(src)) {
ASSERT(!dst.is(kScratchRegister));
if (constant->value() == Smi::kMinValue) {
// Subtracting min-value from any non-negative value will overflow.
// We test the non-negativeness before doing the subtraction.
testq(src, src);
j(not_sign, on_not_smi_result);
LoadSmiConstant(kScratchRegister, constant);
subq(dst, kScratchRegister);
} else {
// Subtract by adding the negation.
LoadSmiConstant(kScratchRegister, Smi::FromInt(-constant->value()));
addq(kScratchRegister, dst);
j(overflow, on_not_smi_result);
movq(dst, kScratchRegister);
}
} else {
if (constant->value() == Smi::kMinValue) {
// Subtracting min-value from any non-negative value will overflow.
// We test the non-negativeness before doing the subtraction.
testq(src, src);
j(not_sign, on_not_smi_result);
LoadSmiConstant(dst, constant);
// Adding and subtracting the min-value gives the same result, it only
// differs on the overflow bit, which we don't check here.
addq(dst, src);
} else {
// Subtract by adding the negation.
LoadSmiConstant(dst, Smi::FromInt(-(constant->value())));
addq(dst, src);
j(overflow, on_not_smi_result);
}
}
}
template <typename LabelType>
void MacroAssembler::SmiDiv(Register dst,
Register src1,
Register src2,
LabelType* on_not_smi_result) {
ASSERT(!src1.is(kScratchRegister));
ASSERT(!src2.is(kScratchRegister));
ASSERT(!dst.is(kScratchRegister));
ASSERT(!src2.is(rax));
ASSERT(!src2.is(rdx));
ASSERT(!src1.is(rdx));
// Check for 0 divisor (result is +/-Infinity).
NearLabel positive_divisor;
testq(src2, src2);
j(zero, on_not_smi_result);
if (src1.is(rax)) {
movq(kScratchRegister, src1);
}
SmiToInteger32(rax, src1);
// We need to rule out dividing Smi::kMinValue by -1, since that would
// overflow in idiv and raise an exception.
// We combine this with negative zero test (negative zero only happens
// when dividing zero by a negative number).
// We overshoot a little and go to slow case if we divide min-value
// by any negative value, not just -1.
NearLabel safe_div;
testl(rax, Immediate(0x7fffffff));
j(not_zero, &safe_div);
testq(src2, src2);
if (src1.is(rax)) {
j(positive, &safe_div);
movq(src1, kScratchRegister);
jmp(on_not_smi_result);
} else {
j(negative, on_not_smi_result);
}
bind(&safe_div);
SmiToInteger32(src2, src2);
// Sign extend src1 into edx:eax.
cdq();
idivl(src2);
Integer32ToSmi(src2, src2);
// Check that the remainder is zero.
testl(rdx, rdx);
if (src1.is(rax)) {
NearLabel smi_result;
j(zero, &smi_result);
movq(src1, kScratchRegister);
jmp(on_not_smi_result);
bind(&smi_result);
} else {
j(not_zero, on_not_smi_result);
}
if (!dst.is(src1) && src1.is(rax)) {
movq(src1, kScratchRegister);
}
Integer32ToSmi(dst, rax);
}
template <typename LabelType>
void MacroAssembler::SmiMod(Register dst,
Register src1,
Register src2,
LabelType* on_not_smi_result) {
ASSERT(!dst.is(kScratchRegister));
ASSERT(!src1.is(kScratchRegister));
ASSERT(!src2.is(kScratchRegister));
ASSERT(!src2.is(rax));
ASSERT(!src2.is(rdx));
ASSERT(!src1.is(rdx));
ASSERT(!src1.is(src2));
testq(src2, src2);
j(zero, on_not_smi_result);
if (src1.is(rax)) {
movq(kScratchRegister, src1);
}
SmiToInteger32(rax, src1);
SmiToInteger32(src2, src2);
// Test for the edge case of dividing Smi::kMinValue by -1 (will overflow).
NearLabel safe_div;
cmpl(rax, Immediate(Smi::kMinValue));
j(not_equal, &safe_div);
cmpl(src2, Immediate(-1));
j(not_equal, &safe_div);
// Retag inputs and go slow case.
Integer32ToSmi(src2, src2);
if (src1.is(rax)) {
movq(src1, kScratchRegister);
}
jmp(on_not_smi_result);
bind(&safe_div);
// Sign extend eax into edx:eax.
cdq();
idivl(src2);
// Restore smi tags on inputs.
