"); break; case ODDBALL_TYPE: { if (IsUndefined()) accumulator->Add(""); else if (IsTheHole()) accumulator->Add(""); else if (IsNull()) accumulator->Add(""); else if (IsTrue()) accumulator->Add(""); else if (IsFalse()) accumulator->Add(""); else accumulator->Add(""); break; } case HEAP_NUMBER_TYPE: accumulator->Add("HeapNumberPrint(accumulator); accumulator->Put('>'); break; case PROXY_TYPE: accumulator->Add(""); break; case JS_GLOBAL_PROPERTY_CELL_TYPE: accumulator->Add("Cell for "); JSGlobalPropertyCell::cast(this)->value()->ShortPrint(accumulator); break; default: accumulator->Add("", map()->instance_type()); break; } } void HeapObject::Iterate(ObjectVisitor* v) { // Handle header IteratePointer(v, kMapOffset); // Handle object body Map* m = map(); IterateBody(m->instance_type(), SizeFromMap(m), v); } void HeapObject::IterateBody(InstanceType type, int object_size, ObjectVisitor* v) { // Avoiding ::cast(this) because it accesses the map pointer field. // During GC, the map pointer field is encoded. if (type < FIRST_NONSTRING_TYPE) { switch (type & kStringRepresentationMask) { case kSeqStringTag: break; case kConsStringTag: ConsString::BodyDescriptor::IterateBody(this, v); break; case kExternalStringTag: if ((type & kStringEncodingMask) == kAsciiStringTag) { reinterpret_cast(this)-> ExternalAsciiStringIterateBody(v); } else { reinterpret_cast(this)-> ExternalTwoByteStringIterateBody(v); } break; } return; } switch (type) { case FIXED_ARRAY_TYPE: FixedArray::BodyDescriptor::IterateBody(this, object_size, v); break; case JS_OBJECT_TYPE: case JS_CONTEXT_EXTENSION_OBJECT_TYPE: case JS_VALUE_TYPE: case JS_ARRAY_TYPE: case JS_REGEXP_TYPE: case JS_GLOBAL_PROXY_TYPE: case JS_GLOBAL_OBJECT_TYPE: case JS_BUILTINS_OBJECT_TYPE: case JS_MESSAGE_OBJECT_TYPE: JSObject::BodyDescriptor::IterateBody(this, object_size, v); break; case JS_FUNCTION_TYPE: reinterpret_cast(this) ->JSFunctionIterateBody(object_size, v); break; case ODDBALL_TYPE: Oddball::BodyDescriptor::IterateBody(this, v); break; case PROXY_TYPE: reinterpret_cast(this)->ProxyIterateBody(v); break; case MAP_TYPE: Map::BodyDescriptor::IterateBody(this, v); break; case CODE_TYPE: reinterpret_cast(this)->CodeIterateBody(v); break; case JS_GLOBAL_PROPERTY_CELL_TYPE: JSGlobalPropertyCell::BodyDescriptor::IterateBody(this, v); break; case HEAP_NUMBER_TYPE: case FILLER_TYPE: case BYTE_ARRAY_TYPE: case EXTERNAL_PIXEL_ARRAY_TYPE: case EXTERNAL_BYTE_ARRAY_TYPE: case EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE: case EXTERNAL_SHORT_ARRAY_TYPE: case EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE: case EXTERNAL_INT_ARRAY_TYPE: case EXTERNAL_UNSIGNED_INT_ARRAY_TYPE: case EXTERNAL_FLOAT_ARRAY_TYPE: break; case SHARED_FUNCTION_INFO_TYPE: SharedFunctionInfo::BodyDescriptor::IterateBody(this, v); break; #define MAKE_STRUCT_CASE(NAME, Name, name) \ case NAME##_TYPE: STRUCT_LIST(MAKE_STRUCT_CASE) #undef MAKE_STRUCT_CASE StructBodyDescriptor::IterateBody(this, object_size, v); break; default: PrintF("Unknown type: %d\n", type); UNREACHABLE(); } } Object* HeapNumber::HeapNumberToBoolean() { // NaN, +0, and -0 should return the false object #if __BYTE_ORDER == __LITTLE_ENDIAN union IeeeDoubleLittleEndianArchType u; #elif __BYTE_ORDER == __BIG_ENDIAN union IeeeDoubleBigEndianArchType u; #endif u.d = value(); if (u.bits.exp == 2047) { // Detect NaN for IEEE double precision floating point. if ((u.bits.man_low | u.bits.man_high) != 0) return GetHeap()->false_value(); } if (u.bits.exp == 0) { // Detect +0, and -0 for IEEE double precision floating point. if ((u.bits.man_low | u.bits.man_high) == 0) return GetHeap()->false_value(); } return GetHeap()->true_value(); } void HeapNumber::HeapNumberPrint(FILE* out) { PrintF(out, "%.16g", Number()); } void HeapNumber::HeapNumberPrint(StringStream* accumulator) { // The Windows version of vsnprintf can allocate when printing a %g string // into a buffer that may not be big enough. We don't want random memory // allocation when producing post-crash stack traces, so we print into a // buffer that is plenty big enough for any floating point number, then // print that using vsnprintf (which may truncate but never allocate if // there is no more space in the buffer). EmbeddedVector buffer; OS::SNPrintF(buffer, "%.16g", Number()); accumulator->Add("%s", buffer.start()); } String* JSObject::class_name() { if (IsJSFunction()) { return GetHeap()->function_class_symbol(); } if (map()->constructor()->IsJSFunction()) { JSFunction* constructor = JSFunction::cast(map()->constructor()); return String::cast(constructor->shared()->instance_class_name()); } // If the constructor is not present, return "Object". return GetHeap()->Object_symbol(); } String* JSObject::constructor_name() { if (map()->constructor()->IsJSFunction()) { JSFunction* constructor = JSFunction::cast(map()->constructor()); String* name = String::cast(constructor->shared()->name()); if (name->length() > 0) return name; String* inferred_name = constructor->shared()->inferred_name(); if (inferred_name->length() > 0) return inferred_name; Object* proto = GetPrototype(); if (proto->IsJSObject()) return JSObject::cast(proto)->constructor_name(); } // If the constructor is not present, return "Object". return GetHeap()->Object_symbol(); } MaybeObject* JSObject::AddFastPropertyUsingMap(Map* new_map, String* name, Object* value) { int index = new_map->PropertyIndexFor(name); if (map()->unused_property_fields() == 0) { ASSERT(map()->unused_property_fields() == 0); int new_unused = new_map->unused_property_fields(); Object* values; { MaybeObject* maybe_values = properties()->CopySize(properties()->length() + new_unused + 1); if (!maybe_values->ToObject(&values)) return maybe_values; } set_properties(FixedArray::cast(values)); } set_map(new_map); return FastPropertyAtPut(index, value); } static bool IsIdentifier(UnicodeCache* cache, unibrow::CharacterStream* buffer) { // Checks whether the buffer contains an identifier (no escape). if (!buffer->has_more()) return false; if (!cache->IsIdentifierStart(buffer->GetNext())) { return false; } while (buffer->has_more()) { if (!cache->IsIdentifierPart(buffer->GetNext())) { return false; } } return true; } MaybeObject* JSObject::AddFastProperty(String* name, Object* value, PropertyAttributes attributes) { ASSERT(!IsJSGlobalProxy()); // Normalize the object if the name is an actual string (not the // hidden symbols) and is not a real identifier. Isolate* isolate = GetHeap()->isolate(); StringInputBuffer buffer(name); if (!IsIdentifier(isolate->unicode_cache(), &buffer) && name != isolate->heap()->hidden_symbol()) { Object* obj; { MaybeObject* maybe_obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } return AddSlowProperty(name, value, attributes); } DescriptorArray* old_descriptors = map()->instance_descriptors(); // Compute the new index for new field. int index = map()->NextFreePropertyIndex(); // Allocate new instance descriptors with (name, index) added FieldDescriptor new_field(name, index, attributes); Object* new_descriptors; { MaybeObject* maybe_new_descriptors = old_descriptors->CopyInsert(&new_field, REMOVE_TRANSITIONS); if (!maybe_new_descriptors->ToObject(&new_descriptors)) { return maybe_new_descriptors; } } // Only allow map transition if the object isn't the global object and there // is not a transition for the name, or there's a transition for the name but // it's unrelated to properties. int descriptor_index = old_descriptors->Search(name); // External array transitions are stored in the descriptor for property "", // which is not a identifier and should have forced a switch to slow // properties above. ASSERT(descriptor_index == DescriptorArray::kNotFound || old_descriptors->GetType(descriptor_index) != EXTERNAL_ARRAY_TRANSITION); bool can_insert_transition = descriptor_index == DescriptorArray::kNotFound || old_descriptors->GetType(descriptor_index) == EXTERNAL_ARRAY_TRANSITION; bool allow_map_transition = can_insert_transition && (isolate->context()->global_context()->object_function()->map() != map()); ASSERT(index < map()->inobject_properties() || (index - map()->inobject_properties()) < properties()->length() || map()->unused_property_fields() == 0); // Allocate a new map for the object. Object* r; { MaybeObject* maybe_r = map()->CopyDropDescriptors(); if (!maybe_r->ToObject(&r)) return maybe_r; } Map* new_map = Map::cast(r); if (allow_map_transition) { // Allocate new instance descriptors for the old map with map transition. MapTransitionDescriptor d(name, Map::cast(new_map), attributes); Object* r; { MaybeObject* maybe_r = old_descriptors->CopyInsert(&d, KEEP_TRANSITIONS); if (!maybe_r->ToObject(&r)) return maybe_r; } old_descriptors = DescriptorArray::cast(r); } if (map()->unused_property_fields() == 0) { if (properties()->length() > MaxFastProperties()) { Object* obj; { MaybeObject* maybe_obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } return AddSlowProperty(name, value, attributes); } // Make room for the new value Object* values; { MaybeObject* maybe_values = properties()->CopySize(properties()->length() + kFieldsAdded); if (!maybe_values->ToObject(&values)) return maybe_values; } set_properties(FixedArray::cast(values)); new_map->set_unused_property_fields(kFieldsAdded - 1); } else { new_map->set_unused_property_fields(map()->unused_property_fields() - 1); } // We have now allocated all the necessary objects. // All the changes can be applied at once, so they are atomic. map()->set_instance_descriptors(old_descriptors); new_map->set_instance_descriptors(DescriptorArray::cast(new_descriptors)); set_map(new_map); return FastPropertyAtPut(index, value); } MaybeObject* JSObject::AddConstantFunctionProperty( String* name, JSFunction* function, PropertyAttributes attributes) { ASSERT(!GetHeap()->InNewSpace(function)); // Allocate new instance descriptors with (name, function) added ConstantFunctionDescriptor d(name, function, attributes); Object* new_descriptors; { MaybeObject* maybe_new_descriptors = map()->instance_descriptors()->CopyInsert(&d, REMOVE_TRANSITIONS); if (!maybe_new_descriptors->ToObject(&new_descriptors)) { return maybe_new_descriptors; } } // Allocate a new map for the object. Object* new_map; { MaybeObject* maybe_new_map = map()->CopyDropDescriptors(); if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; } DescriptorArray* descriptors = DescriptorArray::cast(new_descriptors); Map::cast(new_map)->set_instance_descriptors(descriptors); Map* old_map = map(); set_map(Map::cast(new_map)); // If the old map is the global object map (from new Object()), // then transitions are not added to it, so we are done. Heap* heap = old_map->heap(); if (old_map == heap->isolate()->context()->global_context()-> object_function()->map()) { return function; } // Do not add CONSTANT_TRANSITIONS to global objects if (IsGlobalObject()) { return function; } // Add a CONSTANT_TRANSITION descriptor to the old map, // so future assignments to this property on other objects // of the same type will create a normal field, not a constant function. // Don't do this for special properties, with non-trival attributes. if (attributes != NONE) { return function; } ConstTransitionDescriptor mark(name, Map::cast(new_map)); { MaybeObject* maybe_new_descriptors = old_map->instance_descriptors()->CopyInsert(&mark, KEEP_TRANSITIONS); if (!maybe_new_descriptors->ToObject(&new_descriptors)) { // We have accomplished the main goal, so return success. return function; } } old_map->set_instance_descriptors(DescriptorArray::cast(new_descriptors)); return function; } // Add property in slow mode MaybeObject* JSObject::AddSlowProperty(String* name, Object* value, PropertyAttributes attributes) { ASSERT(!HasFastProperties()); StringDictionary* dict = property_dictionary(); Object* store_value = value; if (IsGlobalObject()) { // In case name is an orphaned property reuse the cell. int entry = dict->FindEntry(name); if (entry != StringDictionary::kNotFound) { store_value = dict->ValueAt(entry); JSGlobalPropertyCell::cast(store_value)->set_value(value); // Assign an enumeration index to the property and update // SetNextEnumerationIndex. int index = dict->NextEnumerationIndex(); PropertyDetails details = PropertyDetails(attributes, NORMAL, index); dict->SetNextEnumerationIndex(index + 1); dict->SetEntry(entry, name, store_value, details); return value; } Heap* heap = GetHeap(); { MaybeObject* maybe_store_value = heap->AllocateJSGlobalPropertyCell(value); if (!maybe_store_value->ToObject(&store_value)) return maybe_store_value; } JSGlobalPropertyCell::cast(store_value)->set_value(value); } PropertyDetails details = PropertyDetails(attributes, NORMAL); Object* result; { MaybeObject* maybe_result = dict->Add(name, store_value, details); if (!maybe_result->ToObject(&result)) return maybe_result; } if (dict != result) set_properties(StringDictionary::cast(result)); return value; } MaybeObject* JSObject::AddProperty(String* name, Object* value, PropertyAttributes attributes, StrictModeFlag strict_mode) { ASSERT(!IsJSGlobalProxy()); Map* map_of_this = map(); Heap* heap = map_of_this->heap(); if (!map_of_this->is_extensible()) { if (strict_mode == kNonStrictMode) { return heap->undefined_value(); } else { Handle args[1] = {Handle(name)}; return heap->isolate()->Throw( *FACTORY->NewTypeError("object_not_extensible", HandleVector(args, 1))); } } if (HasFastProperties()) { // Ensure the descriptor array does not get too big. if (map_of_this->instance_descriptors()->number_of_descriptors() < DescriptorArray::kMaxNumberOfDescriptors) { if (value->IsJSFunction() && !heap->InNewSpace(value)) { return AddConstantFunctionProperty(name, JSFunction::cast(value), attributes); } else { return AddFastProperty(name, value, attributes); } } else { // Normalize the object to prevent very large instance descriptors. // This eliminates unwanted N^2 allocation and lookup behavior. Object* obj; { MaybeObject* maybe_obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } } } return AddSlowProperty(name, value, attributes); } MaybeObject* JSObject::SetPropertyPostInterceptor( String* name, Object* value, PropertyAttributes attributes, StrictModeFlag strict_mode) { // Check local property, ignore interceptor. LookupResult result; LocalLookupRealNamedProperty(name, &result); if (result.IsFound()) { // An existing property, a map transition or a null descriptor was // found. Use set property to handle all these cases. return SetProperty(&result, name, value, attributes, strict_mode); } // Add a new real property. return AddProperty(name, value, attributes, strict_mode); } MaybeObject* JSObject::ReplaceSlowProperty(String* name, Object* value, PropertyAttributes attributes) { StringDictionary* dictionary = property_dictionary(); int old_index = dictionary->FindEntry(name); int new_enumeration_index = 0; // 0 means "Use the next available index." if (old_index != -1) { // All calls to ReplaceSlowProperty have had all transitions removed. ASSERT(!dictionary->DetailsAt(old_index).IsTransition()); new_enumeration_index = dictionary->DetailsAt(old_index).index(); } PropertyDetails new_details(attributes, NORMAL, new_enumeration_index); return SetNormalizedProperty(name, value, new_details); } MaybeObject* JSObject::ConvertDescriptorToFieldAndMapTransition( String* name, Object* new_value, PropertyAttributes attributes) { Map* old_map = map(); Object* result; { MaybeObject* maybe_result = ConvertDescriptorToField(name, new_value, attributes); if (!maybe_result->ToObject(&result)) return maybe_result; } // If we get to this point we have succeeded - do not return failure // after this point. Later stuff is optional. if (!HasFastProperties()) { return result; } // Do not add transitions to the map of "new Object()". if (map() == old_map->heap()->isolate()->context()->global_context()-> object_function()->map()) { return result; } MapTransitionDescriptor transition(name, map(), attributes); Object* new_descriptors; { MaybeObject* maybe_new_descriptors = old_map->instance_descriptors()-> CopyInsert(&transition, KEEP_TRANSITIONS); if (!maybe_new_descriptors->ToObject(&new_descriptors)) { return result; // Yes, return _result_. } } old_map->set_instance_descriptors(DescriptorArray::cast(new_descriptors)); return result; } MaybeObject* JSObject::ConvertDescriptorToField(String* name, Object* new_value, PropertyAttributes attributes) { if (map()->unused_property_fields() == 0 && properties()->length() > MaxFastProperties()) { Object* obj; { MaybeObject* maybe_obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } return ReplaceSlowProperty(name, new_value, attributes); } int index = map()->NextFreePropertyIndex(); FieldDescriptor new_field(name, index, attributes); // Make a new DescriptorArray replacing an entry with FieldDescriptor. Object* descriptors_unchecked; { MaybeObject* maybe_descriptors_unchecked = map()->instance_descriptors()-> CopyInsert(&new_field, REMOVE_TRANSITIONS); if (!maybe_descriptors_unchecked->ToObject(&descriptors_unchecked)) { return maybe_descriptors_unchecked; } } DescriptorArray* new_descriptors = DescriptorArray::cast(descriptors_unchecked); // Make a new map for the object. Object* new_map_unchecked; { MaybeObject* maybe_new_map_unchecked = map()->CopyDropDescriptors(); if (!maybe_new_map_unchecked->ToObject(&new_map_unchecked)) { return maybe_new_map_unchecked; } } Map* new_map = Map::cast(new_map_unchecked); new_map->set_instance_descriptors(new_descriptors); // Make new properties array if necessary. FixedArray* new_properties = 0; // Will always be NULL or a valid pointer. int new_unused_property_fields = map()->unused_property_fields() - 1; if (map()->unused_property_fields() == 0) { new_unused_property_fields = kFieldsAdded - 1; Object* new_properties_object; { MaybeObject* maybe_new_properties_object = properties()->CopySize(properties()->length() + kFieldsAdded); if (!maybe_new_properties_object->ToObject(&new_properties_object)) { return maybe_new_properties_object; } } new_properties = FixedArray::cast(new_properties_object); } // Update pointers to commit changes. // Object points to the new map. new_map->set_unused_property_fields(new_unused_property_fields); set_map(new_map); if (new_properties) { set_properties(FixedArray::cast(new_properties)); } return FastPropertyAtPut(index, new_value); } MaybeObject* JSObject::SetPropertyWithInterceptor( String* name, Object* value, PropertyAttributes attributes, StrictModeFlag strict_mode) { Isolate* isolate = GetIsolate(); HandleScope scope(isolate); Handle this_handle(this); Handle name_handle(name); Handle value_handle(value, isolate); Handle interceptor(GetNamedInterceptor()); if (!interceptor->setter()->IsUndefined()) { LOG(isolate, ApiNamedPropertyAccess("interceptor-named-set", this, name)); CustomArguments args(isolate, interceptor->data(), this, this); v8::AccessorInfo info(args.end()); v8::NamedPropertySetter setter = v8::ToCData(interceptor->setter()); v8::Handle result; { // Leaving JavaScript. VMState state(isolate, EXTERNAL); Handle value_unhole(value->IsTheHole() ? isolate->heap()->undefined_value() : value, isolate); result = setter(v8::Utils::ToLocal(name_handle), v8::Utils::ToLocal(value_unhole), info); } RETURN_IF_SCHEDULED_EXCEPTION(isolate); if (!result.IsEmpty()) return *value_handle; } MaybeObject* raw_result = this_handle->SetPropertyPostInterceptor(*name_handle, *value_handle, attributes, strict_mode); RETURN_IF_SCHEDULED_EXCEPTION(isolate); return raw_result; } MaybeObject* JSObject::SetProperty(String* name, Object* value, PropertyAttributes attributes, StrictModeFlag strict_mode) { LookupResult result; LocalLookup(name, &result); return SetProperty(&result, name, value, attributes, strict_mode); } MaybeObject* JSObject::SetPropertyWithCallback(Object* structure, String* name, Object* value, JSObject* holder) { Isolate* isolate = GetIsolate(); HandleScope scope(isolate); // We should never get here to initialize a const with the hole // value since a const declaration would conflict with the setter. ASSERT(!value->IsTheHole()); Handle value_handle(value, isolate); // To accommodate both the old and the new api we switch on the // data structure used to store the callbacks. Eventually proxy // callbacks should be phased out. if (structure->IsProxy()) { AccessorDescriptor* callback = reinterpret_cast(Proxy::cast(structure)->proxy()); MaybeObject* obj = (callback->setter)(this, value, callback->data); RETURN_IF_SCHEDULED_EXCEPTION(isolate); if (obj->IsFailure()) return obj; return *value_handle; } if (structure->IsAccessorInfo()) { // api style callbacks AccessorInfo* data = AccessorInfo::cast(structure); Object* call_obj = data->setter(); v8::AccessorSetter call_fun = v8::ToCData(call_obj); if (call_fun == NULL) return value; Handle key(name); LOG(isolate, ApiNamedPropertyAccess("store", this, name)); CustomArguments args(isolate, data->data(), this, JSObject::cast(holder)); v8::AccessorInfo info(args.end()); { // Leaving JavaScript. VMState state(isolate, EXTERNAL); call_fun(v8::Utils::ToLocal(key), v8::Utils::ToLocal(value_handle), info); } RETURN_IF_SCHEDULED_EXCEPTION(isolate); return *value_handle; } if (structure->IsFixedArray()) { Object* setter = FixedArray::cast(structure)->get(kSetterIndex); if (setter->IsJSFunction()) { return SetPropertyWithDefinedSetter(JSFunction::cast(setter), value); } else { Handle key(name); Handle holder_handle(holder, isolate); Handle args[2] = { key, holder_handle }; return isolate->Throw( *isolate->factory()->NewTypeError("no_setter_in_callback", HandleVector(args, 2))); } } UNREACHABLE(); return NULL; } MaybeObject* JSObject::SetPropertyWithDefinedSetter(JSFunction* setter, Object* value) { Isolate* isolate = GetIsolate(); Handle value_handle(value, isolate); Handle fun(JSFunction::cast(setter), isolate); Handle self(this, isolate); #ifdef ENABLE_DEBUGGER_SUPPORT Debug* debug = isolate->debug(); // Handle stepping into a setter if step into is active. if (debug->StepInActive()) { debug->HandleStepIn(fun, Handle::null(), 0, false); } #endif bool has_pending_exception; Object** argv[] = { value_handle.location() }; Execution::Call(fun, self, 1, argv, &has_pending_exception); // Check for pending exception and return the result. if (has_pending_exception) return Failure::Exception(); return *value_handle; } void JSObject::LookupCallbackSetterInPrototypes(String* name, LookupResult* result) { Heap* heap = GetHeap(); for (Object* pt = GetPrototype(); pt != heap->null_value(); pt = pt->GetPrototype()) { JSObject::cast(pt)->LocalLookupRealNamedProperty(name, result); if (result->IsProperty()) { if (result->type() == CALLBACKS && !result->IsReadOnly()) return; // Found non-callback or read-only callback, stop looking. break; } } result->NotFound(); } MaybeObject* JSObject::SetElementWithCallbackSetterInPrototypes(uint32_t index, Object* value, bool* found) { Heap* heap = GetHeap(); for (Object* pt = GetPrototype(); pt != heap->null_value(); pt = pt->GetPrototype()) { if (!JSObject::cast(pt)->HasDictionaryElements()) { continue; } NumberDictionary* dictionary = JSObject::cast(pt)->element_dictionary(); int entry = dictionary->FindEntry(index); if (entry != NumberDictionary::kNotFound) { PropertyDetails details = dictionary->DetailsAt(entry); if (details.type() == CALLBACKS) { *found = true; return SetElementWithCallback( dictionary->ValueAt(entry), index, value, JSObject::cast(pt)); } } } *found = false; return heap->the_hole_value(); } void JSObject::LookupInDescriptor(String* name, LookupResult* result) { DescriptorArray* descriptors = map()->instance_descriptors(); int number = descriptors->SearchWithCache(name); if (number != DescriptorArray::kNotFound) { result->DescriptorResult(this, descriptors->GetDetails(number), number); } else { result->NotFound(); } } void Map::LookupInDescriptors(JSObject* holder, String* name, LookupResult* result) { DescriptorArray* descriptors = instance_descriptors(); DescriptorLookupCache* cache = heap()->isolate()->descriptor_lookup_cache(); int number = cache->Lookup(descriptors, name); if (number == DescriptorLookupCache::kAbsent) { number = descriptors->Search(name); cache->Update(descriptors, name, number); } if (number != DescriptorArray::kNotFound) { result->DescriptorResult(holder, descriptors->GetDetails(number), number); } else { result->NotFound(); } } MaybeObject* Map::GetExternalArrayElementsMap(ExternalArrayType array_type, bool safe_to_add_transition) { Heap* current_heap = heap(); DescriptorArray* descriptors = instance_descriptors(); String* external_array_sentinel_name = current_heap->empty_symbol(); if (safe_to_add_transition) { // It's only safe to manipulate the descriptor array if it would be // safe to add a transition. ASSERT(!is_shared()); // no transitions can be added to shared maps. // Check if the external array transition already exists. DescriptorLookupCache* cache = current_heap->isolate()->descriptor_lookup_cache(); int index = cache->Lookup(descriptors, external_array_sentinel_name); if (index == DescriptorLookupCache::kAbsent) { index = descriptors->Search(external_array_sentinel_name); cache->Update(descriptors, external_array_sentinel_name, index); } // If the transition already exists, check the type. If there is a match, // return it. if (index != DescriptorArray::kNotFound) { PropertyDetails details(PropertyDetails(descriptors->GetDetails(index))); if (details.type() == EXTERNAL_ARRAY_TRANSITION && details.array_type() == array_type) { return descriptors->GetValue(index); } else { safe_to_add_transition = false; } } } // No transition to an existing external array map. Make a new one. Object* obj; { MaybeObject* maybe_map = CopyDropTransitions(); if (!maybe_map->ToObject(&obj)) return maybe_map; } Map* new_map = Map::cast(obj); new_map->set_has_fast_elements(false); new_map->set_has_external_array_elements(true); GetIsolate()->counters()->map_to_external_array_elements()->Increment(); // Only remember the map transition if the object's map is NOT equal to the // global object_function's map and there is not an already existing // non-matching external array transition. bool allow_map_transition = safe_to_add_transition && (GetIsolate()->context()->global_context()->object_function()->map() != map()); if (allow_map_transition) { // Allocate new instance descriptors for the old map with map transition. ExternalArrayTransitionDescriptor desc(external_array_sentinel_name, Map::cast(new_map), array_type); Object* new_descriptors; MaybeObject* maybe_new_descriptors = descriptors->CopyInsert( &desc, KEEP_TRANSITIONS); if (!maybe_new_descriptors->ToObject(&new_descriptors)) { return maybe_new_descriptors; } descriptors = DescriptorArray::cast(new_descriptors); set_instance_descriptors(descriptors); } return new_map; } void JSObject::LocalLookupRealNamedProperty(String* name, LookupResult* result) { if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return result->NotFound(); ASSERT(proto->IsJSGlobalObject()); return JSObject::cast(proto)->LocalLookupRealNamedProperty(name, result); } if (HasFastProperties()) { LookupInDescriptor(name, result); if (result->IsFound()) { // A property, a map transition or a null descriptor was found. // We return all of these result types because // LocalLookupRealNamedProperty is used when setting properties // where map transitions and null descriptors are handled. ASSERT(result->holder() == this && result->type() != NORMAL); // Disallow caching for uninitialized constants. These can only // occur as fields. if (result->IsReadOnly() && result->type() == FIELD && FastPropertyAt(result->GetFieldIndex())->IsTheHole()) { result->DisallowCaching(); } return; } } else { int entry = property_dictionary()->FindEntry(name); if (entry != StringDictionary::kNotFound) { Object* value = property_dictionary()->ValueAt(entry); if (IsGlobalObject()) { PropertyDetails d = property_dictionary()->DetailsAt(entry); if (d.IsDeleted()) { result->NotFound(); return; } value = JSGlobalPropertyCell::cast(value)->value(); } // Make sure to disallow caching for uninitialized constants // found in the dictionary-mode objects. if (value->IsTheHole()) result->DisallowCaching(); result->DictionaryResult(this, entry); return; } } result->NotFound(); } void JSObject::LookupRealNamedProperty(String* name, LookupResult* result) { LocalLookupRealNamedProperty(name, result); if (result->IsProperty()) return; LookupRealNamedPropertyInPrototypes(name, result); } void JSObject::LookupRealNamedPropertyInPrototypes(String* name, LookupResult* result) { Heap* heap = GetHeap(); for (Object* pt = GetPrototype(); pt != heap->null_value(); pt = JSObject::cast(pt)->GetPrototype()) { JSObject::cast(pt)->LocalLookupRealNamedProperty(name, result); if (result->IsProperty() && (result->type() != INTERCEPTOR)) return; } result->NotFound(); } // We only need to deal with CALLBACKS and INTERCEPTORS MaybeObject* JSObject::SetPropertyWithFailedAccessCheck(LookupResult* result, String* name, Object* value, bool check_prototype) { if (check_prototype && !result->IsProperty()) { LookupCallbackSetterInPrototypes(name, result); } if (result->IsProperty()) { if (!result->IsReadOnly()) { switch (result->type()) { case CALLBACKS: { Object* obj = result->GetCallbackObject(); if (obj->IsAccessorInfo()) { AccessorInfo* info = AccessorInfo::cast(obj); if (info->all_can_write()) { return SetPropertyWithCallback(result->GetCallbackObject(), name, value, result->holder()); } } break; } case INTERCEPTOR: { // Try lookup real named properties. Note that only property can be // set is callbacks marked as ALL_CAN_WRITE on the prototype chain. LookupResult r; LookupRealNamedProperty(name, &r); if (r.IsProperty()) { return SetPropertyWithFailedAccessCheck(&r, name, value, check_prototype); } break; } default: { break; } } } } HandleScope scope; Handle value_handle(value); Heap* heap = GetHeap(); heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_SET); return *value_handle; } MaybeObject* JSObject::SetProperty(LookupResult* result, String* name, Object* value, PropertyAttributes attributes, StrictModeFlag strict_mode) { Heap* heap = GetHeap(); // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc; // Optimization for 2-byte strings often used as keys in a decompression // dictionary. We make these short keys into symbols to avoid constantly // reallocating them. if (!name->IsSymbol() && name->length() <= 2) { Object* symbol_version; { MaybeObject* maybe_symbol_version = heap->LookupSymbol(name); if (maybe_symbol_version->ToObject(&symbol_version)) { name = String::cast(symbol_version); } } } // Check access rights if needed. if (IsAccessCheckNeeded() && !heap->isolate()->MayNamedAccess(this, name, v8::ACCESS_SET)) { return SetPropertyWithFailedAccessCheck(result, name, value, true); } if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return value; ASSERT(proto->IsJSGlobalObject()); return JSObject::cast(proto)->SetProperty( result, name, value, attributes, strict_mode); } if (!result->IsProperty() && !IsJSContextExtensionObject()) { // We could not find a local property so let's check whether there is an // accessor that wants to handle the property. LookupResult accessor_result; LookupCallbackSetterInPrototypes(name, &accessor_result); if (accessor_result.IsProperty()) { return SetPropertyWithCallback(accessor_result.GetCallbackObject(), name, value, accessor_result.holder()); } } if (!result->IsFound()) { // Neither properties nor transitions found. return AddProperty(name, value, attributes, strict_mode); } if (result->IsReadOnly() && result->IsProperty()) { if (strict_mode == kStrictMode) { HandleScope scope; Handle key(name); Handle holder(this); Handle args[2] = { key, holder }; return heap->isolate()->Throw(*heap->isolate()->factory()->NewTypeError( "strict_read_only_property", HandleVector(args, 2))); } else { return value; } } // This is a real property that is not read-only, or it is a // transition or null descriptor and there are no setters in the prototypes. switch (result->type()) { case NORMAL: return SetNormalizedProperty(result, value); case FIELD: return FastPropertyAtPut(result->GetFieldIndex(), value); case MAP_TRANSITION: if (attributes == result->GetAttributes()) { // Only use map transition if the attributes match. return AddFastPropertyUsingMap(result->GetTransitionMap(), name, value); } return ConvertDescriptorToField(name, value, attributes); case CONSTANT_FUNCTION: // Only replace the function if necessary. if (value == result->GetConstantFunction()) return value; // Preserve the attributes of this existing property. attributes = result->GetAttributes(); return ConvertDescriptorToField(name, value, attributes); case CALLBACKS: return SetPropertyWithCallback(result->GetCallbackObject(), name, value, result->holder()); case INTERCEPTOR: return SetPropertyWithInterceptor(name, value, attributes, strict_mode); case CONSTANT_TRANSITION: { // If the same constant function is being added we can simply // transition to the target map. Map* target_map = result->GetTransitionMap(); DescriptorArray* target_descriptors = target_map->instance_descriptors(); int number = target_descriptors->SearchWithCache(name); ASSERT(number != DescriptorArray::kNotFound); ASSERT(target_descriptors->GetType(number) == CONSTANT_FUNCTION); JSFunction* function = JSFunction::cast(target_descriptors->GetValue(number)); ASSERT(!HEAP->InNewSpace(function)); if (value == function) { set_map(target_map); return value; } // Otherwise, replace with a MAP_TRANSITION to a new map with a // FIELD, even if the value is a constant function. return ConvertDescriptorToFieldAndMapTransition(name, value, attributes); } case NULL_DESCRIPTOR: case EXTERNAL_ARRAY_TRANSITION: return ConvertDescriptorToFieldAndMapTransition(name, value, attributes); default: UNREACHABLE(); } UNREACHABLE(); return value; } // Set a real local property, even if it is READ_ONLY. If the property is not // present, add it with attributes NONE. This code is an exact clone of // SetProperty, with the check for IsReadOnly and the check for a // callback setter removed. The two lines looking up the LookupResult // result are also added. If one of the functions is changed, the other // should be. MaybeObject* JSObject::SetLocalPropertyIgnoreAttributes( String* name, Object* value, PropertyAttributes attributes) { // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc; LookupResult result; LocalLookup(name, &result); // Check access rights if needed. if (IsAccessCheckNeeded()) { Heap* heap = GetHeap(); if (!heap->isolate()->MayNamedAccess(this, name, v8::ACCESS_SET)) { return SetPropertyWithFailedAccessCheck(&result, name, value, false); } } if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return value; ASSERT(proto->IsJSGlobalObject()); return JSObject::cast(proto)->SetLocalPropertyIgnoreAttributes( name, value, attributes); } // Check for accessor in prototype chain removed here in clone. if (!result.IsFound()) { // Neither properties nor transitions found. return AddProperty(name, value, attributes, kNonStrictMode); } PropertyDetails details = PropertyDetails(attributes, NORMAL); // Check of IsReadOnly removed from here in clone. switch (result.type()) { case NORMAL: return SetNormalizedProperty(name, value, details); case FIELD: return FastPropertyAtPut(result.GetFieldIndex(), value); case MAP_TRANSITION: if (attributes == result.GetAttributes()) { // Only use map transition if the attributes match. return AddFastPropertyUsingMap(result.GetTransitionMap(), name, value); } return ConvertDescriptorToField(name, value, attributes); case CONSTANT_FUNCTION: // Only replace the function if necessary. if (value == result.GetConstantFunction()) return value; // Preserve the attributes of this existing property. attributes = result.GetAttributes(); return ConvertDescriptorToField(name, value, attributes); case CALLBACKS: case INTERCEPTOR: // Override callback in clone return ConvertDescriptorToField(name, value, attributes); case CONSTANT_TRANSITION: // Replace with a MAP_TRANSITION to a new map with a FIELD, even // if the value is a function. return ConvertDescriptorToFieldAndMapTransition(name, value, attributes); case NULL_DESCRIPTOR: case EXTERNAL_ARRAY_TRANSITION: return ConvertDescriptorToFieldAndMapTransition(name, value, attributes); default: UNREACHABLE(); } UNREACHABLE(); return value; } PropertyAttributes JSObject::GetPropertyAttributePostInterceptor( JSObject* receiver, String* name, bool continue_search) { // Check local property, ignore interceptor. LookupResult result; LocalLookupRealNamedProperty(name, &result); if (result.IsProperty()) return result.GetAttributes(); if (continue_search) { // Continue searching via the prototype chain. Object* pt = GetPrototype(); if (!pt->IsNull()) { return JSObject::cast(pt)-> GetPropertyAttributeWithReceiver(receiver, name); } } return ABSENT; } PropertyAttributes JSObject::GetPropertyAttributeWithInterceptor( JSObject* receiver, String* name, bool continue_search) { Isolate* isolate = GetIsolate(); // Make sure that the top context does not change when doing // callbacks or interceptor calls. AssertNoContextChange ncc; HandleScope scope(isolate); Handle interceptor(GetNamedInterceptor()); Handle receiver_handle(receiver); Handle holder_handle(this); Handle name_handle(name); CustomArguments args(isolate, interceptor->data(), receiver, this); v8::AccessorInfo info(args.end()); if (!interceptor->query()->IsUndefined()) { v8::NamedPropertyQuery query = v8::ToCData(interceptor->query()); LOG(isolate, ApiNamedPropertyAccess("interceptor-named-has", *holder_handle, name)); v8::Handle result; { // Leaving JavaScript. VMState state(isolate, EXTERNAL); result = query(v8::Utils::ToLocal(name_handle), info); } if (!result.IsEmpty()) { ASSERT(result->IsInt32()); return static_cast(result->Int32Value()); } } else if (!interceptor->getter()->IsUndefined()) { v8::NamedPropertyGetter getter = v8::ToCData(interceptor->getter()); LOG(isolate, ApiNamedPropertyAccess("interceptor-named-get-has", this, name)); v8::Handle result; { // Leaving JavaScript. VMState state(isolate, EXTERNAL); result = getter(v8::Utils::ToLocal(name_handle), info); } if (!result.IsEmpty()) return DONT_ENUM; } return holder_handle->GetPropertyAttributePostInterceptor(*receiver_handle, *name_handle, continue_search); } PropertyAttributes JSObject::GetPropertyAttributeWithReceiver( JSObject* receiver, String* key) { uint32_t index = 0; if (key->AsArrayIndex(&index)) { if (HasElementWithReceiver(receiver, index)) return NONE; return ABSENT; } // Named property. LookupResult result; Lookup(key, &result); return GetPropertyAttribute(receiver, &result, key, true); } PropertyAttributes JSObject::GetPropertyAttribute(JSObject* receiver, LookupResult* result, String* name, bool continue_search) { // Check access rights if needed. if (IsAccessCheckNeeded()) { Heap* heap = GetHeap(); if (!heap->isolate()->MayNamedAccess(this, name, v8::ACCESS_HAS)) { return GetPropertyAttributeWithFailedAccessCheck(receiver, result, name, continue_search); } } if (result->IsProperty()) { switch (result->type()) { case NORMAL: // fall through case FIELD: case CONSTANT_FUNCTION: case CALLBACKS: return result->GetAttributes(); case INTERCEPTOR: return result->holder()-> GetPropertyAttributeWithInterceptor(receiver, name, continue_search); default: UNREACHABLE(); } } return ABSENT; } PropertyAttributes JSObject::GetLocalPropertyAttribute(String* name) { // Check whether the name is an array index. uint32_t index = 0; if (name->AsArrayIndex(&index)) { if (HasLocalElement(index)) return NONE; return ABSENT; } // Named property. LookupResult result; LocalLookup(name, &result); return GetPropertyAttribute(this, &result, name, false); } MaybeObject* NormalizedMapCache::Get(JSObject* obj, PropertyNormalizationMode mode) { Isolate* isolate = obj->GetIsolate(); Map* fast = obj->map(); int index = Hash(fast) % kEntries; Object* result = get(index); if (result->IsMap() && CheckHit(Map::cast(result), fast, mode)) { #ifdef DEBUG if (FLAG_enable_slow_asserts) { // The cached map should match newly created normalized map bit-by-bit. Object* fresh; { MaybeObject* maybe_fresh = fast->CopyNormalized(mode, SHARED_NORMALIZED_MAP); if (maybe_fresh->ToObject(&fresh)) { ASSERT(memcmp(Map::cast(fresh)->address(), Map::cast(result)->address(), Map::kSize) == 0); } } } #endif return result; } { MaybeObject* maybe_result = fast->CopyNormalized(mode, SHARED_NORMALIZED_MAP); if (!maybe_result->ToObject(&result)) return maybe_result; } set(index, result); isolate->counters()->normalized_maps()->Increment(); return result; } void NormalizedMapCache::Clear() { int entries = length(); for (int i = 0; i != entries; i++) { set_undefined(i); } } int NormalizedMapCache::Hash(Map* fast) { // For performance reasons we only hash the 3 most variable fields of a map: // constructor, prototype and bit_field2. // Shift away the tag. int hash = (static_cast( reinterpret_cast(fast->constructor())) >> 2); // XOR-ing the prototype and constructor directly yields too many zero bits // when the two pointers are close (which is fairly common). // To avoid this we shift the prototype 4 bits relatively to the constructor. hash ^= (static_cast( reinterpret_cast(fast->prototype())) << 2); return hash ^ (hash >> 16) ^ fast->bit_field2(); } bool NormalizedMapCache::CheckHit(Map* slow, Map* fast, PropertyNormalizationMode mode) { #ifdef DEBUG slow->SharedMapVerify(); #endif return slow->constructor() == fast->constructor() && slow->prototype() == fast->prototype() && slow->inobject_properties() == ((mode == CLEAR_INOBJECT_PROPERTIES) ? 