// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "ast.h"
#include "compiler.h"
#include "ic.h"
#include "macro-assembler.h"
#include "stub-cache.h"
#include "type-info.h"
#include "ic-inl.h"
#include "objects-inl.h"
namespace v8 {
namespace internal {
TypeInfo TypeInfo::TypeFromValue(Handle<Object> value) {
TypeInfo info;
if (value->IsSmi()) {
info = TypeInfo::Smi();
} else if (value->IsHeapNumber()) {
info = TypeInfo::IsInt32Double(HeapNumber::cast(*value)->value())
? TypeInfo::Integer32()
: TypeInfo::Double();
} else if (value->IsString()) {
info = TypeInfo::String();
} else {
info = TypeInfo::Unknown();
}
return info;
}
STATIC_ASSERT(DEFAULT_STRING_STUB == Code::kNoExtraICState);
TypeFeedbackOracle::TypeFeedbackOracle(Handle<Code> code,
Handle<Context> global_context) {
global_context_ = global_context;
PopulateMap(code);
ASSERT(reinterpret_cast<Address>(*dictionary_.location()) != kHandleZapValue);
}
Handle<Object> TypeFeedbackOracle::GetInfo(int pos) {
int entry = dictionary_->FindEntry(pos);
return entry != NumberDictionary::kNotFound
? Handle<Object>(dictionary_->ValueAt(entry))
: Isolate::Current()->factory()->undefined_value();
}
bool TypeFeedbackOracle::LoadIsMonomorphic(Property* expr) {
Handle<Object> map_or_code(GetInfo(expr->position()));
if (map_or_code->IsMap()) return true;
if (map_or_code->IsCode()) {
Handle<Code> code(Code::cast(*map_or_code));
return code->kind() == Code::KEYED_EXTERNAL_ARRAY_LOAD_IC &&
code->FindFirstMap() != NULL;
}
return false;
}
bool TypeFeedbackOracle::StoreIsMonomorphic(Expression* expr) {
Handle<Object> map_or_code(GetInfo(expr->position()));
if (map_or_code->IsMap()) return true;
if (map_or_code->IsCode()) {
Handle<Code> code(Code::cast(*map_or_code));
return code->kind() == Code::KEYED_EXTERNAL_ARRAY_STORE_IC &&
code->FindFirstMap() != NULL;
}
return false;
}
bool TypeFeedbackOracle::CallIsMonomorphic(Call* expr) {
Handle<Object> value = GetInfo(expr->position());
return value->IsMap() || value->IsSmi();
}
Handle<Map> TypeFeedbackOracle::LoadMonomorphicReceiverType(Property* expr) {
ASSERT(LoadIsMonomorphic(expr));
Handle<Object> map_or_code(
Handle<HeapObject>::cast(GetInfo(expr->position())));
if (map_or_code->IsCode()) {
Handle<Code> code(Code::cast(*map_or_code));
return Handle<Map>(code->FindFirstMap());
}
return Handle<Map>(Map::cast(*map_or_code));
}
Handle<Map> TypeFeedbackOracle::StoreMonomorphicReceiverType(Expression* expr) {
ASSERT(StoreIsMonomorphic(expr));
Handle<HeapObject> map_or_code(
Handle<HeapObject>::cast(GetInfo(expr->position())));
if (map_or_code->IsCode()) {
Handle<Code> code(Code::cast(*map_or_code));
return Handle<Map>(code->FindFirstMap());
}
return Handle<Map>(Map::cast(*map_or_code));
}
ZoneMapList* TypeFeedbackOracle::LoadReceiverTypes(Property* expr,
Handle<String> name) {
Code::Flags flags = Code::ComputeMonomorphicFlags(Code::LOAD_IC, NORMAL);
return CollectReceiverTypes(expr->position(), name, flags);
}
ZoneMapList* TypeFeedbackOracle::StoreReceiverTypes(Assignment* expr,
Handle<String> name) {
Code::Flags flags = Code::ComputeMonomorphicFlags(Code::STORE_IC, NORMAL);
return CollectReceiverTypes(expr->position(), name, flags);
}
ZoneMapList* TypeFeedbackOracle::CallReceiverTypes(Call* expr,
Handle<String> name) {
int arity = expr->arguments()->length();
// Note: these flags won't let us get maps from stubs with
// non-default extra ic state in the megamorphic case. In the more
// important monomorphic case the map is obtained directly, so it's
// not a problem until we decide to emit more polymorphic code.