Integer32ToSmi(src2, src2);
if (src1.is(rax)) {
movq(src1, kScratchRegister);
}
// Check for a negative zero result. If the result is zero, and the
// dividend is negative, go slow to return a floating point negative zero.
NearLabel smi_result;
testl(rdx, rdx);
j(not_zero, &smi_result);
testq(src1, src1);
j(negative, on_not_smi_result);
bind(&smi_result);
Integer32ToSmi(dst, rdx);
}
template <typename LabelType>
void MacroAssembler::SmiShiftLogicalRightConstant(
Register dst, Register src, int shift_value, LabelType* on_not_smi_result) {
// Logic right shift interprets its result as an *unsigned* number.
if (dst.is(src)) {
UNIMPLEMENTED(); // Not used.
} else {
movq(dst, src);
if (shift_value == 0) {
testq(dst, dst);
j(negative, on_not_smi_result);
}
shr(dst, Immediate(shift_value + kSmiShift));
shl(dst, Immediate(kSmiShift));
}
}
template <typename LabelType>
void MacroAssembler::SmiShiftLogicalRight(Register dst,
Register src1,
Register src2,
LabelType* on_not_smi_result) {
ASSERT(!dst.is(kScratchRegister));
ASSERT(!src1.is(kScratchRegister));
ASSERT(!src2.is(kScratchRegister));
ASSERT(!dst.is(rcx));
// dst and src1 can be the same, because the one case that bails out
// is a shift by 0, which leaves dst, and therefore src1, unchanged.
NearLabel result_ok;
if (src1.is(rcx) || src2.is(rcx)) {
movq(kScratchRegister, rcx);
}
if (!dst.is(src1)) {
movq(dst, src1);
}
SmiToInteger32(rcx, src2);
orl(rcx, Immediate(kSmiShift));
shr_cl(dst); // Shift is rcx modulo 0x1f + 32.
shl(dst, Immediate(kSmiShift));
testq(dst, dst);
if (src1.is(rcx) || src2.is(rcx)) {
NearLabel positive_result;
j(positive, &positive_result);
if (src1.is(rcx)) {
movq(src1, kScratchRegister);
} else {
movq(src2, kScratchRegister);
}
jmp(on_not_smi_result);
bind(&positive_result);
} else {
j(negative, on_not_smi_result); // src2 was zero and src1 negative.
}
}
template <typename LabelType>
void MacroAssembler::SelectNonSmi(Register dst,
Register src1,
Register src2,
LabelType* on_not_smis) {
ASSERT(!dst.is(kScratchRegister));
ASSERT(!src1.is(kScratchRegister));
ASSERT(!src2.is(kScratchRegister));
ASSERT(!dst.is(src1));
ASSERT(!dst.is(src2));
// Both operands must not be smis.
#ifdef DEBUG
if (allow_stub_calls()) { // Check contains a stub call.
Condition not_both_smis = NegateCondition(CheckBothSmi(src1, src2));
Check(not_both_smis, "Both registers were smis in SelectNonSmi.");
}
#endif
ASSERT_EQ(0, kSmiTag);
ASSERT_EQ(0, Smi::FromInt(0));
movl(kScratchRegister, Immediate(kSmiTagMask));
and_(kScratchRegister, src1);
testl(kScratchRegister, src2);
// If non-zero then both are smis.
j(not_zero, on_not_smis);
// Exactly one operand is a smi.
ASSERT_EQ(1, static_cast<int>(kSmiTagMask));
// kScratchRegister still holds src1 & kSmiTag, which is either zero or one.
subq(kScratchRegister, Immediate(1));
// If src1 is a smi, then scratch register all 1s, else it is all 0s.
movq(dst, src1);
xor_(dst, src2);
and_(dst, kScratchRegister);
// If src1 is a smi, dst holds src1 ^ src2, else it is zero.
xor_(dst, src1);
// If src1 is a smi, dst is src2, else it is src1, i.e., the non-smi.