0 : fast->inobject_properties()) && slow->instance_type() == fast->instance_type() && slow->bit_field() == fast->bit_field() && (slow->bit_field2() & ~(1<bit_field2(); } MaybeObject* JSObject::UpdateMapCodeCache(String* name, Code* code) { if (map()->is_shared()) { // Fast case maps are never marked as shared. ASSERT(!HasFastProperties()); // Replace the map with an identical copy that can be safely modified. Object* obj; { MaybeObject* maybe_obj = map()->CopyNormalized(KEEP_INOBJECT_PROPERTIES, UNIQUE_NORMALIZED_MAP); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } GetIsolate()->counters()->normalized_maps()->Increment(); set_map(Map::cast(obj)); } return map()->UpdateCodeCache(name, code); } MaybeObject* JSObject::NormalizeProperties(PropertyNormalizationMode mode, int expected_additional_properties) { if (!HasFastProperties()) return this; // The global object is always normalized. ASSERT(!IsGlobalObject()); // JSGlobalProxy must never be normalized ASSERT(!IsJSGlobalProxy()); Map* map_of_this = map(); // Allocate new content. int property_count = map_of_this->NumberOfDescribedProperties(); if (expected_additional_properties > 0) { property_count += expected_additional_properties; } else { property_count += 2; // Make space for two more properties. } Object* obj; { MaybeObject* maybe_obj = StringDictionary::Allocate(property_count); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } StringDictionary* dictionary = StringDictionary::cast(obj); DescriptorArray* descs = map_of_this->instance_descriptors(); for (int i = 0; i < descs->number_of_descriptors(); i++) { PropertyDetails details(descs->GetDetails(i)); switch (details.type()) { case CONSTANT_FUNCTION: { PropertyDetails d = PropertyDetails(details.attributes(), NORMAL, details.index()); Object* value = descs->GetConstantFunction(i); Object* result; { MaybeObject* maybe_result = dictionary->Add(descs->GetKey(i), value, d); if (!maybe_result->ToObject(&result)) return maybe_result; } dictionary = StringDictionary::cast(result); break; } case FIELD: { PropertyDetails d = PropertyDetails(details.attributes(), NORMAL, details.index()); Object* value = FastPropertyAt(descs->GetFieldIndex(i)); Object* result; { MaybeObject* maybe_result = dictionary->Add(descs->GetKey(i), value, d); if (!maybe_result->ToObject(&result)) return maybe_result; } dictionary = StringDictionary::cast(result); break; } case CALLBACKS: { PropertyDetails d = PropertyDetails(details.attributes(), CALLBACKS, details.index()); Object* value = descs->GetCallbacksObject(i); Object* result; { MaybeObject* maybe_result = dictionary->Add(descs->GetKey(i), value, d); if (!maybe_result->ToObject(&result)) return maybe_result; } dictionary = StringDictionary::cast(result); break; } case MAP_TRANSITION: case CONSTANT_TRANSITION: case NULL_DESCRIPTOR: case INTERCEPTOR: break; default: UNREACHABLE(); } } Heap* current_heap = map_of_this->heap(); // Copy the next enumeration index from instance descriptor. int index = map_of_this->instance_descriptors()->NextEnumerationIndex(); dictionary->SetNextEnumerationIndex(index); { MaybeObject* maybe_obj = current_heap->isolate()->context()->global_context()-> normalized_map_cache()->Get(this, mode); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } Map* new_map = Map::cast(obj); // We have now successfully allocated all the necessary objects. // Changes can now be made with the guarantee that all of them take effect. // Resize the object in the heap if necessary. int new_instance_size = new_map->instance_size(); int instance_size_delta = map_of_this->instance_size() - new_instance_size; ASSERT(instance_size_delta >= 0); current_heap->CreateFillerObjectAt(this->address() + new_instance_size, instance_size_delta); set_map(new_map); new_map->set_instance_descriptors(current_heap->empty_descriptor_array()); set_properties(dictionary); current_heap->isolate()->counters()->props_to_dictionary()->Increment(); #ifdef DEBUG if (FLAG_trace_normalization) { PrintF("Object properties have been normalized:\n"); Print(); } #endif return this; } MaybeObject* JSObject::TransformToFastProperties(int unused_property_fields) { if (HasFastProperties()) return this; ASSERT(!IsGlobalObject()); return property_dictionary()-> TransformPropertiesToFastFor(this, unused_property_fields); } MaybeObject* JSObject::NormalizeElements() { ASSERT(!HasExternalArrayElements()); if (HasDictionaryElements()) return this; Map* old_map = map(); ASSERT(old_map->has_fast_elements()); Object* obj; { MaybeObject* maybe_obj = old_map->GetSlowElementsMap(); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } Map* new_map = Map::cast(obj); // Get number of entries. FixedArray* array = FixedArray::cast(elements()); // Compute the effective length. int length = IsJSArray() ? Smi::cast(JSArray::cast(this)->length())->value() : array->length(); { MaybeObject* maybe_obj = NumberDictionary::Allocate(length); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } NumberDictionary* dictionary = NumberDictionary::cast(obj); // Copy entries. for (int i = 0; i < length; i++) { Object* value = array->get(i); if (!value->IsTheHole()) { PropertyDetails details = PropertyDetails(NONE, NORMAL); Object* result; { MaybeObject* maybe_result = dictionary->AddNumberEntry(i, array->get(i), details); if (!maybe_result->ToObject(&result)) return maybe_result; } dictionary = NumberDictionary::cast(result); } } // Switch to using the dictionary as the backing storage for // elements. Set the new map first to satify the elements type // assert in set_elements(). set_map(new_map); set_elements(dictionary); new_map->heap()->isolate()->counters()->elements_to_dictionary()-> Increment(); #ifdef DEBUG if (FLAG_trace_normalization) { PrintF("Object elements have been normalized:\n"); Print(); } #endif return this; } MaybeObject* JSObject::DeletePropertyPostInterceptor(String* name, DeleteMode mode) { // Check local property, ignore interceptor. LookupResult result; LocalLookupRealNamedProperty(name, &result); if (!result.IsProperty()) return GetHeap()->true_value(); // Normalize object if needed. Object* obj; { MaybeObject* maybe_obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } return DeleteNormalizedProperty(name, mode); } MaybeObject* JSObject::DeletePropertyWithInterceptor(String* name) { Isolate* isolate = GetIsolate(); HandleScope scope(isolate); Handle interceptor(GetNamedInterceptor()); Handle name_handle(name); Handle this_handle(this); if (!interceptor->deleter()->IsUndefined()) { v8::NamedPropertyDeleter deleter = v8::ToCData(interceptor->deleter()); LOG(isolate, ApiNamedPropertyAccess("interceptor-named-delete", *this_handle, name)); CustomArguments args(isolate, interceptor->data(), this, this); v8::AccessorInfo info(args.end()); v8::Handle result; { // Leaving JavaScript. VMState state(isolate, EXTERNAL); result = deleter(v8::Utils::ToLocal(name_handle), info); } RETURN_IF_SCHEDULED_EXCEPTION(isolate); if (!result.IsEmpty()) { ASSERT(result->IsBoolean()); return *v8::Utils::OpenHandle(*result); } } MaybeObject* raw_result = this_handle->DeletePropertyPostInterceptor(*name_handle, NORMAL_DELETION); RETURN_IF_SCHEDULED_EXCEPTION(isolate); return raw_result; } MaybeObject* JSObject::DeleteElementPostInterceptor(uint32_t index, DeleteMode mode) { ASSERT(!HasExternalArrayElements()); switch (GetElementsKind()) { case FAST_ELEMENTS: { Object* obj; { MaybeObject* maybe_obj = EnsureWritableFastElements(); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } uint32_t length = IsJSArray() ? static_cast(Smi::cast(JSArray::cast(this)->length())->value()) : static_cast(FixedArray::cast(elements())->length()); if (index < length) { FixedArray::cast(elements())->set_the_hole(index); } break; } case DICTIONARY_ELEMENTS: { NumberDictionary* dictionary = element_dictionary(); int entry = dictionary->FindEntry(index); if (entry != NumberDictionary::kNotFound) { return dictionary->DeleteProperty(entry, mode); } break; } default: UNREACHABLE(); break; } return GetHeap()->true_value(); } MaybeObject* JSObject::DeleteElementWithInterceptor(uint32_t index) { Isolate* isolate = GetIsolate(); Heap* heap = isolate->heap(); // Make sure that the top context does not change when doing // callbacks or interceptor calls. AssertNoContextChange ncc; HandleScope scope(isolate); Handle interceptor(GetIndexedInterceptor()); if (interceptor->deleter()->IsUndefined()) return heap->false_value(); v8::IndexedPropertyDeleter deleter = v8::ToCData(interceptor->deleter()); Handle this_handle(this); LOG(isolate, ApiIndexedPropertyAccess("interceptor-indexed-delete", this, index)); CustomArguments args(isolate, interceptor->data(), this, this); v8::AccessorInfo info(args.end()); v8::Handle result; { // Leaving JavaScript. VMState state(isolate, EXTERNAL); result = deleter(index, info); } RETURN_IF_SCHEDULED_EXCEPTION(isolate); if (!result.IsEmpty()) { ASSERT(result->IsBoolean()); return *v8::Utils::OpenHandle(*result); } MaybeObject* raw_result = this_handle->DeleteElementPostInterceptor(index, NORMAL_DELETION); RETURN_IF_SCHEDULED_EXCEPTION(isolate); return raw_result; } MaybeObject* JSObject::DeleteElement(uint32_t index, DeleteMode mode) { Isolate* isolate = GetIsolate(); // Check access rights if needed. if (IsAccessCheckNeeded() && !isolate->MayIndexedAccess(this, index, v8::ACCESS_DELETE)) { isolate->ReportFailedAccessCheck(this, v8::ACCESS_DELETE); return isolate->heap()->false_value(); } if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return isolate->heap()->false_value(); ASSERT(proto->IsJSGlobalObject()); return JSGlobalObject::cast(proto)->DeleteElement(index, mode); } if (HasIndexedInterceptor()) { // Skip interceptor if forcing deletion. if (mode == FORCE_DELETION) { return DeleteElementPostInterceptor(index, mode); } return DeleteElementWithInterceptor(index); } switch (GetElementsKind()) { case FAST_ELEMENTS: { Object* obj; { MaybeObject* maybe_obj = EnsureWritableFastElements(); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } uint32_t length = IsJSArray() ? static_cast(Smi::cast(JSArray::cast(this)->length())->value()) : static_cast(FixedArray::cast(elements())->length()); if (index < length) { FixedArray::cast(elements())->set_the_hole(index); } break; } case EXTERNAL_PIXEL_ELEMENTS: case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: case EXTERNAL_FLOAT_ELEMENTS: // Pixel and external array elements cannot be deleted. Just // silently ignore here. break; case DICTIONARY_ELEMENTS: { NumberDictionary* dictionary = element_dictionary(); int entry = dictionary->FindEntry(index); if (entry != NumberDictionary::kNotFound) { Object* result = dictionary->DeleteProperty(entry, mode); if (mode == STRICT_DELETION && result == isolate->heap()->false_value()) { // In strict mode, deleting a non-configurable property throws // exception. dictionary->DeleteProperty will return false_value() // if a non-configurable property is being deleted. HandleScope scope; Handle i = isolate->factory()->NewNumberFromUint(index); Handle args[2] = { i, Handle(this) }; return isolate->Throw(*isolate->factory()->NewTypeError( "strict_delete_property", HandleVector(args, 2))); } } break; } default: UNREACHABLE(); break; } return isolate->heap()->true_value(); } MaybeObject* JSObject::DeleteProperty(String* name, DeleteMode mode) { Isolate* isolate = GetIsolate(); // ECMA-262, 3rd, 8.6.2.5 ASSERT(name->IsString()); // Check access rights if needed. if (IsAccessCheckNeeded() && !isolate->MayNamedAccess(this, name, v8::ACCESS_DELETE)) { isolate->ReportFailedAccessCheck(this, v8::ACCESS_DELETE); return isolate->heap()->false_value(); } if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return isolate->heap()->false_value(); ASSERT(proto->IsJSGlobalObject()); return JSGlobalObject::cast(proto)->DeleteProperty(name, mode); } uint32_t index = 0; if (name->AsArrayIndex(&index)) { return DeleteElement(index, mode); } else { LookupResult result; LocalLookup(name, &result); if (!result.IsProperty()) return isolate->heap()->true_value(); // Ignore attributes if forcing a deletion. if (result.IsDontDelete() && mode != FORCE_DELETION) { if (mode == STRICT_DELETION) { // Deleting a non-configurable property in strict mode. HandleScope scope(isolate); Handle args[2] = { Handle(name), Handle(this) }; return isolate->Throw(*isolate->factory()->NewTypeError( "strict_delete_property", HandleVector(args, 2))); } return isolate->heap()->false_value(); } // Check for interceptor. if (result.type() == INTERCEPTOR) { // Skip interceptor if forcing a deletion. if (mode == FORCE_DELETION) { return DeletePropertyPostInterceptor(name, mode); } return DeletePropertyWithInterceptor(name); } // Normalize object if needed. Object* obj; { MaybeObject* maybe_obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } // Make sure the properties are normalized before removing the entry. return DeleteNormalizedProperty(name, mode); } } // Check whether this object references another object. bool JSObject::ReferencesObject(Object* obj) { Map* map_of_this = map(); Heap* heap = map_of_this->heap(); AssertNoAllocation no_alloc; // Is the object the constructor for this object? if (map_of_this->constructor() == obj) { return true; } // Is the object the prototype for this object? if (map_of_this->prototype() == obj) { return true; } // Check if the object is among the named properties. Object* key = SlowReverseLookup(obj); if (!key->IsUndefined()) { return true; } // Check if the object is among the indexed properties. switch (GetElementsKind()) { case EXTERNAL_PIXEL_ELEMENTS: case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: case EXTERNAL_FLOAT_ELEMENTS: // Raw pixels and external arrays do not reference other // objects. break; case FAST_ELEMENTS: { int length = IsJSArray() ? Smi::cast(JSArray::cast(this)->length())->value() : FixedArray::cast(elements())->length(); for (int i = 0; i < length; i++) { Object* element = FixedArray::cast(elements())->get(i); if (!element->IsTheHole() && element == obj) { return true; } } break; } case DICTIONARY_ELEMENTS: { key = element_dictionary()->SlowReverseLookup(obj); if (!key->IsUndefined()) { return true; } break; } default: UNREACHABLE(); break; } // For functions check the context. if (IsJSFunction()) { // Get the constructor function for arguments array. JSObject* arguments_boilerplate = heap->isolate()->context()->global_context()-> arguments_boilerplate(); JSFunction* arguments_function = JSFunction::cast(arguments_boilerplate->map()->constructor()); // Get the context and don't check if it is the global context. JSFunction* f = JSFunction::cast(this); Context* context = f->context(); if (context->IsGlobalContext()) { return false; } // Check the non-special context slots. for (int i = Context::MIN_CONTEXT_SLOTS; i < context->length(); i++) { // Only check JS objects. if (context->get(i)->IsJSObject()) { JSObject* ctxobj = JSObject::cast(context->get(i)); // If it is an arguments array check the content. if (ctxobj->map()->constructor() == arguments_function) { if (ctxobj->ReferencesObject(obj)) { return true; } } else if (ctxobj == obj) { return true; } } } // Check the context extension if any. if (context->has_extension()) { return context->extension()->ReferencesObject(obj); } } // No references to object. return false; } MaybeObject* JSObject::PreventExtensions() { Isolate* isolate = GetIsolate(); if (IsAccessCheckNeeded() && !isolate->MayNamedAccess(this, isolate->heap()->undefined_value(), v8::ACCESS_KEYS)) { isolate->ReportFailedAccessCheck(this, v8::ACCESS_KEYS); return isolate->heap()->false_value(); } if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return this; ASSERT(proto->IsJSGlobalObject()); return JSObject::cast(proto)->PreventExtensions(); } // If there are fast elements we normalize. if (HasFastElements()) { Object* ok; { MaybeObject* maybe_ok = NormalizeElements(); if (!maybe_ok->ToObject(&ok)) return maybe_ok; } } // Make sure that we never go back to fast case. element_dictionary()->set_requires_slow_elements(); // Do a map transition, other objects with this map may still // be extensible. Object* new_map; { MaybeObject* maybe_new_map = map()->CopyDropTransitions(); if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; } Map::cast(new_map)->set_is_extensible(false); set_map(Map::cast(new_map)); ASSERT(!map()->is_extensible()); return new_map; } // Tests for the fast common case for property enumeration: // - This object and all prototypes has an enum cache (which means that it has // no interceptors and needs no access checks). // - This object has no elements. // - No prototype has enumerable properties/elements. bool JSObject::IsSimpleEnum() { Heap* heap = GetHeap(); for (Object* o = this; o != heap->null_value(); o = JSObject::cast(o)->GetPrototype()) { JSObject* curr = JSObject::cast(o); if (!curr->map()->instance_descriptors()->HasEnumCache()) return false; ASSERT(!curr->HasNamedInterceptor()); ASSERT(!curr->HasIndexedInterceptor()); ASSERT(!curr->IsAccessCheckNeeded()); if (curr->NumberOfEnumElements() > 0) return false; if (curr != this) { FixedArray* curr_fixed_array = FixedArray::cast(curr->map()->instance_descriptors()->GetEnumCache()); if (curr_fixed_array->length() > 0) return false; } } return true; } int Map::NumberOfDescribedProperties() { int result = 0; DescriptorArray* descs = instance_descriptors(); for (int i = 0; i < descs->number_of_descriptors(); i++) { if (descs->IsProperty(i)) result++; } return result; } int Map::PropertyIndexFor(String* name) { DescriptorArray* descs = instance_descriptors(); for (int i = 0; i < descs->number_of_descriptors(); i++) { if (name->Equals(descs->GetKey(i)) && !descs->IsNullDescriptor(i)) { return descs->GetFieldIndex(i); } } return -1; } int Map::NextFreePropertyIndex() { int max_index = -1; DescriptorArray* descs = instance_descriptors(); for (int i = 0; i < descs->number_of_descriptors(); i++) { if (descs->GetType(i) == FIELD) { int current_index = descs->GetFieldIndex(i); if (current_index > max_index) max_index = current_index; } } return max_index + 1; } AccessorDescriptor* Map::FindAccessor(String* name) { DescriptorArray* descs = instance_descriptors(); for (int i = 0; i < descs->number_of_descriptors(); i++) { if (name->Equals(descs->GetKey(i)) && descs->GetType(i) == CALLBACKS) { return descs->GetCallbacks(i); } } return NULL; } void JSObject::LocalLookup(String* name, LookupResult* result) { ASSERT(name->IsString()); Heap* heap = GetHeap(); if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return result->NotFound(); ASSERT(proto->IsJSGlobalObject()); return JSObject::cast(proto)->LocalLookup(name, result); } // Do not use inline caching if the object is a non-global object // that requires access checks. if (!IsJSGlobalProxy() && IsAccessCheckNeeded()) { result->DisallowCaching(); } // Check __proto__ before interceptor. if (name->Equals(heap->Proto_symbol()) && !IsJSContextExtensionObject()) { result->ConstantResult(this); return; } // Check for lookup interceptor except when bootstrapping. if (HasNamedInterceptor() && !heap->isolate()->bootstrapper()->IsActive()) { result->InterceptorResult(this); return; } LocalLookupRealNamedProperty(name, result); } void JSObject::Lookup(String* name, LookupResult* result) { // Ecma-262 3rd 8.6.2.4 Heap* heap = GetHeap(); for (Object* current = this; current != heap->null_value(); current = JSObject::cast(current)->GetPrototype()) { JSObject::cast(current)->LocalLookup(name, result); if (result->IsProperty()) return; } result->NotFound(); } // Search object and it's prototype chain for callback properties. void JSObject::LookupCallback(String* name, LookupResult* result) { Heap* heap = GetHeap(); for (Object* current = this; current != heap->null_value(); current = JSObject::cast(current)->GetPrototype()) { JSObject::cast(current)->LocalLookupRealNamedProperty(name, result); if (result->IsProperty() && result->type() == CALLBACKS) return; } result->NotFound(); } MaybeObject* JSObject::DefineGetterSetter(String* name, PropertyAttributes attributes) { Heap* heap = GetHeap(); // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc; // Try to flatten before operating on the string. name->TryFlatten(); if (!CanSetCallback(name)) { return