Code::Flags flags = Code::ComputeMonomorphicFlags(Code::CALL_IC,
NORMAL,
Code::kNoExtraICState,
OWN_MAP,
NOT_IN_LOOP,
arity);
return CollectReceiverTypes(expr->position(), name, flags);
}
CheckType TypeFeedbackOracle::GetCallCheckType(Call* expr) {
Handle<Object> value = GetInfo(expr->position());
if (!value->IsSmi()) return RECEIVER_MAP_CHECK;
CheckType check = static_cast<CheckType>(Smi::cast(*value)->value());
ASSERT(check != RECEIVER_MAP_CHECK);
return check;
}
ExternalArrayType TypeFeedbackOracle::GetKeyedLoadExternalArrayType(
Property* expr) {
Handle<Object> stub = GetInfo(expr->position());
ASSERT(stub->IsCode());
return Code::cast(*stub)->external_array_type();
}
ExternalArrayType TypeFeedbackOracle::GetKeyedStoreExternalArrayType(
Expression* expr) {
Handle<Object> stub = GetInfo(expr->position());
ASSERT(stub->IsCode());
return Code::cast(*stub)->external_array_type();
}
Handle<JSObject> TypeFeedbackOracle::GetPrototypeForPrimitiveCheck(
CheckType check) {
JSFunction* function = NULL;
switch (check) {
case RECEIVER_MAP_CHECK:
UNREACHABLE();
break;
case STRING_CHECK:
function = global_context_->string_function();
break;
case NUMBER_CHECK:
function = global_context_->number_function();
break;
case BOOLEAN_CHECK:
function = global_context_->boolean_function();
break;
}
ASSERT(function != NULL);
return Handle<JSObject>(JSObject::cast(function->instance_prototype()));
}
bool TypeFeedbackOracle::LoadIsBuiltin(Property* expr, Builtins::Name id) {
return *GetInfo(expr->position()) ==
Isolate::Current()->builtins()->builtin(id);
}
TypeInfo TypeFeedbackOracle::CompareType(CompareOperation* expr) {
Handle<Object> object = GetInfo(expr->position());
TypeInfo unknown = TypeInfo::Unknown();
if (!object->IsCode()) return unknown;
Handle<Code> code = Handle<Code>::cast(object);
if (!code->is_compare_ic_stub()) return unknown;
CompareIC::State state = static_cast<CompareIC::State>(code->compare_state());
switch (state) {
case CompareIC::UNINITIALIZED:
// Uninitialized means never executed.
// TODO(fschneider): Introduce a separate value for never-executed ICs.
return unknown;
case CompareIC::SMIS:
return TypeInfo::Smi();
case CompareIC::HEAP_NUMBERS:
return TypeInfo::Number();
case CompareIC::OBJECTS:
// TODO(kasperl): We really need a type for JS objects here.
return TypeInfo::NonPrimitive();
case CompareIC::GENERIC:
default:
return unknown;
}
}
TypeInfo TypeFeedbackOracle::BinaryType(BinaryOperation* expr) {
Handle<Object> object = GetInfo(expr->position());
TypeInfo unknown = TypeInfo::Unknown();
if (!object->IsCode()) return unknown;
Handle<Code> code = Handle<Code>::cast(object);
if (code->is_type_recording_binary_op_stub()) {
TRBinaryOpIC::TypeInfo type = static_cast<TRBinaryOpIC::TypeInfo>(
code->type_recording_binary_op_type());
TRBinaryOpIC::TypeInfo result_type = static_cast<TRBinaryOpIC::TypeInfo>(
code->type_recording_binary_op_result_type());
switch (type) {
case TRBinaryOpIC::UNINITIALIZED:
// Uninitialized means never executed.
// TODO(fschneider): Introduce a separate value for never-executed ICs
return unknown;
case TRBinaryOpIC::SMI:
switch (result_type) {
case TRBinaryOpIC::UNINITIALIZED:
case TRBinaryOpIC::SMI:
return TypeInfo::Smi();
case TRBinaryOpIC::INT32:
return TypeInfo::Integer32();
case TRBinaryOpIC::HEAP_NUMBER:
return TypeInfo::Double();
default:
return unknown;
}
case TRBinaryOpIC::INT32:
if (expr->op() == Token::DIV ||
result_type == TRBinaryOpIC::HEAP_NUMBER) {
return TypeInfo::Double();
}
return TypeInfo::Integer32();
case TRBinaryOpIC::HEAP_NUMBER:
return TypeInfo::Double();
case TRBinaryOpIC::STRING:
case TRBinaryOpIC::GENERIC:
return unknown;
default:
return unknown;
}
}
return unknown;
}
TypeInfo TypeFeedbackOracle::SwitchType(CaseClause* clause) {
Handle<Object> object = GetInfo(clause->position());
TypeInfo unknown = TypeInfo::Unknown();
if (!object->IsCode()) return unknown;
Handle<Code> code = Handle<Code>::cast(object);
if (!code->is_compare_ic_stub()) return unknown;
CompareIC::State state = static_cast<CompareIC::State>(code->compare_state());
switch (state) {
case CompareIC::UNINITIALIZED:
// Uninitialized means never executed.
// TODO(fschneider): Introduce a separate value for never-executed ICs.
return unknown;
case CompareIC::SMIS:
return TypeInfo::Smi();
case CompareIC::HEAP_NUMBERS:
return TypeInfo::Number();
case CompareIC::OBJECTS:
// TODO(kasperl): We really need a type for JS objects here.
return TypeInfo::NonPrimitive();
case CompareIC::GENERIC:
default:
return unknown;
}
}
ZoneMapList* TypeFeedbackOracle::CollectReceiverTypes(int position,
Handle<String> name,
Code::Flags flags) {
Isolate* isolate = Isolate::Current();
Handle<Object> object = GetInfo(position);
if (object->IsUndefined() || object->IsSmi()) return NULL;
if (*object == isolate->builtins()->builtin(Builtins::kStoreIC_GlobalProxy)) {
// TODO(fschneider): We could collect the maps and signal that
// we need a generic store (or load) here.