}
template <typename LabelType>
void MacroAssembler::JumpIfSmi(Register src, LabelType* on_smi) {
ASSERT_EQ(0, kSmiTag);
Condition smi = CheckSmi(src);
j(smi, on_smi);
}
template <typename LabelType>
void MacroAssembler::JumpIfNotSmi(Register src, LabelType* on_not_smi) {
Condition smi = CheckSmi(src);
j(NegateCondition(smi), on_not_smi);
}
template <typename LabelType>
void MacroAssembler::JumpUnlessNonNegativeSmi(
Register src, LabelType* on_not_smi_or_negative) {
Condition non_negative_smi = CheckNonNegativeSmi(src);
j(NegateCondition(non_negative_smi), on_not_smi_or_negative);
}
template <typename LabelType>
void MacroAssembler::JumpIfSmiEqualsConstant(Register src,
Smi* constant,
LabelType* on_equals) {
SmiCompare(src, constant);
j(equal, on_equals);
}
template <typename LabelType>
void MacroAssembler::JumpIfNotValidSmiValue(Register src,
LabelType* on_invalid) {
Condition is_valid = CheckInteger32ValidSmiValue(src);
j(NegateCondition(is_valid), on_invalid);
}
template <typename LabelType>
void MacroAssembler::JumpIfUIntNotValidSmiValue(Register src,
LabelType* on_invalid) {
Condition is_valid = CheckUInteger32ValidSmiValue(src);
j(NegateCondition(is_valid), on_invalid);
}
template <typename LabelType>
void MacroAssembler::JumpIfNotBothSmi(Register src1,
Register src2,
LabelType* on_not_both_smi) {
Condition both_smi = CheckBothSmi(src1, src2);
j(NegateCondition(both_smi), on_not_both_smi);
}
template <typename LabelType>
void MacroAssembler::JumpUnlessBothNonNegativeSmi(Register src1,
Register src2,
LabelType* on_not_both_smi) {
Condition both_smi = CheckBothNonNegativeSmi(src1, src2);
j(NegateCondition(both_smi), on_not_both_smi);
}
template <typename LabelType>
void MacroAssembler::SmiOrIfSmis(Register dst, Register src1, Register src2,
LabelType* on_not_smis) {
if (dst.is(src1) || dst.is(src2)) {
ASSERT(!src1.is(kScratchRegister));
ASSERT(!src2.is(kScratchRegister));
movq(kScratchRegister, src1);
or_(kScratchRegister, src2);
JumpIfNotSmi(kScratchRegister, on_not_smis);
movq(dst, kScratchRegister);
} else {
movq(dst, src1);
or_(dst, src2);
JumpIfNotSmi(dst, on_not_smis);
}
}
template <typename LabelType>
void MacroAssembler::JumpIfNotString(Register object,
Register object_map,
LabelType* not_string) {
Condition is_smi = CheckSmi(object);
j(is_smi, not_string);
CmpObjectType(object, FIRST_NONSTRING_TYPE, object_map);
j(above_equal, not_string);
}
template <typename LabelType>
void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first_object,
Register second_object,
Register scratch1,
Register scratch2,
LabelType* on_fail) {
// Check that both objects are not smis.
Condition either_smi = CheckEitherSmi(first_object, second_object);
j(either_smi, on_fail);
// Load instance type for both strings.
movq(scratch1, FieldOperand(first_object, HeapObject::kMapOffset));
movq(scratch2, FieldOperand(second_object, HeapObject::kMapOffset));
movzxbl(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset));
movzxbl(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset));
// Check that both are flat ascii strings.
ASSERT(kNotStringTag != 0);
const int kFlatAsciiStringMask =
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
const int kFlatAsciiStringTag = ASCII_STRING_TYPE;
andl(scratch1, Immediate(kFlatAsciiStringMask));
andl(scratch2, Immediate(kFlatAsciiStringMask));
// Interleave the bits to check both scratch1 and scratch2 in one test.
ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3));
lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
cmpl(scratch1,
Immediate(kFlatAsciiStringTag + (kFlatAsciiStringTag << 3)));
j(not_equal, on_fail);
}
template <typename LabelType>
void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(
Register instance_type,
Register scratch,
LabelType *failure) {
if (!scratch.is(instance_type)) {
movl(scratch, instance_type);
}
const int kFlatAsciiStringMask =
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
andl(scratch, Immediate(kFlatAsciiStringMask));
cmpl(scratch, Immediate(kStringTag | kSeqStringTag | kAsciiStringTag));
j(not_equal, failure);
}
template <typename LabelType>
void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii(
Register first_object_instance_type,
Register second_object_instance_type,
Register scratch1,
Register scratch2,
LabelType* on_fail) {
// Load instance type for both strings.
movq(scratch1, first_object_instance_type);
movq(scratch2, second_object_instance_type);
// Check that both are flat ascii strings.