heap->undefined_value(); } uint32_t index = 0; bool is_element = name->AsArrayIndex(&index); if (is_element) { switch (GetElementsKind()) { case FAST_ELEMENTS: break; case EXTERNAL_PIXEL_ELEMENTS: case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: case EXTERNAL_FLOAT_ELEMENTS: // Ignore getters and setters on pixel and external array // elements. return heap->undefined_value(); case DICTIONARY_ELEMENTS: { // Lookup the index. NumberDictionary* dictionary = element_dictionary(); int entry = dictionary->FindEntry(index); if (entry != NumberDictionary::kNotFound) { Object* result = dictionary->ValueAt(entry); PropertyDetails details = dictionary->DetailsAt(entry); if (details.IsReadOnly()) return heap->undefined_value(); if (details.type() == CALLBACKS) { if (result->IsFixedArray()) { return result; } // Otherwise allow to override it. } } break; } default: UNREACHABLE(); break; } } else { // Lookup the name. LookupResult result; LocalLookup(name, &result); if (result.IsProperty()) { if (result.IsReadOnly()) return heap->undefined_value(); if (result.type() == CALLBACKS) { Object* obj = result.GetCallbackObject(); // Need to preserve old getters/setters. if (obj->IsFixedArray()) { // Use set to update attributes. return SetPropertyCallback(name, obj, attributes); } } } } // Allocate the fixed array to hold getter and setter. Object* structure; { MaybeObject* maybe_structure = heap->AllocateFixedArray(2, TENURED); if (!maybe_structure->ToObject(&structure)) return maybe_structure; } if (is_element) { return SetElementCallback(index, structure, attributes); } else { return SetPropertyCallback(name, structure, attributes); } } bool JSObject::CanSetCallback(String* name) { ASSERT(!IsAccessCheckNeeded() || Isolate::Current()->MayNamedAccess(this, name, v8::ACCESS_SET)); // Check if there is an API defined callback object which prohibits // callback overwriting in this object or it's prototype chain. // This mechanism is needed for instance in a browser setting, where // certain accessors such as window.location should not be allowed // to be overwritten because allowing overwriting could potentially // cause security problems. LookupResult callback_result; LookupCallback(name, &callback_result); if (callback_result.IsProperty()) { Object* obj = callback_result.GetCallbackObject(); if (obj->IsAccessorInfo() && AccessorInfo::cast(obj)->prohibits_overwriting()) { return false; } } return true; } MaybeObject* JSObject::SetElementCallback(uint32_t index, Object* structure, PropertyAttributes attributes) { PropertyDetails details = PropertyDetails(attributes, CALLBACKS); // Normalize elements to make this operation simple. Object* ok; { MaybeObject* maybe_ok = NormalizeElements(); if (!maybe_ok->ToObject(&ok)) return maybe_ok; } // Update the dictionary with the new CALLBACKS property. Object* dict; { MaybeObject* maybe_dict = element_dictionary()->Set(index, structure, details); if (!maybe_dict->ToObject(&dict)) return maybe_dict; } NumberDictionary* elements = NumberDictionary::cast(dict); elements->set_requires_slow_elements(); // Set the potential new dictionary on the object. set_elements(elements); return structure; } MaybeObject* JSObject::SetPropertyCallback(String* name, Object* structure, PropertyAttributes attributes) { PropertyDetails details = PropertyDetails(attributes, CALLBACKS); bool convert_back_to_fast = HasFastProperties() && (map()->instance_descriptors()->number_of_descriptors() < DescriptorArray::kMaxNumberOfDescriptors); // Normalize object to make this operation simple. Object* ok; { MaybeObject* maybe_ok = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); if (!maybe_ok->ToObject(&ok)) return maybe_ok; } // For the global object allocate a new map to invalidate the global inline // caches which have a global property cell reference directly in the code. if (IsGlobalObject()) { Object* new_map; { MaybeObject* maybe_new_map = map()->CopyDropDescriptors(); if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; } set_map(Map::cast(new_map)); // When running crankshaft, changing the map is not enough. We // need to deoptimize all functions that rely on this global // object. Deoptimizer::DeoptimizeGlobalObject(this); } // Update the dictionary with the new CALLBACKS property. Object* result; { MaybeObject* maybe_result = SetNormalizedProperty(name, structure, details); if (!maybe_result->ToObject(&result)) return maybe_result; } if (convert_back_to_fast) { { MaybeObject* maybe_ok = TransformToFastProperties(0); if (!maybe_ok->ToObject(&ok)) return maybe_ok; } } return result; } MaybeObject* JSObject::DefineAccessor(String* name, bool is_getter, Object* fun, PropertyAttributes attributes) { ASSERT(fun->IsJSFunction() || fun->IsUndefined()); Isolate* isolate = GetIsolate(); // Check access rights if needed. if (IsAccessCheckNeeded() && !isolate->MayNamedAccess(this, name, v8::ACCESS_SET)) { isolate->ReportFailedAccessCheck(this, v8::ACCESS_SET); return isolate->heap()->undefined_value(); } if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return this; ASSERT(proto->IsJSGlobalObject()); return JSObject::cast(proto)->DefineAccessor(name, is_getter, fun, attributes); } Object* array; { MaybeObject* maybe_array = DefineGetterSetter(name, attributes); if (!maybe_array->ToObject(&array)) return maybe_array; } if (array->IsUndefined()) return array; FixedArray::cast(array)->set(is_getter ? 0 : 1, fun); return this; } MaybeObject* JSObject::DefineAccessor(AccessorInfo* info) { Isolate* isolate = GetIsolate(); String* name = String::cast(info->name()); // Check access rights if needed. if (IsAccessCheckNeeded() && !isolate->MayNamedAccess(this, name, v8::ACCESS_SET)) { isolate->ReportFailedAccessCheck(this, v8::ACCESS_SET); return isolate->heap()->undefined_value(); } if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return this; ASSERT(proto->IsJSGlobalObject()); return JSObject::cast(proto)->DefineAccessor(info); } // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc; // Try to flatten before operating on the string. name->TryFlatten(); if (!CanSetCallback(name)) { return isolate->heap()->undefined_value(); } uint32_t index = 0; bool is_element = name->AsArrayIndex(&index); if (is_element) { if (IsJSArray()) return isolate->heap()->undefined_value(); // Accessors overwrite previous callbacks (cf. with getters/setters). switch (GetElementsKind()) { case FAST_ELEMENTS: break; case EXTERNAL_PIXEL_ELEMENTS: case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: case EXTERNAL_FLOAT_ELEMENTS: // Ignore getters and setters on pixel and external array // elements. return isolate->heap()->undefined_value(); case DICTIONARY_ELEMENTS: break; default: UNREACHABLE(); break; } Object* ok; { MaybeObject* maybe_ok = SetElementCallback(index, info, info->property_attributes()); if (!maybe_ok->ToObject(&ok)) return maybe_ok; } } else { // Lookup the name. LookupResult result; LocalLookup(name, &result); // ES5 forbids turning a property into an accessor if it's not // configurable (that is IsDontDelete in ES3 and v8), see 8.6.1 (Table 5). if (result.IsProperty() && (result.IsReadOnly() || result.IsDontDelete())) { return isolate->heap()->undefined_value(); } Object* ok; { MaybeObject* maybe_ok = SetPropertyCallback(name, info, info->property_attributes()); if (!maybe_ok->ToObject(&ok)) return maybe_ok; } } return this; } Object* JSObject::LookupAccessor(String* name, bool is_getter) { Heap* heap = GetHeap(); // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc; // Check access rights if needed. if (IsAccessCheckNeeded() && !heap->isolate()->MayNamedAccess(this, name, v8::ACCESS_HAS)) { heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_HAS); return heap->undefined_value(); } // Make the lookup and include prototypes. int accessor_index = is_getter ? kGetterIndex : kSetterIndex; uint32_t index = 0; if (name->AsArrayIndex(&index)) { for (Object* obj = this; obj != heap->null_value(); obj = JSObject::cast(obj)->GetPrototype()) { JSObject* js_object = JSObject::cast(obj); if (js_object->HasDictionaryElements()) { NumberDictionary* dictionary = js_object->element_dictionary(); int entry = dictionary->FindEntry(index); if (entry != NumberDictionary::kNotFound) { Object* element = dictionary->ValueAt(entry); PropertyDetails details = dictionary->DetailsAt(entry); if (details.type() == CALLBACKS) { if (element->IsFixedArray()) { return FixedArray::cast(element)->get(accessor_index); } } } } } } else { for (Object* obj = this; obj != heap->null_value(); obj = JSObject::cast(obj)->GetPrototype()) { LookupResult result; JSObject::cast(obj)->LocalLookup(name, &result); if (result.IsProperty()) { if (result.IsReadOnly()) return heap->undefined_value(); if (result.type() == CALLBACKS) { Object* obj = result.GetCallbackObject(); if (obj->IsFixedArray()) { return FixedArray::cast(obj)->get(accessor_index); } } } } } return heap->undefined_value(); } Object* JSObject::SlowReverseLookup(Object* value) { if (HasFastProperties()) { DescriptorArray* descs = map()->instance_descriptors(); for (int i = 0; i < descs->number_of_descriptors(); i++) { if (descs->GetType(i) == FIELD) { if (FastPropertyAt(descs->GetFieldIndex(i)) == value) { return descs->GetKey(i); } } else if (descs->GetType(i) == CONSTANT_FUNCTION) { if (descs->GetConstantFunction(i) == value) { return descs->GetKey(i); } } } return GetHeap()->undefined_value(); } else { return property_dictionary()->SlowReverseLookup(value); } } MaybeObject* Map::CopyDropDescriptors() { Heap* heap = GetHeap(); Object* result; { MaybeObject* maybe_result = heap->AllocateMap(instance_type(), instance_size()); if (!maybe_result->ToObject(&result)) return maybe_result; } Map::cast(result)->set_prototype(prototype()); Map::cast(result)->set_constructor(constructor()); // Don't copy descriptors, so map transitions always remain a forest. // If we retained the same descriptors we would have two maps // pointing to the same transition which is bad because the garbage // collector relies on being able to reverse pointers from transitions // to maps. If properties need to be retained use CopyDropTransitions. Map::cast(result)->set_instance_descriptors( heap->empty_descriptor_array()); // Please note instance_type and instance_size are set when allocated. Map::cast(result)->set_inobject_properties(inobject_properties()); Map::cast(result)->set_unused_property_fields(unused_property_fields()); // If the map has pre-allocated properties always start out with a descriptor // array describing these properties. if (pre_allocated_property_fields() > 0) { ASSERT(constructor()->IsJSFunction()); JSFunction* ctor = JSFunction::cast(constructor()); Object* descriptors; { MaybeObject* maybe_descriptors = ctor->initial_map()->instance_descriptors()->RemoveTransitions(); if (!maybe_descriptors->ToObject(&descriptors)) return maybe_descriptors; } Map::cast(result)->set_instance_descriptors( DescriptorArray::cast(descriptors)); Map::cast(result)->set_pre_allocated_property_fields( pre_allocated_property_fields()); } Map::cast(result)->set_bit_field(bit_field()); Map::cast(result)->set_bit_field2(bit_field2()); Map::cast(result)->set_is_shared(false); Map::cast(result)->ClearCodeCache(heap); return result; } MaybeObject* Map::CopyNormalized(PropertyNormalizationMode mode, NormalizedMapSharingMode sharing) { int new_instance_size = instance_size(); if (mode == CLEAR_INOBJECT_PROPERTIES) { new_instance_size -= inobject_properties() * kPointerSize; } Object* result; { MaybeObject* maybe_result = GetHeap()->AllocateMap(instance_type(), new_instance_size); if (!maybe_result->ToObject(&result)) return maybe_result; } if (mode != CLEAR_INOBJECT_PROPERTIES) { Map::cast(result)->set_inobject_properties(inobject_properties()); } Map::cast(result)->set_prototype(prototype()); Map::cast(result)->set_constructor(constructor()); Map::cast(result)->set_bit_field(bit_field()); Map::cast(result)->set_bit_field2(bit_field2()); Map::cast(result)->set_is_shared(sharing == SHARED_NORMALIZED_MAP); #ifdef DEBUG if (Map::cast(result)->is_shared()) { Map::cast(result)->SharedMapVerify(); } #endif return result; } MaybeObject* Map::CopyDropTransitions() { Object* new_map; { MaybeObject* maybe_new_map = CopyDropDescriptors(); if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; } Object* descriptors; { MaybeObject* maybe_descriptors = instance_descriptors()->RemoveTransitions(); if (!maybe_descriptors->ToObject(&descriptors)) return maybe_descriptors; } cast(new_map)->set_instance_descriptors(DescriptorArray::cast(descriptors)); return new_map; } MaybeObject* Map::UpdateCodeCache(String* name, Code* code) { // Allocate the code cache if not present. if (code_cache()->IsFixedArray()) { Object* result; { MaybeObject* maybe_result = code->heap()->AllocateCodeCache(); if (!maybe_result->ToObject(&result)) return maybe_result; } set_code_cache(result); } // Update the code cache. return CodeCache::cast(code_cache())->Update(name, code); } Object* Map::FindInCodeCache(String* name, Code::Flags flags) { // Do a lookup if a code cache exists. if (!code_cache()->IsFixedArray()) { return CodeCache::cast(code_cache())->Lookup(name, flags); } else { return GetHeap()->undefined_value(); } } int Map::IndexInCodeCache(Object* name, Code* code) { // Get the internal index if a code cache exists. if (!code_cache()->IsFixedArray()) { return CodeCache::cast(code_cache())->GetIndex(name, code); } return -1; } void Map::RemoveFromCodeCache(String* name, Code* code, int index) { // No GC is supposed to happen between a call to IndexInCodeCache and // RemoveFromCodeCache so the code cache must be there. ASSERT(!code_cache()->IsFixedArray()); CodeCache::cast(code_cache())->RemoveByIndex(name, code, index); } void Map::TraverseTransitionTree(TraverseCallback callback, void* data) { // Traverse the transition tree without using a stack. We do this by // reversing the pointers in the maps and descriptor arrays. Map* current = this; Map* meta_map = heap()->meta_map(); Object** map_or_index_field = NULL; while (current != meta_map) { DescriptorArray* d = reinterpret_cast( *RawField(current, Map::kInstanceDescriptorsOffset)); if (!d->IsEmpty()) { FixedArray* contents = reinterpret_cast( d->get(DescriptorArray::kContentArrayIndex)); map_or_index_field = RawField(contents, HeapObject::kMapOffset); Object* map_or_index = *map_or_index_field; bool map_done = true; // Controls a nested continue statement. for (int i = map_or_index->IsSmi() ? Smi::cast(map_or_index)->value() : 0; i < contents->length(); i += 2) { PropertyDetails details(Smi::cast(contents->get(i + 1))); if (details.IsTransition()) { // Found a map in the transition array. We record our progress in // the transition array by recording the current map in the map field // of the next map and recording the index in the transition array in // the map field of the array. Map* next = Map::cast(contents->get(i)); next->set_map(current); *map_or_index_field = Smi::FromInt(i + 2); current = next; map_done = false; break; } } if (!map_done) continue; } else { map_or_index_field = NULL; } // That was the regular transitions, now for the prototype transitions. FixedArray* prototype_transitions = current->unchecked_prototype_transitions(); Object** proto_map_or_index_field = RawField(prototype_transitions, HeapObject::kMapOffset); Object* map_or_index = *proto_map_or_index_field; const int start = 2; int i = map_or_index->IsSmi() ? Smi::cast(map_or_index)->value() : start; if (i < prototype_transitions->length()) { // Found a map in the prototype transition array. Record progress in // an analogous way to the regular transitions array above. Object* perhaps_map = prototype_transitions->get(i); if (perhaps_map->IsMap()) { Map* next = Map::cast(perhaps_map); next->set_map(current); *proto_map_or_index_field = Smi::FromInt(i + 2); current = next; continue; } } *proto_map_or_index_field = heap()->fixed_array_map(); if (map_or_index_field != NULL) { *map_or_index_field = heap()->fixed_array_map(); } // The callback expects a map to have a real map as its map, so we save // the map field, which is being used to track the traversal and put the // correct map (the meta_map) in place while we do the callback. Map* prev = current->map(); current->set_map(meta_map); callback(current, data); current = prev; } } MaybeObject* CodeCache::Update(String* name, Code* code) { ASSERT(code->ic_state() == MONOMORPHIC); // The number of monomorphic stubs for normal load/store/call IC's can grow to // a large number and therefore they need to go into a hash table. They are // used to load global properties from cells. if (code->type() == NORMAL) { // Make sure that a hash table is allocated for the normal load code cache. if (normal_type_cache()->IsUndefined()) { Object* result; { MaybeObject* maybe_result = CodeCacheHashTable::Allocate(CodeCacheHashTable::kInitialSize); if (!maybe_result->ToObject(&result)) return maybe_result; } set_normal_type_cache(result); } return UpdateNormalTypeCache(name, code); } else { ASSERT(default_cache()->IsFixedArray()); return UpdateDefaultCache(name, code); } } MaybeObject* CodeCache::UpdateDefaultCache(String* name, Code* code) { // When updating the default code cache we disregard the type encoded in the // flags. This allows call constant stubs to overwrite call field // stubs, etc. Code::Flags flags = Code::RemoveTypeFromFlags(code->flags()); // First check whether we can update existing code cache without // extending it. FixedArray* cache = default_cache(); int length = cache->length(); int deleted_index = -1; for (int i = 0; i < length; i += kCodeCacheEntrySize) { Object* key = cache->get(i); if (key->IsNull()) { if (deleted_index < 0) deleted_index = i; continue; } if (key->IsUndefined()) { if (deleted_index >= 0) i = deleted_index; cache->set(i + kCodeCacheEntryNameOffset, name); cache->set(i + kCodeCacheEntryCodeOffset, code); return this; } if (name->Equals(String::cast(key))) { Code::Flags found = Code::cast(cache->get(i + kCodeCacheEntryCodeOffset))->flags(); if (Code::RemoveTypeFromFlags(found) == flags) { cache->set(i + kCodeCacheEntryCodeOffset, code); return this; } } } // Reached the end of the code cache. If there were deleted // elements, reuse the space for the first of them. if (deleted_index >= 0) { cache->set(deleted_index + kCodeCacheEntryNameOffset, name); cache->set(deleted_index + kCodeCacheEntryCodeOffset, code); return this; } // Extend the code cache with some new entries (at least one). Must be a // multiple of the entry size. int new_length = length + ((length >> 1)) + kCodeCacheEntrySize; new_length = new_length - new_length % kCodeCacheEntrySize; ASSERT((new_length % kCodeCacheEntrySize) == 0); Object* result; { MaybeObject* maybe_result = cache->CopySize(new_length); if (!maybe_result->ToObject(&result)) return maybe_result; } // Add the (name, code) pair to the new cache. cache = FixedArray::cast(result); cache->set(length + kCodeCacheEntryNameOffset, name); cache->set(length + kCodeCacheEntryCodeOffset, code); set_default_cache(cache); return this; } MaybeObject* CodeCache::UpdateNormalTypeCache(String* name, Code* code) { // Adding a new entry can cause a new cache to be allocated. CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); Object* new_cache; { MaybeObject* maybe_new_cache = cache->Put(name, code); if (!maybe_new_cache->ToObject(&new_cache)) return maybe_new_cache; } set_normal_type_cache(new_cache); return this; } Object* CodeCache::Lookup(String* name, Code::Flags flags) { if (Code::ExtractTypeFromFlags(flags) == NORMAL) { return LookupNormalTypeCache(name, flags); } else { return LookupDefaultCache(name, flags); } } Object* CodeCache::LookupDefaultCache(String* name, Code::Flags flags) { FixedArray* cache = default_cache(); int length = cache->length(); for (int i = 0; i < length; i += kCodeCacheEntrySize) { Object* key = cache->get(i + kCodeCacheEntryNameOffset); // Skip deleted elements. if (key->IsNull()) continue; if (key->IsUndefined()) return key; if (name->Equals(String::cast(key))) { Code* code = Code::cast(cache->get(i + kCodeCacheEntryCodeOffset)); if (code->flags() == flags) { return code; } } } return GetHeap()->undefined_value(); } Object* CodeCache::LookupNormalTypeCache(String* name, Code::Flags flags) { if (!normal_type_cache()->IsUndefined()) { CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); return cache->Lookup(name, flags); } else { return GetHeap()->undefined_value(); } } int CodeCache::GetIndex(Object* name, Code* code) { if (code->type() == NORMAL) { if (normal_type_cache()->IsUndefined()) return -1; CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); return cache->GetIndex(String::cast(name), code->flags()); } FixedArray* array = default_cache(); int len = array->length(); for (int i = 0; i < len; i += kCodeCacheEntrySize) { if (array->get(i + kCodeCacheEntryCodeOffset) == code) return i + 1; } return -1; } void CodeCache::RemoveByIndex(Object* name, Code* code, int index) { if (code->type() == NORMAL) { ASSERT(!normal_type_cache()->IsUndefined()); CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); ASSERT(cache->GetIndex(String::cast(name), code->flags()) == index); cache->RemoveByIndex(index); } else { FixedArray* array = default_cache(); ASSERT(array->length() >= index && array->get(index)->IsCode()); // Use null instead of undefined for deleted elements to distinguish // deleted elements from unused elements. This distinction is used // when looking up in the cache and when updating the cache. ASSERT_EQ(1, kCodeCacheEntryCodeOffset - kCodeCacheEntryNameOffset); array->set_null(index - 1); // Name. array->set_null(index); // Code. } } // The key in the code cache hash table consists of the property name and the // code object. The actual match is on the name and the code flags. If a key // is created using the flags and not a code object it can only be used for // lookup not to create a new entry. class CodeCacheHashTableKey : public HashTableKey { public: CodeCacheHashTableKey(String* name, Code::Flags flags) : name_(name), flags_(flags), code_(NULL) { } CodeCacheHashTableKey(String* name, Code* code) : name_(name), flags_(code->flags()), code_(code) { } bool IsMatch(Object* other) { if (!other->IsFixedArray()) return false; FixedArray* pair = FixedArray::cast(other); String* name = String::cast(pair->get(0)); Code::Flags flags = Code::cast(pair->get(1))->flags(); if (flags != flags_) { return false; } return name_->Equals(name); } static uint32_t NameFlagsHashHelper(String* name, Code::Flags flags) { return name->Hash() ^ flags; } uint32_t Hash() { return NameFlagsHashHelper(name_, flags_); } uint32_t HashForObject(Object* obj) { FixedArray* pair = FixedArray::cast(obj); String* name = String::cast(pair->get(0)); Code* code = Code::cast(pair->get(1)); return NameFlagsHashHelper(name, code->flags()); } MUST_USE_RESULT MaybeObject* AsObject() { ASSERT(code_ != NULL); Object* obj; { MaybeObject* maybe_obj = code_->heap()->AllocateFixedArray(2); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } FixedArray* pair = FixedArray::cast(obj); pair->set(0, name_); pair->set(1, code_); return pair; } private: String* name_; Code::Flags flags_; Code* code_; }; Object* CodeCacheHashTable::Lookup(String* name, Code::Flags flags) { CodeCacheHashTableKey key(name, flags); int entry = FindEntry(&key); if (entry == kNotFound) return GetHeap()->undefined_value(); return get(EntryToIndex(entry) + 1); } MaybeObject* CodeCacheHashTable::Put(String* name, Code* code) { CodeCacheHashTableKey key(name, code); Object* obj; { MaybeObject* maybe_obj = EnsureCapacity(1, &key); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } // Don't use this, as the table might have grown. CodeCacheHashTable* cache = reinterpret_cast(obj); int entry = cache->FindInsertionEntry(key.Hash()); Object* k; { MaybeObject* maybe_k = key.AsObject(); if (!maybe_k->ToObject(&k)) return maybe_k; } cache->set(EntryToIndex(entry), k); cache->set(EntryToIndex(entry) + 1, code); cache->ElementAdded(); return cache; } int CodeCacheHashTable::GetIndex(String* name, Code::Flags flags) { CodeCacheHashTableKey key(name, flags); int entry = FindEntry(&key); return (entry == kNotFound) ? -1 : entry; } void CodeCacheHashTable::RemoveByIndex(int index) { ASSERT(index >= 0); Heap* heap = GetHeap(); set(EntryToIndex(index), heap->null_value()); set(EntryToIndex(index) + 1, heap->null_value()); ElementRemoved(); } static bool HasKey(FixedArray* array, Object* key) { int len0 = array->length(); for (int i = 0; i < len0; i++) { Object* element = array->get(i); if (element->IsSmi() && key->IsSmi() && (element == key)) return true; if (element->IsString() && key->IsString() && String::cast(element)->Equals(String::cast(key))) { return true; } } return false; } MaybeObject* FixedArray::AddKeysFromJSArray(JSArray* array) { ASSERT(!array->HasExternalArrayElements()); switch (array->GetElementsKind()) { case JSObject::FAST_ELEMENTS: return UnionOfKeys(FixedArray::cast(array->elements())); case JSObject::DICTIONARY_ELEMENTS: { NumberDictionary* dict = array->element_dictionary(); int size = dict->NumberOfElements(); // Allocate a temporary fixed array. Object* object; { MaybeObject* maybe_object = GetHeap()->AllocateFixedArray(size); if (!maybe_object->ToObject(&object)) return maybe_object; } FixedArray* key_array = FixedArray::cast(object); int capacity = dict->Capacity(); int pos = 0; // Copy the elements from the JSArray to the temporary fixed array. for (int i = 0; i < capacity; i++) { if (dict->IsKey(dict->KeyAt(i))) { key_array->set(pos++, dict->ValueAt(i)); } } // Compute the union of this and the temporary fixed array. return UnionOfKeys(key_array); } default: UNREACHABLE(); } UNREACHABLE(); return GetHeap()->null_value(); // Failure case needs to "return" a value. } MaybeObject* FixedArray::UnionOfKeys(FixedArray* other) { int len0 = length(); #ifdef DEBUG if (FLAG_enable_slow_asserts) { for (int i = 0; i < len0; i++) { ASSERT(get(i)->IsString() || get(i)->IsNumber()); } } #endif int len1 = other->length(); // Optimize if 'other' is empty. // We cannot optimize if 'this' is empty, as other may have holes // or non keys. if (len1 == 0) return this; // Compute how many elements are not in this. int extra = 0; for (int y = 0; y < len1; y++) { Object* value = other->get(y); if (!value->IsTheHole() && !HasKey(this, value)) extra++; } if (extra == 0) return this; // Allocate the result Object* obj; { MaybeObject* maybe_obj = GetHeap()->AllocateFixedArray(len0 + extra); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } // Fill in the content AssertNoAllocation no_gc; FixedArray* result = FixedArray::cast(obj); WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); for (int i = 0; i < len0; i++) { Object* e = get(i); ASSERT(e->IsString() || e->IsNumber()); result->set(i, e, mode); } // Fill in the extra keys. int index = 0; for (int y = 0; y < len1; y++) { Object* value = other->get(y); if (!value->IsTheHole() && !HasKey(this, value)) { Object* e = other->get(y); ASSERT(e->IsString() || e->IsNumber()); result->set(len0 + index, e, mode); index++; } } ASSERT(extra == index); return result; } MaybeObject* FixedArray::CopySize(int new_length) { Heap* heap = GetHeap(); if (new_length == 0) return heap->empty_fixed_array(); Object* obj; { MaybeObject* maybe_obj = heap->AllocateFixedArray(new_length); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } FixedArray* result = FixedArray::cast(obj); // Copy the content AssertNoAllocation no_gc; int len = length(); if (new_length < len) len = new_length; result->set_map(map()); WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); for (int i = 0; i < len; i++) { result->set(i, get(i), mode); } return result; } void FixedArray::CopyTo(int pos, FixedArray* dest, int dest_pos, int len) { AssertNoAllocation no_gc; WriteBarrierMode mode = dest->GetWriteBarrierMode(no_gc); for (int index = 0; index < len; index++) { dest->set(dest_pos+index, get(pos+index), mode); } } #ifdef DEBUG bool FixedArray::IsEqualTo(FixedArray* other) { if (length() != other->length()) return false; for (int i = 0 ; i < length(); ++i) { if (get(i) != other->get(i)) return false; } return true; } #endif MaybeObject* DescriptorArray::Allocate(int number_of_descriptors) { Heap* heap = Isolate::Current()->heap(); if (number_of_descriptors == 0) { return heap->empty_descriptor_array(); } // Allocate the array of keys. Object* array; { MaybeObject* maybe_array = heap->AllocateFixedArray(ToKeyIndex(number_of_descriptors)); if (!maybe_array->ToObject(&array)) return maybe_array; } // Do not use DescriptorArray::cast on incomplete object. FixedArray* result = FixedArray::cast(array); // Allocate the content array and set it in the descriptor array. { MaybeObject* maybe_array = heap->AllocateFixedArray(number_of_descriptors << 1); if (!maybe_array->ToObject(&array)) return maybe_array; } result->set(kContentArrayIndex, array); result->set(kEnumerationIndexIndex, Smi::FromInt(PropertyDetails::kInitialIndex)); return result; } void DescriptorArray::SetEnumCache(FixedArray* bridge_storage, FixedArray* new_cache) { ASSERT(bridge_storage->length() >= kEnumCacheBridgeLength); if (HasEnumCache()) { FixedArray::cast(get(kEnumerationIndexIndex))-> set(kEnumCacheBridgeCacheIndex, new_cache); } else { if (IsEmpty()) return; // Do nothing for empty descriptor array. FixedArray::cast(bridge_storage)-> set(kEnumCacheBridgeCacheIndex, new_cache); fast_set(FixedArray::cast(bridge_storage), kEnumCacheBridgeEnumIndex, get(kEnumerationIndexIndex)); set(kEnumerationIndexIndex, bridge_storage); } } MaybeObject* DescriptorArray::CopyInsert(Descriptor* descriptor, TransitionFlag transition_flag) { // Transitions are only kept when inserting another transition. // This precondition is not required by this function's implementation, but // is currently required by the semantics of maps, so we check it. // Conversely, we filter after replacing, so replacing a transition and // removing all other transitions is not supported. bool remove_transitions = transition_flag == REMOVE_TRANSITIONS; ASSERT(remove_transitions == !descriptor->GetDetails().IsTransition()); ASSERT(descriptor->GetDetails().type() != NULL_DESCRIPTOR); // Ensure the key is a symbol. Object* result; { MaybeObject* maybe_result = descriptor->KeyToSymbol(); if (!maybe_result->ToObject(&result)) return maybe_result; } int transitions = 0; int null_descriptors = 0; if (remove_transitions) { for (int i = 0; i < number_of_descriptors(); i++) { if (IsTransition(i)) transitions++; if (IsNullDescriptor(i)) null_descriptors++; } } else { for (int i = 0; i < number_of_descriptors(); i++) { if (IsNullDescriptor(i)) null_descriptors++; } } int new_size = number_of_descriptors() - transitions - null_descriptors; // If key is in descriptor, we replace it in-place when filtering. // Count a null descriptor for key as inserted, not replaced. int index = Search(descriptor->GetKey()); const bool inserting = (index == kNotFound); const bool replacing = !inserting; bool keep_enumeration_index = false; if (inserting) { ++new_size; } if (replacing) { // We are replacing an existing descriptor. We keep the enumeration // index of a visible property. PropertyType t = PropertyDetails(GetDetails(index)).type(); if (t == CONSTANT_FUNCTION || t == FIELD || t == CALLBACKS || t == INTERCEPTOR) { keep_enumeration_index = true; } else if (remove_transitions) { // Replaced descriptor has been counted as removed if it is // a transition that will be replaced. Adjust count in this case. ++new_size; } } { MaybeObject* maybe_result = Allocate(new_size); if (!maybe_result->ToObject(&result)) return maybe_result; } DescriptorArray* new_descriptors = DescriptorArray::cast(result); // Set the enumeration index in the descriptors and set the enumeration index // in the result. int enumeration_index = NextEnumerationIndex(); if (!descriptor->GetDetails().IsTransition()) { if (keep_enumeration_index) { descriptor->SetEnumerationIndex( PropertyDetails(GetDetails(index)).index()); } else { descriptor->SetEnumerationIndex(enumeration_index); ++enumeration_index; } } new_descriptors->SetNextEnumerationIndex(enumeration_index); // Copy the descriptors, filtering out transitions and null descriptors, // and inserting or replacing a descriptor. uint32_t descriptor_hash = descriptor->GetKey()->Hash(); int from_index = 0; int to_index = 0; for (; from_index < number_of_descriptors(); from_index++) { String* key = GetKey(from_index); if (key->Hash() > descriptor_hash || key == descriptor->GetKey()) { break; } if (IsNullDescriptor(from_index)) continue; if (remove_transitions && IsTransition(from_index)) continue; new_descriptors->CopyFrom(to_index++, this, from_index); } new_descriptors->Set(to_index++, descriptor); if (replacing) from_index++; for (; from_index < number_of_descriptors(); from_index++) { if (IsNullDescriptor(from_index)) continue; if (remove_transitions && IsTransition(from_index)) continue; new_descriptors->CopyFrom(to_index++, this, from_index); } ASSERT(to_index == new_descriptors->number_of_descriptors()); SLOW_ASSERT(new_descriptors->IsSortedNoDuplicates()); return new_descriptors; } MaybeObject* DescriptorArray::RemoveTransitions() { // Remove all transitions and null descriptors. Return a copy of the array // with all transitions removed, or a Failure object if the new array could // not be allocated. // Compute the size of the map transition entries to be removed. int num_removed = 0; for (int i = 0; i < number_of_descriptors(); i++) { if (!IsProperty(i)) num_removed++; } // Allocate the new descriptor array. Object* result; { MaybeObject* maybe_result = Allocate(number_of_descriptors() - num_removed); if (!maybe_result->ToObject(&result)) return maybe_result; } DescriptorArray* new_descriptors = DescriptorArray::cast(result); // Copy the content. int next_descriptor = 0; for (int i = 0; i < number_of_descriptors(); i++) { if (IsProperty(i)) new_descriptors->CopyFrom(next_descriptor++, this, i); } ASSERT(next_descriptor == new_descriptors->number_of_descriptors()); return new_descriptors; } void DescriptorArray::SortUnchecked() { // In-place heap sort. int len = number_of_descriptors(); // Bottom-up max-heap construction. // Index of the last node with children const int max_parent_index = (len / 2) - 1; for (int i = max_parent_index; i >= 0; --i) { int parent_index = i; const uint32_t parent_hash = GetKey(i)->Hash(); while (parent_index <= max_parent_index) { int child_index = 2 * parent_index + 1; uint32_t child_hash = GetKey(child_index)->Hash(); if (child_index + 1 < len) { uint32_t right_child_hash = GetKey(child_index + 1)->Hash(); if (right_child_hash > child_hash) { child_index++; child_hash = right_child_hash; } } if (child_hash <= parent_hash) break; Swap(parent_index, child_index); // Now element at child_index could be < its children. parent_index = child_index; // parent_hash remains correct. } } // Extract elements and create sorted array. for (int i = len - 1; i > 0; --i) { // Put max element at the back of the array. Swap(0, i); // Sift down the new top element. int parent_index = 0; const uint32_t parent_hash = GetKey(parent_index)->Hash(); const int max_parent_index = (i / 2) - 1; while (parent_index <= max_parent_index) { int child_index = parent_index * 2 + 1; uint32_t child_hash = GetKey(child_index)->Hash(); if (child_index + 1 < i) { uint32_t right_child_hash = GetKey(child_index + 1)->Hash(); if (right_child_hash > child_hash) { child_index++; child_hash = right_child_hash; } } if (child_hash <= parent_hash) break; Swap(parent_index, child_index); parent_index = child_index; } } } void DescriptorArray::Sort() { SortUnchecked(); SLOW_ASSERT(IsSortedNoDuplicates()); } int DescriptorArray::BinarySearch(String* name, int low, int high) { uint32_t hash = name->Hash(); while (low <= high) { int mid = (low + high) / 2; String* mid_name = GetKey(mid); uint32_t mid_hash = mid_name->Hash(); if (mid_hash > hash) { high = mid - 1; continue; } if (mid_hash < hash) { low = mid + 1; continue; } // Found an element with the same hash-code. ASSERT(hash == mid_hash); // There might be more, so we find the first one and // check them all to see if we have a match. if (name == mid_name && !is_null_descriptor(mid)) return mid; while ((mid > low) && (GetKey(mid - 1)->Hash() == hash)) mid--; for (; (mid <= high) && (GetKey(mid)->Hash() == hash); mid++) { if (GetKey(mid)->Equals(name) && !is_null_descriptor(mid)) return mid; } break; } return kNotFound; } int DescriptorArray::LinearSearch(String* name, int len) { uint32_t hash = name->Hash(); for (int number = 0; number < len; number++) { String* entry = GetKey(number); if ((entry->Hash() == hash) && name->Equals(entry) && !is_null_descriptor(number)) { return number; } } return kNotFound; } MaybeObject* DeoptimizationInputData::Allocate(int deopt_entry_count, PretenureFlag pretenure) { ASSERT(deopt_entry_count > 0); return HEAP->AllocateFixedArray(LengthFor(deopt_entry_count), pretenure); } MaybeObject* DeoptimizationOutputData::Allocate(int number_of_deopt_points, PretenureFlag pretenure) { if (number_of_deopt_points == 0) return HEAP->empty_fixed_array(); return HEAP->AllocateFixedArray(LengthOfFixedArray(number_of_deopt_points), pretenure); } #ifdef DEBUG bool DescriptorArray::IsEqualTo(DescriptorArray* other) { if (IsEmpty()) return other->IsEmpty(); if (other->IsEmpty()) return false; if (length() != other->length()) return false; for (int i = 0; i < length(); ++i) { if (get(i) != other->get(i) && i != kContentArrayIndex) return false; } return GetContentArray()->IsEqualTo(other->GetContentArray()); } #endif bool String::LooksValid() { if (!Isolate::Current()->heap()->Contains(this)) return false; return true; } int String::Utf8Length() { if (IsAsciiRepresentation()) return length(); // Attempt to flatten before accessing the string. It probably // doesn't make Utf8Length faster, but it is very likely that // the string will be accessed later (for example by WriteUtf8) // so it's still a good idea. Heap* heap = GetHeap(); TryFlatten(); Access buffer( heap->isolate()->objects_string_input_buffer()); buffer->Reset(0, this); int result = 0; while (buffer->has_more()) result += unibrow::Utf8::Length(buffer->GetNext()); return result; } Vector String::ToAsciiVector() { ASSERT(IsAsciiRepresentation()); ASSERT(IsFlat()); int offset = 0; int length = this->length(); StringRepresentationTag string_tag = StringShape(this).representation_tag(); String* string = this; if (string_tag == kConsStringTag) { ConsString* cons = ConsString::cast(string); ASSERT(cons->second()->length() == 0); string = cons->first(); string_tag = StringShape(string).representation_tag(); } if (string_tag == kSeqStringTag) { SeqAsciiString* seq = SeqAsciiString::cast(string); char* start = seq->GetChars(); return Vector(start + offset, length); } ASSERT(string_tag == kExternalStringTag); ExternalAsciiString* ext = ExternalAsciiString::cast(string); const char* start = ext->resource()->data(); return Vector(start + offset, length); } Vector String::ToUC16Vector() { ASSERT(IsTwoByteRepresentation()); ASSERT(IsFlat()); int offset = 0; int length = this->length(); StringRepresentationTag string_tag = StringShape(this).representation_tag(); String* string = this; if (string_tag == kConsStringTag) { ConsString* cons = ConsString::cast(string); ASSERT(cons->second()->length() == 0); string = cons->first(); string_tag = StringShape(string).representation_tag(); } if (string_tag == kSeqStringTag) { SeqTwoByteString* seq = SeqTwoByteString::cast(string); return Vector(seq->GetChars() + offset, length); } ASSERT(string_tag == kExternalStringTag); ExternalTwoByteString* ext = ExternalTwoByteString::cast(string); const uc16* start = reinterpret_cast(ext->resource()->data()); return Vector(start + offset, length); } SmartPointer String::ToCString(AllowNullsFlag allow_nulls, RobustnessFlag robust_flag, int offset, int length, int* length_return) { if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) { return SmartPointer(NULL); } Heap* heap = GetHeap(); // Negative length means the to the end of the string. if (length < 0) length = kMaxInt - offset; // Compute the size of the UTF-8 string. Start at the specified offset. Access buffer( heap->isolate()->objects_string_input_buffer()); buffer->Reset(offset, this); int character_position = offset; int utf8_bytes = 0; while (buffer->has_more()) { uint16_t character = buffer->GetNext(); if (character_position < offset + length) { utf8_bytes += unibrow::Utf8::Length(character); } character_position++; } if (length_return) { *length_return = utf8_bytes; } char* result = NewArray(utf8_bytes + 1); // Convert the UTF-16 string to a UTF-8 buffer. Start at the specified offset. buffer->Rewind(); buffer->Seek(offset); character_position = offset; int utf8_byte_position = 0; while (buffer->has_more()) { uint16_t character = buffer->GetNext(); if (character_position < offset + length) { if (allow_nulls == DISALLOW_NULLS && character == 0) { character = ' '; } utf8_byte_position += unibrow::Utf8::Encode(result + utf8_byte_position, character); } character_position++; } result[utf8_byte_position] = 0; return