ASSERT(Handle<Code>::cast(object)->ic_state() == MEGAMORPHIC);
return NULL;
} else if (object->IsMap()) {
ZoneMapList* types = new ZoneMapList(1);
types->Add(Handle<Map>::cast(object));
return types;
} else if (Handle<Code>::cast(object)->ic_state() == MEGAMORPHIC) {
ZoneMapList* types = new ZoneMapList(4);
ASSERT(object->IsCode());
isolate->stub_cache()->CollectMatchingMaps(types, *name, flags);
return types->length() > 0 ? types : NULL;
} else {
return NULL;
}
}
void TypeFeedbackOracle::SetInfo(int position, Object* target) {
MaybeObject* maybe_result = dictionary_->AtNumberPut(position, target);
USE(maybe_result);
#ifdef DEBUG
Object* result;
// Dictionary has been allocated with sufficient size for all elements.
ASSERT(maybe_result->ToObject(&result));
ASSERT(*dictionary_ == result);
#endif
}
void TypeFeedbackOracle::PopulateMap(Handle<Code> code) {
Isolate* isolate = Isolate::Current();
HandleScope scope(isolate);
const int kInitialCapacity = 16;
List<int> code_positions(kInitialCapacity);
List<int> source_positions(kInitialCapacity);
CollectPositions(*code, &code_positions, &source_positions);
ASSERT(dictionary_.is_null()); // Only initialize once.
dictionary_ = isolate->factory()->NewNumberDictionary(
code_positions.length());
int length = code_positions.length();
ASSERT(source_positions.length() == length);
for (int i = 0; i < length; i++) {
AssertNoAllocation no_allocation;
RelocInfo info(code->instruction_start() + code_positions[i],
RelocInfo::CODE_TARGET, 0);
Code* target = Code::GetCodeFromTargetAddress(info.target_address());
int position = source_positions[i];
InlineCacheState state = target->ic_state();
Code::Kind kind = target->kind();
if (kind == Code::TYPE_RECORDING_BINARY_OP_IC ||
kind == Code::COMPARE_IC) {
// TODO(kasperl): Avoid having multiple ICs with the same
// position by making sure that we have position information
// recorded for all binary ICs.
int entry = dictionary_->FindEntry(position);
if (entry == NumberDictionary::kNotFound) {
SetInfo(position, target);
}
} else if (state == MONOMORPHIC) {
if (kind == Code::KEYED_EXTERNAL_ARRAY_LOAD_IC ||
kind == Code::KEYED_EXTERNAL_ARRAY_STORE_IC) {
SetInfo(position, target);
} else if (target->kind() != Code::CALL_IC ||
target->check_type() == RECEIVER_MAP_CHECK) {
Map* map = target->FindFirstMap();
if (map == NULL) {
SetInfo(position, target);
} else {
SetInfo(position, map);
}
} else {
ASSERT(target->kind() == Code::CALL_IC);
CheckType check = target->check_type();
ASSERT(check != RECEIVER_MAP_CHECK);
SetInfo(position, Smi::FromInt(check));
}
} else if (state == MEGAMORPHIC) {
SetInfo(position, target);
}
}
// Allocate handle in the parent scope.
dictionary_ = scope.CloseAndEscape(dictionary_);
}
void TypeFeedbackOracle::CollectPositions(Code* code,
List<int>* code_positions,
List<int>* source_positions) {
AssertNoAllocation no_allocation;
int position = 0;
// Because the ICs we use for global variables access in the full
// code generator do not have any meaningful positions, we avoid
// collecting those by filtering out contextual code targets.
int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET) |
RelocInfo::kPositionMask;
for (RelocIterator it(code, mask); !it.done(); it.next()) {
RelocInfo* info = it.rinfo();
RelocInfo::Mode mode = info->rmode();
if (RelocInfo::IsCodeTarget(mode)) {
Code* target = Code::GetCodeFromTargetAddress(info->target_address());
if (target->is_inline_cache_stub()) {
InlineCacheState state = target->ic_state();
Code::Kind kind = target->kind();
if (kind == Code::TYPE_RECORDING_BINARY_OP_IC) {
if (target->type_recording_binary_op_type() ==
TRBinaryOpIC::GENERIC) {
continue;
}
} else if (kind == Code::COMPARE_IC) {
if (target->compare_state() == CompareIC::GENERIC) continue;
} else {
if (state != MONOMORPHIC && state != MEGAMORPHIC) continue;
}
code_positions->Add(
static_cast<int>(info->pc() - code->instruction_start()));
source_positions->Add(position);
}
} else {
ASSERT(RelocInfo::IsPosition(mode));
position = static_cast<int>(info->data());
}
}
}
} } // namespace v8::internal