ASSERT(kNotStringTag != 0);
const int kFlatAsciiStringMask =
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
const int kFlatAsciiStringTag = ASCII_STRING_TYPE;
andl(scratch1, Immediate(kFlatAsciiStringMask));
andl(scratch2, Immediate(kFlatAsciiStringMask));
// Interleave the bits to check both scratch1 and scratch2 in one test.
ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3));
lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
cmpl(scratch1,
Immediate(kFlatAsciiStringTag + (kFlatAsciiStringTag << 3)));
j(not_equal, on_fail);
}
template <typename LabelType>
void MacroAssembler::InNewSpace(Register object,
Register scratch,
Condition cc,
LabelType* branch) {
if (Serializer::enabled()) {
// Can't do arithmetic on external references if it might get serialized.
// The mask isn't really an address. We load it as an external reference in
// case the size of the new space is different between the snapshot maker
// and the running system.
if (scratch.is(object)) {
movq(kScratchRegister, ExternalReference::new_space_mask(isolate()));
and_(scratch, kScratchRegister);
} else {
movq(scratch, ExternalReference::new_space_mask(isolate()));
and_(scratch, object);
}
movq(kScratchRegister, ExternalReference::new_space_start(isolate()));
cmpq(scratch, kScratchRegister);
j(cc, branch);
} else {
ASSERT(is_int32(static_cast<int64_t>(HEAP->NewSpaceMask())));
intptr_t new_space_start =
reinterpret_cast<intptr_t>(HEAP->NewSpaceStart());
movq(kScratchRegister, -new_space_start, RelocInfo::NONE);
if (scratch.is(object)) {
addq(scratch, kScratchRegister);
} else {
lea(scratch, Operand(object, kScratchRegister, times_1, 0));
}
and_(scratch, Immediate(static_cast<int32_t>(HEAP->NewSpaceMask())));
j(cc, branch);
}
}
template <typename LabelType>
void MacroAssembler::InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual,
Handle<Code> code_constant,
Register code_register,
LabelType* done,
InvokeFlag flag,
CallWrapper* call_wrapper) {
bool definitely_matches = false;
NearLabel invoke;
if (expected.is_immediate()) {
ASSERT(actual.is_immediate());
if (expected.immediate() == actual.immediate()) {
definitely_matches = true;
} else {
Set(rax, actual.immediate());
if (expected.immediate() ==
SharedFunctionInfo::kDontAdaptArgumentsSentinel) {
// Don't worry about adapting arguments for built-ins that
// don't want that done. Skip adaption code by making it look
// like we have a match between expected and actual number of
// arguments.
definitely_matches = true;
} else {
Set(rbx, expected.immediate());
}
}
} else {
if (actual.is_immediate()) {
// Expected is in register, actual is immediate. This is the
// case when we invoke function values without going through the
// IC mechanism.
cmpq(expected.reg(), Immediate(actual.immediate()));
j(equal, &invoke);
ASSERT(expected.reg().is(rbx));
Set(rax, actual.immediate());
} else if (!expected.reg().is(actual.reg())) {
// Both expected and actual are in (different) registers. This
// is the case when we invoke functions using call and apply.
cmpq(expected.reg(), actual.reg());
j(equal, &invoke);
ASSERT(actual.reg().is(rax));
ASSERT(expected.reg().is(rbx));
}
}
if (!definitely_matches) {
Handle<Code> adaptor = isolate()->builtins()->ArgumentsAdaptorTrampoline();
if (!code_constant.is_null()) {
movq(rdx, code_constant, RelocInfo::EMBEDDED_OBJECT);
addq(rdx, Immediate(Code::kHeaderSize - kHeapObjectTag));
} else if (!code_register.is(rdx)) {
movq(rdx, code_register);
}
if (flag == CALL_FUNCTION) {
if (call_wrapper != NULL) call_wrapper->BeforeCall(CallSize(adaptor));
Call(adaptor, RelocInfo::CODE_TARGET);
if (call_wrapper != NULL) call_wrapper->AfterCall();
jmp(done);
} else {
Jump(adaptor, RelocInfo::CODE_TARGET);
}
bind(&invoke);
}
}
} } // namespace v8::internal
#endif // V8_X64_MACRO_ASSEMBLER_X64_H_