SmartPointer(result); } SmartPointer String::ToCString(AllowNullsFlag allow_nulls, RobustnessFlag robust_flag, int* length_return) { return ToCString(allow_nulls, robust_flag, 0, -1, length_return); } const uc16* String::GetTwoByteData() { return GetTwoByteData(0); } const uc16* String::GetTwoByteData(unsigned start) { ASSERT(!IsAsciiRepresentation()); switch (StringShape(this).representation_tag()) { case kSeqStringTag: return SeqTwoByteString::cast(this)->SeqTwoByteStringGetData(start); case kExternalStringTag: return ExternalTwoByteString::cast(this)-> ExternalTwoByteStringGetData(start); case kConsStringTag: UNREACHABLE(); return NULL; } UNREACHABLE(); return NULL; } SmartPointer String::ToWideCString(RobustnessFlag robust_flag) { if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) { return SmartPointer(); } Heap* heap = GetHeap(); Access buffer( heap->isolate()->objects_string_input_buffer()); buffer->Reset(this); uc16* result = NewArray(length() + 1); int i = 0; while (buffer->has_more()) { uint16_t character = buffer->GetNext(); result[i++] = character; } result[i] = 0; return SmartPointer(result); } const uc16* SeqTwoByteString::SeqTwoByteStringGetData(unsigned start) { return reinterpret_cast( reinterpret_cast(this) - kHeapObjectTag + kHeaderSize) + start; } void SeqTwoByteString::SeqTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* rbb, unsigned* offset_ptr, unsigned max_chars) { unsigned chars_read = 0; unsigned offset = *offset_ptr; while (chars_read < max_chars) { uint16_t c = *reinterpret_cast( reinterpret_cast(this) - kHeapObjectTag + kHeaderSize + offset * kShortSize); if (c <= kMaxAsciiCharCode) { // Fast case for ASCII characters. Cursor is an input output argument. if (!unibrow::CharacterStream::EncodeAsciiCharacter(c, rbb->util_buffer, rbb->capacity, rbb->cursor)) { break; } } else { if (!unibrow::CharacterStream::EncodeNonAsciiCharacter(c, rbb->util_buffer, rbb->capacity, rbb->cursor)) { break; } } offset++; chars_read++; } *offset_ptr = offset; rbb->remaining += chars_read; } const unibrow::byte* SeqAsciiString::SeqAsciiStringReadBlock( unsigned* remaining, unsigned* offset_ptr, unsigned max_chars) { const unibrow::byte* b = reinterpret_cast(this) - kHeapObjectTag + kHeaderSize + *offset_ptr * kCharSize; *remaining = max_chars; *offset_ptr += max_chars; return b; } // This will iterate unless the block of string data spans two 'halves' of // a ConsString, in which case it will recurse. Since the block of string // data to be read has a maximum size this limits the maximum recursion // depth to something sane. Since C++ does not have tail call recursion // elimination, the iteration must be explicit. Since this is not an // -IntoBuffer method it can delegate to one of the efficient // *AsciiStringReadBlock routines. const unibrow::byte* ConsString::ConsStringReadBlock(ReadBlockBuffer* rbb, unsigned* offset_ptr, unsigned max_chars) { ConsString* current = this; unsigned offset = *offset_ptr; int offset_correction = 0; while (true) { String* left = current->first(); unsigned left_length = (unsigned)left->length(); if (left_length > offset && (max_chars <= left_length - offset || (rbb->capacity <= left_length - offset && (max_chars = left_length - offset, true)))) { // comma operator! // Left hand side only - iterate unless we have reached the bottom of // the cons tree. The assignment on the left of the comma operator is // in order to make use of the fact that the -IntoBuffer routines can // produce at most 'capacity' characters. This enables us to postpone // the point where we switch to the -IntoBuffer routines (below) in order // to maximize the chances of delegating a big chunk of work to the // efficient *AsciiStringReadBlock routines. if (StringShape(left).IsCons()) { current = ConsString::cast(left); continue; } else { const unibrow::byte* answer = String::ReadBlock(left, rbb, &offset, max_chars); *offset_ptr = offset + offset_correction; return answer; } } else if (left_length <= offset) { // Right hand side only - iterate unless we have reached the bottom of // the cons tree. String* right = current->second(); offset -= left_length; offset_correction += left_length; if (StringShape(right).IsCons()) { current = ConsString::cast(right); continue; } else { const unibrow::byte* answer = String::ReadBlock(right, rbb, &offset, max_chars); *offset_ptr = offset + offset_correction; return answer; } } else { // The block to be read spans two sides of the ConsString, so we call the // -IntoBuffer version, which will recurse. The -IntoBuffer methods // are able to assemble data from several part strings because they use // the util_buffer to store their data and never return direct pointers // to their storage. We don't try to read more than the buffer capacity // here or we can get too much recursion. ASSERT(rbb->remaining == 0); ASSERT(rbb->cursor == 0); current->ConsStringReadBlockIntoBuffer( rbb, &offset, max_chars > rbb->capacity ? rbb->capacity : max_chars); *offset_ptr = offset + offset_correction; return rbb->util_buffer; } } } uint16_t ExternalAsciiString::ExternalAsciiStringGet(int index) { ASSERT(index >= 0 && index < length()); return resource()->data()[index]; } const unibrow::byte* ExternalAsciiString::ExternalAsciiStringReadBlock( unsigned* remaining, unsigned* offset_ptr, unsigned max_chars) { // Cast const char* to unibrow::byte* (signedness difference). const unibrow::byte* b = reinterpret_cast(resource()->data()) + *offset_ptr; *remaining = max_chars; *offset_ptr += max_chars; return b; } const uc16* ExternalTwoByteString::ExternalTwoByteStringGetData( unsigned start) { return resource()->data() + start; } uint16_t ExternalTwoByteString::ExternalTwoByteStringGet(int index) { ASSERT(index >= 0 && index < length()); return resource()->data()[index]; } void ExternalTwoByteString::ExternalTwoByteStringReadBlockIntoBuffer( ReadBlockBuffer* rbb, unsigned* offset_ptr, unsigned max_chars) { unsigned chars_read = 0; unsigned offset = *offset_ptr; const uint16_t* data = resource()->data(); while (chars_read < max_chars) { uint16_t c = data[offset]; if (c <= kMaxAsciiCharCode) { // Fast case for ASCII characters. Cursor is an input output argument. if (!unibrow::CharacterStream::EncodeAsciiCharacter(c, rbb->util_buffer, rbb->capacity, rbb->cursor)) break; } else { if (!unibrow::CharacterStream::EncodeNonAsciiCharacter(c, rbb->util_buffer, rbb->capacity, rbb->cursor)) break; } offset++; chars_read++; } *offset_ptr = offset; rbb->remaining += chars_read; } void SeqAsciiString::SeqAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* rbb, unsigned* offset_ptr, unsigned max_chars) { unsigned capacity = rbb->capacity - rbb->cursor; if (max_chars > capacity) max_chars = capacity; memcpy(rbb->util_buffer + rbb->cursor, reinterpret_cast(this) - kHeapObjectTag + kHeaderSize + *offset_ptr * kCharSize, max_chars); rbb->remaining += max_chars; *offset_ptr += max_chars; rbb->cursor += max_chars; } void ExternalAsciiString::ExternalAsciiStringReadBlockIntoBuffer( ReadBlockBuffer* rbb, unsigned* offset_ptr, unsigned max_chars) { unsigned capacity = rbb->capacity - rbb->cursor; if (max_chars > capacity) max_chars = capacity; memcpy(rbb->util_buffer + rbb->cursor, resource()->data() + *offset_ptr, max_chars); rbb->remaining += max_chars; *offset_ptr += max_chars; rbb->cursor += max_chars; } // This method determines the type of string involved and then copies // a whole chunk of characters into a buffer, or returns a pointer to a buffer // where they can be found. The pointer is not necessarily valid across a GC // (see AsciiStringReadBlock). const unibrow::byte* String::ReadBlock(String* input, ReadBlockBuffer* rbb, unsigned* offset_ptr, unsigned max_chars) { ASSERT(*offset_ptr <= static_cast(input->length())); if (max_chars == 0) { rbb->remaining = 0; return NULL; } switch (StringShape(input).representation_tag()) { case kSeqStringTag: if (input->IsAsciiRepresentation()) { SeqAsciiString* str = SeqAsciiString::cast(input); return str->SeqAsciiStringReadBlock(&rbb->remaining, offset_ptr, max_chars); } else { SeqTwoByteString* str = SeqTwoByteString::cast(input); str->SeqTwoByteStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars); return rbb->util_buffer; } case kConsStringTag: return ConsString::cast(input)->ConsStringReadBlock(rbb, offset_ptr, max_chars); case kExternalStringTag: if (input->IsAsciiRepresentation()) { return ExternalAsciiString::cast(input)->ExternalAsciiStringReadBlock( &rbb->remaining, offset_ptr, max_chars); } else { ExternalTwoByteString::cast(input)-> ExternalTwoByteStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars); return rbb->util_buffer; } default: break; } UNREACHABLE(); return 0; } void Relocatable::PostGarbageCollectionProcessing() { Isolate* isolate = Isolate::Current(); Relocatable* current = isolate->relocatable_top(); while (current != NULL) { current->PostGarbageCollection(); current = current->prev_; } } // Reserve space for statics needing saving and restoring. int Relocatable::ArchiveSpacePerThread() { return sizeof(Isolate::Current()->relocatable_top()); } // Archive statics that are thread local. char* Relocatable::ArchiveState(char* to) { Isolate* isolate = Isolate::Current(); *reinterpret_cast(to) = isolate->relocatable_top(); isolate->set_relocatable_top(NULL); return to + ArchiveSpacePerThread(); } // Restore statics that are thread local. char* Relocatable::RestoreState(char* from) { Isolate* isolate = Isolate::Current(); isolate->set_relocatable_top(*reinterpret_cast(from)); return from + ArchiveSpacePerThread(); } char* Relocatable::Iterate(ObjectVisitor* v, char* thread_storage) { Relocatable* top = *reinterpret_cast(thread_storage); Iterate(v, top); return thread_storage + ArchiveSpacePerThread(); } void Relocatable::Iterate(ObjectVisitor* v) { Isolate* isolate = Isolate::Current(); Iterate(v, isolate->relocatable_top()); } void Relocatable::Iterate(ObjectVisitor* v, Relocatable* top) { Relocatable* current = top; while (current != NULL) { current->IterateInstance(v); current = current->prev_; } } FlatStringReader::FlatStringReader(Isolate* isolate, Handle str) : Relocatable(isolate), str_(str.location()), length_(str->length()) { PostGarbageCollection(); } FlatStringReader::FlatStringReader(Isolate* isolate, Vector input) : Relocatable(isolate), str_(0), is_ascii_(true), length_(input.length()), start_(input.start()) { } void FlatStringReader::PostGarbageCollection() { if (str_ == NULL) return; Handle str(str_); ASSERT(str->IsFlat()); is_ascii_ = str->IsAsciiRepresentation(); if (is_ascii_) { start_ = str->ToAsciiVector().start(); } else { start_ = str->ToUC16Vector().start(); } } void StringInputBuffer::Seek(unsigned pos) { Reset(pos, input_); } void SafeStringInputBuffer::Seek(unsigned pos) { Reset(pos, input_); } // This method determines the type of string involved and then copies // a whole chunk of characters into a buffer. It can be used with strings // that have been glued together to form a ConsString and which must cooperate // to fill up a buffer. void String::ReadBlockIntoBuffer(String* input, ReadBlockBuffer* rbb, unsigned* offset_ptr, unsigned max_chars) { ASSERT(*offset_ptr <= (unsigned)input->length()); if (max_chars == 0) return; switch (StringShape(input).representation_tag()) { case kSeqStringTag: if (input->IsAsciiRepresentation()) { SeqAsciiString::cast(input)->SeqAsciiStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars); return; } else { SeqTwoByteString::cast(input)->SeqTwoByteStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars); return; } case kConsStringTag: ConsString::cast(input)->ConsStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars); return; case kExternalStringTag: if (input->IsAsciiRepresentation()) { ExternalAsciiString::cast(input)-> ExternalAsciiStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars); } else { ExternalTwoByteString::cast(input)-> ExternalTwoByteStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars); } return; default: break; } UNREACHABLE(); return; } const unibrow::byte* String::ReadBlock(String* input, unibrow::byte* util_buffer, unsigned capacity, unsigned* remaining, unsigned* offset_ptr) { ASSERT(*offset_ptr <= (unsigned)input->length()); unsigned chars = input->length() - *offset_ptr; ReadBlockBuffer rbb(util_buffer, 0, capacity, 0); const unibrow::byte* answer = ReadBlock(input, &rbb, offset_ptr, chars); ASSERT(rbb.remaining <= static_cast(input->length())); *remaining = rbb.remaining; return answer; } const unibrow::byte* String::ReadBlock(String** raw_input, unibrow::byte* util_buffer, unsigned capacity, unsigned* remaining, unsigned* offset_ptr) { Handle input(raw_input); ASSERT(*offset_ptr <= (unsigned)input->length()); unsigned chars = input->length() - *offset_ptr; if (chars > capacity) chars = capacity; ReadBlockBuffer rbb(util_buffer, 0, capacity, 0); ReadBlockIntoBuffer(*input, &rbb, offset_ptr, chars); ASSERT(rbb.remaining <= static_cast(input->length())); *remaining = rbb.remaining; return rbb.util_buffer; } // This will iterate unless the block of string data spans two 'halves' of // a ConsString, in which case it will recurse. Since the block of string // data to be read has a maximum size this limits the maximum recursion // depth to something sane. Since C++ does not have tail call recursion // elimination, the iteration must be explicit. void ConsString::ConsStringReadBlockIntoBuffer(ReadBlockBuffer* rbb, unsigned* offset_ptr, unsigned max_chars) { ConsString* current = this; unsigned offset = *offset_ptr; int offset_correction = 0; while (true) { String* left = current->first(); unsigned left_length = (unsigned)left->length(); if (left_length > offset && max_chars <= left_length - offset) { // Left hand side only - iterate unless we have reached the bottom of // the cons tree. if (StringShape(left).IsCons()) { current = ConsString::cast(left); continue; } else { String::ReadBlockIntoBuffer(left, rbb, &offset, max_chars); *offset_ptr = offset + offset_correction; return; } } else if (left_length <= offset) { // Right hand side only - iterate unless we have reached the bottom of // the cons tree. offset -= left_length; offset_correction += left_length; String* right = current->second(); if (StringShape(right).IsCons()) { current = ConsString::cast(right); continue; } else { String::ReadBlockIntoBuffer(right, rbb, &offset, max_chars); *offset_ptr = offset + offset_correction; return; } } else { // The block to be read spans two sides of the ConsString, so we recurse. // First recurse on the left. max_chars -= left_length - offset; String::ReadBlockIntoBuffer(left, rbb, &offset, left_length - offset); // We may have reached the max or there may not have been enough space // in the buffer for the characters in the left hand side. if (offset == left_length) { // Recurse on the right. String* right = String::cast(current->second()); offset -= left_length; offset_correction += left_length; String::ReadBlockIntoBuffer(right, rbb, &offset, max_chars); } *offset_ptr = offset + offset_correction; return; } } } uint16_t ConsString::ConsStringGet(int index) { ASSERT(index >= 0 && index < this->length()); // Check for a flattened cons string if (second()->length() == 0) { String* left = first(); return left->Get(index); } String* string = String::cast(this); while (true) { if (StringShape(string).IsCons()) { ConsString* cons_string = ConsString::cast(string); String* left = cons_string->first(); if (left->length() > index) { string = left; } else { index -= left->length(); string = cons_string->second(); } } else { return string->Get(index); } } UNREACHABLE(); return 0; } template void String::WriteToFlat(String* src, sinkchar* sink, int f, int t) { String* source = src; int from = f; int to = t; while (true) { ASSERT(0 <= from && from <= to && to <= source->length()); switch (StringShape(source).full_representation_tag()) { case kAsciiStringTag | kExternalStringTag: { CopyChars(sink, ExternalAsciiString::cast(source)->resource()->data() + from, to - from); return; } case kTwoByteStringTag | kExternalStringTag: { const uc16* data = ExternalTwoByteString::cast(source)->resource()->data(); CopyChars(sink, data + from, to - from); return; } case kAsciiStringTag | kSeqStringTag: { CopyChars(sink, SeqAsciiString::cast(source)->GetChars() + from, to - from); return; } case kTwoByteStringTag | kSeqStringTag: { CopyChars(sink, SeqTwoByteString::cast(source)->GetChars() + from, to - from); return; } case kAsciiStringTag | kConsStringTag: case kTwoByteStringTag | kConsStringTag: { ConsString* cons_string = ConsString::cast(source); String* first = cons_string->first(); int boundary = first->length(); if (to - boundary >= boundary - from) { // Right hand side is longer. Recurse over left. if (from < boundary) { WriteToFlat(first, sink, from, boundary); sink += boundary - from; from = 0; } else { from -= boundary; } to -= boundary; source = cons_string->second(); } else { // Left hand side is longer. Recurse over right. if (to > boundary) { String* second = cons_string->second(); WriteToFlat(second, sink + boundary - from, 0, to - boundary); to = boundary; } source = first; } break; } } } } template static inline bool CompareStringContents(IteratorA* ia, IteratorB* ib) { // General slow case check. We know that the ia and ib iterators // have the same length. while (ia->has_more()) { uc32 ca = ia->GetNext(); uc32 cb = ib->GetNext(); if (ca != cb) return false; } return true; } // Compares the contents of two strings by reading and comparing // int-sized blocks of characters. template static inline bool CompareRawStringContents(Vector a, Vector b) { int length = a.length(); ASSERT_EQ(length, b.length()); const Char* pa = a.start(); const Char* pb = b.start(); int i = 0; #ifndef V8_HOST_CAN_READ_UNALIGNED // If this architecture isn't comfortable reading unaligned ints // then we have to check that the strings are aligned before // comparing them blockwise. const int kAlignmentMask = sizeof(uint32_t) - 1; // NOLINT uint32_t pa_addr = reinterpret_cast(pa); uint32_t pb_addr = reinterpret_cast(pb); if (((pa_addr & kAlignmentMask) | (pb_addr & kAlignmentMask)) == 0) { #endif const int kStepSize = sizeof(int) / sizeof(Char); // NOLINT int endpoint = length - kStepSize; // Compare blocks until we reach near the end of the string. for (; i <= endpoint; i += kStepSize) { uint32_t wa = *reinterpret_cast(pa + i); uint32_t wb = *reinterpret_cast(pb + i); if (wa != wb) { return false; } } #ifndef V8_HOST_CAN_READ_UNALIGNED } #endif // Compare the remaining characters that didn't fit into a block. for (; i < length; i++) { if (a[i] != b[i]) { return false; } } return true; } template static inline bool CompareStringContentsPartial(Isolate* isolate, IteratorA* ia, String* b) { if (b->IsFlat()) { if (b->IsAsciiRepresentation()) { VectorIterator ib(b->ToAsciiVector()); return CompareStringContents(ia, &ib); } else { VectorIterator ib(b->ToUC16Vector()); return CompareStringContents(ia, &ib); } } else { isolate->objects_string_compare_buffer_b()->Reset(0, b); return CompareStringContents(ia, isolate->objects_string_compare_buffer_b()); } } bool String::SlowEquals(String* other) { // Fast check: negative check with lengths. int len = length(); if (len != other->length()) return false; if (len == 0) return true; // Fast check: if hash code is computed for both strings // a fast negative check can be performed. if (HasHashCode() && other->HasHashCode()) { if (Hash() != other->Hash()) return false; } // We know the strings are both non-empty. Compare the first chars // before we try to flatten the strings. if (this->Get(0) != other->Get(0)) return false; String* lhs = this->TryFlattenGetString(); String* rhs = other->TryFlattenGetString(); if (StringShape(lhs).IsSequentialAscii() && StringShape(rhs).IsSequentialAscii()) { const char* str1 = SeqAsciiString::cast(lhs)->GetChars(); const char* str2 = SeqAsciiString::cast(rhs)->GetChars(); return CompareRawStringContents(Vector(str1, len), Vector(str2, len)); } Isolate* isolate = GetIsolate(); if (lhs->IsFlat()) { if (lhs->IsAsciiRepresentation()) { Vector vec1 = lhs->ToAsciiVector(); if (rhs->IsFlat()) { if (rhs->IsAsciiRepresentation()) { Vector vec2 = rhs->ToAsciiVector(); return CompareRawStringContents(vec1, vec2); } else { VectorIterator buf1(vec1); VectorIterator ib(rhs->ToUC16Vector()); return CompareStringContents(&buf1, &ib); } } else { VectorIterator buf1(vec1); isolate->objects_string_compare_buffer_b()->Reset(0, rhs); return CompareStringContents(&buf1, isolate->objects_string_compare_buffer_b()); } } else { Vector vec1 = lhs->ToUC16Vector(); if (rhs->IsFlat()) { if (rhs->IsAsciiRepresentation()) { VectorIterator buf1(vec1); VectorIterator ib(rhs->ToAsciiVector()); return CompareStringContents(&buf1, &ib); } else { Vector vec2(rhs->ToUC16Vector()); return CompareRawStringContents(vec1, vec2); } } else { VectorIterator buf1(vec1); isolate->objects_string_compare_buffer_b()->Reset(0, rhs); return CompareStringContents(&buf1, isolate->objects_string_compare_buffer_b()); } } } else { isolate->objects_string_compare_buffer_a()->Reset(0, lhs); return CompareStringContentsPartial(isolate, isolate->objects_string_compare_buffer_a(), rhs); } } bool String::MarkAsUndetectable() { if (StringShape(this).IsSymbol()) return false; Map* map = this->map(); Heap* heap = map->heap(); if (map == heap->string_map()) { this->set_map(heap->undetectable_string_map()); return true; } else if (map == heap->ascii_string_map()) { this->set_map(heap->undetectable_ascii_string_map()); return true; } // Rest cannot be marked as undetectable return false; } bool String::IsEqualTo(Vector str) { Isolate* isolate = GetIsolate(); int slen = length(); Access decoder(isolate->unicode_cache()->utf8_decoder()); decoder->Reset(str.start(), str.length()); int i; for (i = 0; i < slen && decoder->has_more(); i++) { uc32 r = decoder->GetNext(); if (Get(i) != r) return false; } return i == slen && !decoder->has_more(); } bool String::IsAsciiEqualTo(Vector str) { int slen = length(); if (str.length() != slen) return false; for (int i = 0; i < slen; i++) { if (Get(i) != static_cast(str[i])) return false; } return true; } bool String::IsTwoByteEqualTo(Vector str) { int slen = length(); if (str.length() != slen) return false; for (int i = 0; i < slen; i++) { if (Get(i) != str[i]) return false; } return true; } uint32_t String::ComputeAndSetHash() { // Should only be called if hash code has not yet been computed. ASSERT(!HasHashCode()); const int len = length(); // Compute the hash code. uint32_t field = 0; if (StringShape(this).IsSequentialAscii()) { field = HashSequentialString(SeqAsciiString::cast(this)->GetChars(), len); } else if (StringShape(this).IsSequentialTwoByte()) { field = HashSequentialString(SeqTwoByteString::cast(this)->GetChars(), len); } else { StringInputBuffer buffer(this); field = ComputeHashField(&buffer, len); } // Store the hash code in the object. set_hash_field(field); // Check the hash code is there. ASSERT(HasHashCode()); uint32_t result = field >> kHashShift; ASSERT(result != 0); // Ensure that the hash value of 0 is never computed. return result; } bool String::ComputeArrayIndex(unibrow::CharacterStream* buffer, uint32_t* index, int length) { if (length == 0 || length > kMaxArrayIndexSize) return false; uc32 ch = buffer->GetNext(); // If the string begins with a '0' character, it must only consist // of it to be a legal array index. if (ch == '0') { *index = 0; return length == 1; } // Convert string to uint32 array index; character by character. int d = ch - '0'; if (d < 0 || d > 9) return false; uint32_t result = d; while (buffer->has_more()) { d = buffer->GetNext() - '0'; if (d < 0 || d > 9) return false; // Check that the new result is below the 32 bit limit. if (result > 429496729U - ((d > 5) ? 1 : 0)) return false; result = (result * 10) + d; } *index = result; return true; } bool String::SlowAsArrayIndex(uint32_t* index) { if (length() <= kMaxCachedArrayIndexLength) { Hash(); // force computation of hash code uint32_t field = hash_field(); if ((field & kIsNotArrayIndexMask) != 0) return false; // Isolate the array index form the full hash field. *index = (kArrayIndexHashMask & field) >> kHashShift; return true; } else { StringInputBuffer buffer(this); return ComputeArrayIndex(&buffer, index, length()); } } uint32_t StringHasher::MakeArrayIndexHash(uint32_t value, int length) { // For array indexes mix the length into the hash as an array index could // be zero. ASSERT(length > 0); ASSERT(length <= String::kMaxArrayIndexSize); ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) < (1 << String::kArrayIndexValueBits)); value <<= String::kHashShift; value |= length << String::kArrayIndexHashLengthShift; ASSERT((value & String::kIsNotArrayIndexMask) == 0); ASSERT((length > String::kMaxCachedArrayIndexLength) || (value & String::kContainsCachedArrayIndexMask) == 0); return value; } uint32_t StringHasher::GetHashField() { ASSERT(is_valid()); if (length_ <= String::kMaxHashCalcLength) { if (is_array_index()) { return MakeArrayIndexHash(array_index(), length_); } return (GetHash() << String::kHashShift) | String::kIsNotArrayIndexMask; } else { return (length_ << String::kHashShift) | String::kIsNotArrayIndexMask; } } uint32_t String::ComputeHashField(unibrow::CharacterStream* buffer, int length) { StringHasher hasher(length); // Very long strings have a trivial hash that doesn't inspect the // string contents. if (hasher.has_trivial_hash()) { return hasher.GetHashField(); } // Do the iterative array index computation as long as there is a // chance this is an array index. while (buffer->has_more() && hasher.is_array_index()) { hasher.AddCharacter(buffer->GetNext()); } // Process the remaining characters without updating the array // index. while (buffer->has_more()) { hasher.AddCharacterNoIndex(buffer->GetNext()); } return hasher.GetHashField(); } MaybeObject* String::SubString(int start, int end, PretenureFlag pretenure) { Heap* heap = GetHeap(); if (start == 0 && end == length()) return this; MaybeObject* result = heap->AllocateSubString(this, start, end, pretenure); return result; } void String::PrintOn(FILE* file) { int length = this->length(); for (int i = 0; i < length; i++) { fprintf(file, "%c", Get(i)); } } void Map::CreateBackPointers() { DescriptorArray* descriptors = instance_descriptors(); for (int i = 0; i < descriptors->number_of_descriptors(); i++) { if (descriptors->GetType(i) == MAP_TRANSITION || descriptors->GetType(i) == EXTERNAL_ARRAY_TRANSITION || descriptors->GetType(i) == CONSTANT_TRANSITION) { // Get target. Map* target = Map::cast(descriptors->GetValue(i)); #ifdef DEBUG // Verify target. Object* source_prototype = prototype(); Object* target_prototype = target->prototype(); ASSERT(source_prototype->IsJSObject() || source_prototype->IsMap() || source_prototype->IsNull()); ASSERT(target_prototype->IsJSObject() || target_prototype->IsNull()); ASSERT(source_prototype->IsMap() || source_prototype == target_prototype); #endif // Point target back to source. set_prototype() will not let us set // the prototype to a map, as we do here. *RawField(target, kPrototypeOffset) = this; } } } void Map::ClearNonLiveTransitions(Heap* heap, Object* real_prototype) { // Live DescriptorArray objects will be marked, so we must use // low-level accessors to get and modify their data. DescriptorArray* d = reinterpret_cast( *RawField(this, Map::kInstanceDescriptorsOffset)); if (d == heap->raw_unchecked_empty_descriptor_array()) return; Smi* NullDescriptorDetails = PropertyDetails(NONE, NULL_DESCRIPTOR).AsSmi(); FixedArray* contents = reinterpret_cast( d->get(DescriptorArray::kContentArrayIndex)); ASSERT(contents->length() >= 2); for (int i = 0; i < contents->length(); i += 2) { // If the pair (value, details) is a map transition, // check if the target is live. If not, null the descriptor. // Also drop the back pointer for that map transition, so that this // map is not reached again by following a back pointer from a // non-live object. PropertyDetails details(Smi::cast(contents->get(i + 1))); if (details.type() == MAP_TRANSITION || details.type() == EXTERNAL_ARRAY_TRANSITION || details.type() == CONSTANT_TRANSITION) { Map* target = reinterpret_cast(contents->get(i)); ASSERT(target->IsHeapObject()); if (!target->IsMarked()) { ASSERT(target->IsMap()); contents->set_unchecked(i + 1, NullDescriptorDetails); contents->set_null_unchecked(heap, i); ASSERT(target->prototype() == this || target->prototype() == real_prototype); // Getter prototype() is read-only, set_prototype() has side effects. *RawField(target, Map::kPrototypeOffset) = real_prototype; } } } } void JSFunction::JSFunctionIterateBody(int object_size, ObjectVisitor* v) { // Iterate over all fields in the body but take care in dealing with // the code entry. IteratePointers(v, kPropertiesOffset, kCodeEntryOffset); v->VisitCodeEntry(this->address() + kCodeEntryOffset); IteratePointers(v, kCodeEntryOffset + kPointerSize, object_size); } void JSFunction::MarkForLazyRecompilation() { ASSERT(is_compiled() && !IsOptimized()); ASSERT(shared()->allows_lazy_compilation() || code()->optimizable()); Builtins* builtins = GetIsolate()->builtins(); ReplaceCode(builtins->builtin(Builtins::kLazyRecompile)); } uint32_t JSFunction::SourceHash() { uint32_t hash = 0; Object* script = shared()->script(); if (!script->IsUndefined()) { Object* source = Script::cast(script)->source(); if (source->IsUndefined()) hash = String::cast(source)->Hash(); } hash ^= ComputeIntegerHash(shared()->start_position_and_type()); hash += ComputeIntegerHash(shared()->end_position()); return hash; } bool JSFunction::IsInlineable() { if (IsBuiltin()) return false; SharedFunctionInfo* shared_info = shared(); // Check that the function has a script associated with it. if (!shared_info->script()->IsScript()) return false; if (shared_info->optimization_disabled()) return false; Code* code = shared_info->code(); if (code->kind() == Code::OPTIMIZED_FUNCTION) return true; // If we never ran this (unlikely) then lets try to optimize it. if (code->kind() != Code::FUNCTION) return true; return code->optimizable(); } Object* JSFunction::SetInstancePrototype(Object* value) { ASSERT(value->IsJSObject()); Heap* heap = GetHeap(); if (has_initial_map()) { initial_map()->set_prototype(value); } else { // Put the value in the initial map field until an initial map is // needed. At that point, a new initial map is created and the // prototype is put into the initial map where it belongs. set_prototype_or_initial_map(value); } heap->ClearInstanceofCache(); return value; } MaybeObject* JSFunction::SetPrototype(Object* value) { ASSERT(should_have_prototype()); Object* construct_prototype = value; // If the value is not a JSObject, store the value in the map's // constructor field so it can be accessed. Also, set the prototype // used for constructing objects to the original object prototype. // See ECMA-262 13.2.2. if (!value->IsJSObject()) { // Copy the map so this does not affect unrelated functions. // Remove map transitions because they point to maps with a // different prototype. Object* new_object; { MaybeObject* maybe_new_map = map()->CopyDropTransitions(); if (!maybe_new_map->ToObject(&new_object)) return maybe_new_map; } Map* new_map = Map::cast(new_object); Heap* heap = new_map->heap(); set_map(new_map); new_map->set_constructor(value); new_map->set_non_instance_prototype(true); construct_prototype = heap->isolate()->context()->global_context()-> initial_object_prototype(); } else { map()->set_non_instance_prototype(false); } return SetInstancePrototype(construct_prototype); } Object* JSFunction::RemovePrototype() { Context* global_context = context()->global_context(); Map* no_prototype_map = shared()->strict_mode() ? global_context->strict_mode_function_without_prototype_map() : global_context->function_without_prototype_map(); if (map() == no_prototype_map) { // Be idempotent. return this; } ASSERT(!shared()->strict_mode() || map() == global_context->strict_mode_function_map()); ASSERT(shared()->strict_mode() || map() == global_context->function_map()); set_map(no_prototype_map); set_prototype_or_initial_map(no_prototype_map->heap()->the_hole_value()); return this; } Object* JSFunction::SetInstanceClassName(String* name) { shared()->set_instance_class_name(name); return this; } void JSFunction::PrintName(FILE* out) { SmartPointer name = shared()->DebugName()->ToCString(); PrintF(out, "%s", *name); } Context* JSFunction::GlobalContextFromLiterals(FixedArray* literals) { return Context::cast(literals->get(JSFunction::kLiteralGlobalContextIndex)); } MaybeObject* Oddball::Initialize(const char* to_string, Object* to_number, byte kind) { Object* symbol; { MaybeObject* maybe_symbol = Isolate::Current()->heap()->LookupAsciiSymbol(to_string); if (!maybe_symbol->ToObject(&symbol)) return maybe_symbol; } set_to_string(String::cast(symbol)); set_to_number(to_number); set_kind(kind); return this; } String* SharedFunctionInfo::DebugName() { Object* n = name(); if (!n->IsString() || String::cast(n)->length() == 0) return inferred_name(); return String::cast(n); } bool SharedFunctionInfo::HasSourceCode() { return !script()->IsUndefined() && !reinterpret_cast 登录后可以享受更多权益 您还没有登录,登录后您可以: 收藏Android系统代码 收藏喜欢的文章 多个平台共享账号 去登录 首次使用?从这里 注册
(this)->CodeIterateBody(v); break; case JS_GLOBAL_PROPERTY_CELL_TYPE: JSGlobalPropertyCell::BodyDescriptor::IterateBody(this, v); break; case HEAP_NUMBER_TYPE: case FILLER_TYPE: case BYTE_ARRAY_TYPE: case EXTERNAL_PIXEL_ARRAY_TYPE: case EXTERNAL_BYTE_ARRAY_TYPE: case EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE: case EXTERNAL_SHORT_ARRAY_TYPE: case EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE: case EXTERNAL_INT_ARRAY_TYPE: case EXTERNAL_UNSIGNED_INT_ARRAY_TYPE: case EXTERNAL_FLOAT_ARRAY_TYPE: break; case SHARED_FUNCTION_INFO_TYPE: SharedFunctionInfo::BodyDescriptor::IterateBody(this, v); break; #define MAKE_STRUCT_CASE(NAME, Name, name) \ case NAME##_TYPE: STRUCT_LIST(MAKE_STRUCT_CASE) #undef MAKE_STRUCT_CASE StructBodyDescriptor::IterateBody(this, object_size, v); break; default: PrintF("Unknown type: %d\n", type); UNREACHABLE(); } } Object* HeapNumber::HeapNumberToBoolean() { // NaN, +0, and -0 should return the false object #if __BYTE_ORDER == __LITTLE_ENDIAN union IeeeDoubleLittleEndianArchType u; #elif __BYTE_ORDER == __BIG_ENDIAN union IeeeDoubleBigEndianArchType u; #endif u.d = value(); if (u.bits.exp == 2047) { // Detect NaN for IEEE double precision floating point. if ((u.bits.man_low | u.bits.man_high) != 0) return GetHeap()->false_value(); } if (u.bits.exp == 0) { // Detect +0, and -0 for IEEE double precision floating point. if ((u.bits.man_low | u.bits.man_high) == 0) return GetHeap()->false_value(); } return GetHeap()->true_value(); } void HeapNumber::HeapNumberPrint(FILE* out) { PrintF(out, "%.16g", Number()); } void HeapNumber::HeapNumberPrint(StringStream* accumulator) { // The Windows version of vsnprintf can allocate when printing a %g string // into a buffer that may not be big enough. We don't want random memory // allocation when producing post-crash stack traces, so we print into a // buffer that is plenty big enough for any floating point number, then // print that using vsnprintf (which may truncate but never allocate if // there is no more space in the buffer). EmbeddedVector buffer; OS::SNPrintF(buffer, "%.16g", Number()); accumulator->Add("%s", buffer.start()); } String* JSObject::class_name() { if (IsJSFunction()) { return GetHeap()->function_class_symbol(); } if (map()->constructor()->IsJSFunction()) { JSFunction* constructor = JSFunction::cast(map()->constructor()); return String::cast(constructor->shared()->instance_class_name()); } // If the constructor is not present, return "Object". return GetHeap()->Object_symbol(); } String* JSObject::constructor_name() { if (map()->constructor()->IsJSFunction()) { JSFunction* constructor = JSFunction::cast(map()->constructor()); String* name = String::cast(constructor->shared()->name()); if (name->length() > 0) return name; String* inferred_name = constructor->shared()->inferred_name(); if (inferred_name->length() > 0) return inferred_name; Object* proto = GetPrototype(); if (proto->IsJSObject()) return JSObject::cast(proto)->constructor_name(); } // If the constructor is not present, return "Object". return GetHeap()->Object_symbol(); } MaybeObject* JSObject::AddFastPropertyUsingMap(Map* new_map, String* name, Object* value) { int index = new_map->PropertyIndexFor(name); if (map()->unused_property_fields() == 0) { ASSERT(map()->unused_property_fields() == 0); int new_unused = new_map->unused_property_fields(); Object* values; { MaybeObject* maybe_values = properties()->CopySize(properties()->length() + new_unused + 1); if (!maybe_values->ToObject(&values)) return maybe_values; } set_properties(FixedArray::cast(values)); } set_map(new_map); return FastPropertyAtPut(index, value); } static bool IsIdentifier(UnicodeCache* cache, unibrow::CharacterStream* buffer) { // Checks whether the buffer contains an identifier (no escape). if (!buffer->has_more()) return false; if (!cache->IsIdentifierStart(buffer->GetNext())) { return false; } while (buffer->has_more()) { if (!cache->IsIdentifierPart(buffer->GetNext())) { return false; } } return true; } MaybeObject* JSObject::AddFastProperty(String* name, Object* value, PropertyAttributes attributes) { ASSERT(!IsJSGlobalProxy()); // Normalize the object if the name is an actual string (not the // hidden symbols) and is not a real identifier. Isolate* isolate = GetHeap()->isolate(); StringInputBuffer buffer(name); if (!IsIdentifier(isolate->unicode_cache(), &buffer) && name != isolate->heap()->hidden_symbol()) { Object* obj; { MaybeObject* maybe_obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } return AddSlowProperty(name, value, attributes); } DescriptorArray* old_descriptors = map()->instance_descriptors(); // Compute the new index for new field. int index = map()->NextFreePropertyIndex(); // Allocate new instance descriptors with (name, index) added FieldDescriptor new_field(name, index, attributes); Object* new_descriptors; { MaybeObject* maybe_new_descriptors = old_descriptors->CopyInsert(&new_field, REMOVE_TRANSITIONS); if (!maybe_new_descriptors->ToObject(&new_descriptors)) { return maybe_new_descriptors; } } // Only allow map transition if the object isn't the global object and there // is not a transition for the name, or there's a transition for the name but // it's unrelated to properties. int descriptor_index = old_descriptors->Search(name); // External array transitions are stored in the descriptor for property "", // which is not a identifier and should have forced a switch to slow // properties above. ASSERT(descriptor_index == DescriptorArray::kNotFound || old_descriptors->GetType(descriptor_index) != EXTERNAL_ARRAY_TRANSITION); bool can_insert_transition = descriptor_index == DescriptorArray::kNotFound || old_descriptors->GetType(descriptor_index) == EXTERNAL_ARRAY_TRANSITION; bool allow_map_transition = can_insert_transition && (isolate->context()->global_context()->object_function()->map() != map()); ASSERT(index < map()->inobject_properties() || (index - map()->inobject_properties()) < properties()->length() || map()->unused_property_fields() == 0); // Allocate a new map for the object. Object* r; { MaybeObject* maybe_r = map()->CopyDropDescriptors(); if (!maybe_r->ToObject(&r)) return maybe_r; } Map* new_map = Map::cast(r); if (allow_map_transition) { // Allocate new instance descriptors for the old map with map transition. MapTransitionDescriptor d(name, Map::cast(new_map), attributes); Object* r; { MaybeObject* maybe_r = old_descriptors->CopyInsert(&d, KEEP_TRANSITIONS); if (!maybe_r->ToObject(&r)) return maybe_r; } old_descriptors = DescriptorArray::cast(r); } if (map()->unused_property_fields() == 0) { if (properties()->length() > MaxFastProperties()) { Object* obj; { MaybeObject* maybe_obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } return AddSlowProperty(name, value, attributes); } // Make room for the new value Object* values; { MaybeObject* maybe_values = properties()->CopySize(properties()->length() + kFieldsAdded); if (!maybe_values->ToObject(&values)) return maybe_values; } set_properties(FixedArray::cast(values)); new_map->set_unused_property_fields(kFieldsAdded - 1); } else { new_map->set_unused_property_fields(map()->unused_property_fields() - 1); } // We have now allocated all the necessary objects. // All the changes can be applied at once, so they are atomic. map()->set_instance_descriptors(old_descriptors); new_map->set_instance_descriptors(DescriptorArray::cast(new_descriptors)); set_map(new_map); return FastPropertyAtPut(index, value); } MaybeObject* JSObject::AddConstantFunctionProperty( String* name, JSFunction* function, PropertyAttributes attributes) { ASSERT(!GetHeap()->InNewSpace(function)); // Allocate new instance descriptors with (name, function) added ConstantFunctionDescriptor d(name, function, attributes); Object* new_descriptors; { MaybeObject* maybe_new_descriptors = map()->instance_descriptors()->CopyInsert(&d, REMOVE_TRANSITIONS); if (!maybe_new_descriptors->ToObject(&new_descriptors)) { return maybe_new_descriptors; } } // Allocate a new map for the object. Object* new_map; { MaybeObject* maybe_new_map = map()->CopyDropDescriptors(); if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; } DescriptorArray* descriptors = DescriptorArray::cast(new_descriptors); Map::cast(new_map)->set_instance_descriptors(descriptors); Map* old_map = map(); set_map(Map::cast(new_map)); // If the old map is the global object map (from new Object()), // then transitions are not added to it, so we are done. Heap* heap = old_map->heap(); if (old_map == heap->isolate()->context()->global_context()-> object_function()->map()) { return function; } // Do not add CONSTANT_TRANSITIONS to global objects if (IsGlobalObject()) { return function; } // Add a CONSTANT_TRANSITION descriptor to the old map, // so future assignments to this property on other objects // of the same type will create a normal field, not a constant function. // Don't do this for special properties, with non-trival attributes. if (attributes != NONE) { return function; } ConstTransitionDescriptor mark(name, Map::cast(new_map)); { MaybeObject* maybe_new_descriptors = old_map->instance_descriptors()->CopyInsert(&mark, KEEP_TRANSITIONS); if (!maybe_new_descriptors->ToObject(&new_descriptors)) { // We have accomplished the main goal, so return success. return function; } } old_map->set_instance_descriptors(DescriptorArray::cast(new_descriptors)); return function; } // Add property in slow mode MaybeObject* JSObject::AddSlowProperty(String* name, Object* value, PropertyAttributes attributes) { ASSERT(!HasFastProperties()); StringDictionary* dict = property_dictionary(); Object* store_value = value; if (IsGlobalObject()) { // In case name is an orphaned property reuse the cell. int entry = dict->FindEntry(name); if (entry != StringDictionary::kNotFound) { store_value = dict->ValueAt(entry); JSGlobalPropertyCell::cast(store_value)->set_value(value); // Assign an enumeration index to the property and update // SetNextEnumerationIndex. int index = dict->NextEnumerationIndex(); PropertyDetails details = PropertyDetails(attributes, NORMAL, index); dict->SetNextEnumerationIndex(index + 1); dict->SetEntry(entry, name, store_value, details); return value; } Heap* heap = GetHeap(); { MaybeObject* maybe_store_value = heap->AllocateJSGlobalPropertyCell(value); if (!maybe_store_value->ToObject(&store_value)) return maybe_store_value; } JSGlobalPropertyCell::cast(store_value)->set_value(value); } PropertyDetails details = PropertyDetails(attributes, NORMAL); Object* result; { MaybeObject* maybe_result = dict->Add(name, store_value, details); if (!maybe_result->ToObject(&result)) return maybe_result; } if (dict != result) set_properties(StringDictionary::cast(result)); return value; } MaybeObject* JSObject::AddProperty(String* name, Object* value, PropertyAttributes attributes, StrictModeFlag strict_mode) { ASSERT(!IsJSGlobalProxy()); Map* map_of_this = map(); Heap* heap = map_of_this->heap(); if (!map_of_this->is_extensible()) { if (strict_mode == kNonStrictMode) { return heap->undefined_value(); } else { Handle args[1] = {Handle(name)}; return heap->isolate()->Throw( *FACTORY->NewTypeError("object_not_extensible", HandleVector(args, 1))); } } if (HasFastProperties()) { // Ensure the descriptor array does not get too big. if (map_of_this->instance_descriptors()->number_of_descriptors() < DescriptorArray::kMaxNumberOfDescriptors) { if (value->IsJSFunction() && !heap->InNewSpace(value)) { return AddConstantFunctionProperty(name, JSFunction::cast(value), attributes); } else { return AddFastProperty(name, value, attributes); } } else { // Normalize the object to prevent very large instance descriptors. // This eliminates unwanted N^2 allocation and lookup behavior. Object* obj; { MaybeObject* maybe_obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } } } return AddSlowProperty(name, value, attributes); } MaybeObject* JSObject::SetPropertyPostInterceptor( String* name, Object* value, PropertyAttributes attributes, StrictModeFlag strict_mode) { // Check local property, ignore interceptor. LookupResult result; LocalLookupRealNamedProperty(name, &result); if (result.IsFound()) { // An existing property, a map transition or a null descriptor was // found. Use set property to handle all these cases. return SetProperty(&result, name, value, attributes, strict_mode); } // Add a new real property. return AddProperty(name, value, attributes, strict_mode); } MaybeObject* JSObject::ReplaceSlowProperty(String* name, Object* value, PropertyAttributes attributes) { StringDictionary* dictionary = property_dictionary(); int old_index = dictionary->FindEntry(name); int new_enumeration_index = 0; // 0 means "Use the next available index." if (old_index != -1) { // All calls to ReplaceSlowProperty have had all transitions removed. ASSERT(!dictionary->DetailsAt(old_index).IsTransition()); new_enumeration_index = dictionary->DetailsAt(old_index).index(); } PropertyDetails new_details(attributes, NORMAL, new_enumeration_index); return SetNormalizedProperty(name, value, new_details); } MaybeObject* JSObject::ConvertDescriptorToFieldAndMapTransition( String* name, Object* new_value, PropertyAttributes attributes) { Map* old_map = map(); Object* result; { MaybeObject* maybe_result = ConvertDescriptorToField(name, new_value, attributes); if (!maybe_result->ToObject(&result)) return maybe_result; } // If we get to this point we have succeeded - do not return failure // after this point. Later stuff is optional. if (!HasFastProperties()) { return result; } // Do not add transitions to the map of "new Object()". if (map() == old_map->heap()->isolate()->context()->global_context()-> object_function()->map()) { return result; } MapTransitionDescriptor transition(name, map(), attributes); Object* new_descriptors; { MaybeObject* maybe_new_descriptors = old_map->instance_descriptors()-> CopyInsert(&transition, KEEP_TRANSITIONS); if (!maybe_new_descriptors->ToObject(&new_descriptors)) { return result; // Yes, return _result_. } } old_map->set_instance_descriptors(DescriptorArray::cast(new_descriptors)); return result; } MaybeObject* JSObject::ConvertDescriptorToField(String* name, Object* new_value, PropertyAttributes attributes) { if (map()->unused_property_fields() == 0 && properties()->length() > MaxFastProperties()) { Object* obj; { MaybeObject* maybe_obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } return ReplaceSlowProperty(name, new_value, attributes); } int index = map()->NextFreePropertyIndex(); FieldDescriptor new_field(name, index, attributes); // Make a new DescriptorArray replacing an entry with FieldDescriptor. Object* descriptors_unchecked; { MaybeObject* maybe_descriptors_unchecked = map()->instance_descriptors()-> CopyInsert(&new_field, REMOVE_TRANSITIONS); if (!maybe_descriptors_unchecked->ToObject(&descriptors_unchecked)) { return maybe_descriptors_unchecked; } } DescriptorArray* new_descriptors = DescriptorArray::cast(descriptors_unchecked); // Make a new map for the object. Object* new_map_unchecked; { MaybeObject* maybe_new_map_unchecked = map()->CopyDropDescriptors(); if (!maybe_new_map_unchecked->ToObject(&new_map_unchecked)) { return maybe_new_map_unchecked; } } Map* new_map = Map::cast(new_map_unchecked); new_map->set_instance_descriptors(new_descriptors); // Make new properties array if necessary. FixedArray* new_properties = 0; // Will always be NULL or a valid pointer. int new_unused_property_fields = map()->unused_property_fields() - 1; if (map()->unused_property_fields() == 0) { new_unused_property_fields = kFieldsAdded - 1; Object* new_properties_object; { MaybeObject* maybe_new_properties_object = properties()->CopySize(properties()->length() + kFieldsAdded); if (!maybe_new_properties_object->ToObject(&new_properties_object)) { return maybe_new_properties_object; } } new_properties = FixedArray::cast(new_properties_object); } // Update pointers to commit changes. // Object points to the new map. new_map->set_unused_property_fields(new_unused_property_fields); set_map(new_map); if (new_properties) { set_properties(FixedArray::cast(new_properties)); } return FastPropertyAtPut(index, new_value); } MaybeObject* JSObject::SetPropertyWithInterceptor( String* name, Object* value, PropertyAttributes attributes, StrictModeFlag strict_mode) { Isolate* isolate = GetIsolate(); HandleScope scope(isolate); Handle this_handle(this); Handle name_handle(name); Handle value_handle(value, isolate); Handle interceptor(GetNamedInterceptor()); if (!interceptor->setter()->IsUndefined()) { LOG(isolate, ApiNamedPropertyAccess("interceptor-named-set", this, name)); CustomArguments args(isolate, interceptor->data(), this, this); v8::AccessorInfo info(args.end()); v8::NamedPropertySetter setter = v8::ToCData(interceptor->setter()); v8::Handle result; { // Leaving JavaScript. VMState state(isolate, EXTERNAL); Handle value_unhole(value->IsTheHole() ? isolate->heap()->undefined_value() : value, isolate); result = setter(v8::Utils::ToLocal(name_handle), v8::Utils::ToLocal(value_unhole), info); } RETURN_IF_SCHEDULED_EXCEPTION(isolate); if (!result.IsEmpty()) return *value_handle; } MaybeObject* raw_result = this_handle->SetPropertyPostInterceptor(*name_handle, *value_handle, attributes, strict_mode); RETURN_IF_SCHEDULED_EXCEPTION(isolate); return raw_result; } MaybeObject* JSObject::SetProperty(String* name, Object* value, PropertyAttributes attributes, StrictModeFlag strict_mode) { LookupResult result; LocalLookup(name, &result); return SetProperty(&result, name, value, attributes, strict_mode); } MaybeObject* JSObject::SetPropertyWithCallback(Object* structure, String* name, Object* value, JSObject* holder) { Isolate* isolate = GetIsolate(); HandleScope scope(isolate); // We should never get here to initialize a const with the hole // value since a const declaration would conflict with the setter. ASSERT(!value->IsTheHole()); Handle value_handle(value, isolate); // To accommodate both the old and the new api we switch on the // data structure used to store the callbacks. Eventually proxy // callbacks should be phased out. if (structure->IsProxy()) { AccessorDescriptor* callback = reinterpret_cast(Proxy::cast(structure)->proxy()); MaybeObject* obj = (callback->setter)(this, value, callback->data); RETURN_IF_SCHEDULED_EXCEPTION(isolate); if (obj->IsFailure()) return obj; return *value_handle; } if (structure->IsAccessorInfo()) { // api style callbacks AccessorInfo* data = AccessorInfo::cast(structure); Object* call_obj = data->setter(); v8::AccessorSetter call_fun = v8::ToCData(call_obj); if (call_fun == NULL) return value; Handle key(name); LOG(isolate, ApiNamedPropertyAccess("store", this, name)); CustomArguments args(isolate, data->data(), this, JSObject::cast(holder)); v8::AccessorInfo info(args.end()); { // Leaving JavaScript. VMState state(isolate, EXTERNAL); call_fun(v8::Utils::ToLocal(key), v8::Utils::ToLocal(value_handle), info); } RETURN_IF_SCHEDULED_EXCEPTION(isolate); return *value_handle; } if (structure->IsFixedArray()) { Object* setter = FixedArray::cast(structure)->get(kSetterIndex); if (setter->IsJSFunction()) { return SetPropertyWithDefinedSetter(JSFunction::cast(setter), value); } else { Handle key(name); Handle holder_handle(holder, isolate); Handle args[2] = { key, holder_handle }; return isolate->Throw( *isolate->factory()->NewTypeError("no_setter_in_callback", HandleVector(args, 2))); } } UNREACHABLE(); return NULL; } MaybeObject* JSObject::SetPropertyWithDefinedSetter(JSFunction* setter, Object* value) { Isolate* isolate = GetIsolate(); Handle value_handle(value, isolate); Handle fun(JSFunction::cast(setter), isolate); Handle self(this, isolate); #ifdef ENABLE_DEBUGGER_SUPPORT Debug* debug = isolate->debug(); // Handle stepping into a setter if step into is active. if (debug->StepInActive()) { debug->HandleStepIn(fun, Handle::null(), 0, false); } #endif bool has_pending_exception; Object** argv[] = { value_handle.location() }; Execution::Call(fun, self, 1, argv, &has_pending_exception); // Check for pending exception and return the result. if (has_pending_exception) return Failure::Exception(); return *value_handle; } void JSObject::LookupCallbackSetterInPrototypes(String* name, LookupResult* result) { Heap* heap = GetHeap(); for (Object* pt = GetPrototype(); pt != heap->null_value(); pt = pt->GetPrototype()) { JSObject::cast(pt)->LocalLookupRealNamedProperty(name, result); if (result->IsProperty()) { if (result->type() == CALLBACKS && !result->IsReadOnly()) return; // Found non-callback or read-only callback, stop looking. break; } } result->NotFound(); } MaybeObject* JSObject::SetElementWithCallbackSetterInPrototypes(uint32_t index, Object* value, bool* found) { Heap* heap = GetHeap(); for (Object* pt = GetPrototype(); pt != heap->null_value(); pt = pt->GetPrototype()) { if (!JSObject::cast(pt)->HasDictionaryElements()) { continue; } NumberDictionary* dictionary = JSObject::cast(pt)->element_dictionary(); int entry = dictionary->FindEntry(index); if (entry != NumberDictionary::kNotFound) { PropertyDetails details = dictionary->DetailsAt(entry); if (details.type() == CALLBACKS) { *found = true; return SetElementWithCallback( dictionary->ValueAt(entry), index, value, JSObject::cast(pt)); } } } *found = false; return heap->the_hole_value(); } void JSObject::LookupInDescriptor(String* name, LookupResult* result) { DescriptorArray* descriptors = map()->instance_descriptors(); int number = descriptors->SearchWithCache(name); if (number != DescriptorArray::kNotFound) { result->DescriptorResult(this, descriptors->GetDetails(number), number); } else { result->NotFound(); } } void Map::LookupInDescriptors(JSObject* holder, String* name, LookupResult* result) { DescriptorArray* descriptors = instance_descriptors(); DescriptorLookupCache* cache = heap()->isolate()->descriptor_lookup_cache(); int number = cache->Lookup(descriptors, name); if (number == DescriptorLookupCache::kAbsent) { number = descriptors->Search(name); cache->Update(descriptors, name, number); } if (number != DescriptorArray::kNotFound) { result->DescriptorResult(holder, descriptors->GetDetails(number), number); } else { result->NotFound(); } } MaybeObject* Map::GetExternalArrayElementsMap(ExternalArrayType array_type, bool safe_to_add_transition) { Heap* current_heap = heap(); DescriptorArray* descriptors = instance_descriptors(); String* external_array_sentinel_name = current_heap->empty_symbol(); if (safe_to_add_transition) { // It's only safe to manipulate the descriptor array if it would be // safe to add a transition. ASSERT(!is_shared()); // no transitions can be added to shared maps. // Check if the external array transition already exists. DescriptorLookupCache* cache = current_heap->isolate()->descriptor_lookup_cache(); int index = cache->Lookup(descriptors, external_array_sentinel_name); if (index == DescriptorLookupCache::kAbsent) { index = descriptors->Search(external_array_sentinel_name); cache->Update(descriptors, external_array_sentinel_name, index); } // If the transition already exists, check the type. If there is a match, // return it. if (index != DescriptorArray::kNotFound) { PropertyDetails details(PropertyDetails(descriptors->GetDetails(index))); if (details.type() == EXTERNAL_ARRAY_TRANSITION && details.array_type() == array_type) { return descriptors->GetValue(index); } else { safe_to_add_transition = false; } } } // No transition to an existing external array map. Make a new one. Object* obj; { MaybeObject* maybe_map = CopyDropTransitions(); if (!maybe_map->ToObject(&obj)) return maybe_map; } Map* new_map = Map::cast(obj); new_map->set_has_fast_elements(false); new_map->set_has_external_array_elements(true); GetIsolate()->counters()->map_to_external_array_elements()->Increment(); // Only remember the map transition if the object's map is NOT equal to the // global object_function's map and there is not an already existing // non-matching external array transition. bool allow_map_transition = safe_to_add_transition && (GetIsolate()->context()->global_context()->object_function()->map() != map()); if (allow_map_transition) { // Allocate new instance descriptors for the old map with map transition. ExternalArrayTransitionDescriptor desc(external_array_sentinel_name, Map::cast(new_map), array_type); Object* new_descriptors; MaybeObject* maybe_new_descriptors = descriptors->CopyInsert( &desc, KEEP_TRANSITIONS); if (!maybe_new_descriptors->ToObject(&new_descriptors)) { return maybe_new_descriptors; } descriptors = DescriptorArray::cast(new_descriptors); set_instance_descriptors(descriptors); } return new_map; } void JSObject::LocalLookupRealNamedProperty(String* name, LookupResult* result) { if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return result->NotFound(); ASSERT(proto->IsJSGlobalObject()); return JSObject::cast(proto)->LocalLookupRealNamedProperty(name, result); } if (HasFastProperties()) { LookupInDescriptor(name, result); if (result->IsFound()) { // A property, a map transition or a null descriptor was found. // We return all of these result types because // LocalLookupRealNamedProperty is used when setting properties // where map transitions and null descriptors are handled. ASSERT(result->holder() == this && result->type() != NORMAL); // Disallow caching for uninitialized constants. These can only // occur as fields. if (result->IsReadOnly() && result->type() == FIELD && FastPropertyAt(result->GetFieldIndex())->IsTheHole()) { result->DisallowCaching(); } return; } } else { int entry = property_dictionary()->FindEntry(name); if (entry != StringDictionary::kNotFound) { Object* value = property_dictionary()->ValueAt(entry); if (IsGlobalObject()) { PropertyDetails d = property_dictionary()->DetailsAt(entry); if (d.IsDeleted()) { result->NotFound(); return; } value = JSGlobalPropertyCell::cast(value)->value(); } // Make sure to disallow caching for uninitialized constants // found in the dictionary-mode objects. if (value->IsTheHole()) result->DisallowCaching(); result->DictionaryResult(this, entry); return; } } result->NotFound(); } void JSObject::LookupRealNamedProperty(String* name, LookupResult* result) { LocalLookupRealNamedProperty(name, result); if (result->IsProperty()) return; LookupRealNamedPropertyInPrototypes(name, result); } void JSObject::LookupRealNamedPropertyInPrototypes(String* name, LookupResult* result) { Heap* heap = GetHeap(); for (Object* pt = GetPrototype(); pt != heap->null_value(); pt = JSObject::cast(pt)->GetPrototype()) { JSObject::cast(pt)->LocalLookupRealNamedProperty(name, result); if (result->IsProperty() && (result->type() != INTERCEPTOR)) return; } result->NotFound(); } // We only need to deal with CALLBACKS and INTERCEPTORS MaybeObject* JSObject::SetPropertyWithFailedAccessCheck(LookupResult* result, String* name, Object* value, bool check_prototype) { if (check_prototype && !result->IsProperty()) { LookupCallbackSetterInPrototypes(name, result); } if (result->IsProperty()) { if (!result->IsReadOnly()) { switch (result->type()) { case CALLBACKS: { Object* obj = result->GetCallbackObject(); if (obj->IsAccessorInfo()) { AccessorInfo* info = AccessorInfo::cast(obj); if (info->all_can_write()) { return SetPropertyWithCallback(result->GetCallbackObject(), name, value, result->holder()); } } break; } case INTERCEPTOR: { // Try lookup real named properties. Note that only property can be // set is callbacks marked as ALL_CAN_WRITE on the prototype chain. LookupResult r; LookupRealNamedProperty(name, &r); if (r.IsProperty()) { return SetPropertyWithFailedAccessCheck(&r, name, value, check_prototype); } break; } default: { break; } } } } HandleScope scope; Handle value_handle(value); Heap* heap = GetHeap(); heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_SET); return *value_handle; } MaybeObject* JSObject::SetProperty(LookupResult* result, String* name, Object* value, PropertyAttributes attributes, StrictModeFlag strict_mode) { Heap* heap = GetHeap(); // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc; // Optimization for 2-byte strings often used as keys in a decompression // dictionary. We make these short keys into symbols to avoid constantly // reallocating them. if (!name->IsSymbol() && name->length() <= 2) { Object* symbol_version; { MaybeObject* maybe_symbol_version = heap->LookupSymbol(name); if (maybe_symbol_version->ToObject(&symbol_version)) { name = String::cast(symbol_version); } } } // Check access rights if needed. if (IsAccessCheckNeeded() && !heap->isolate()->MayNamedAccess(this, name, v8::ACCESS_SET)) { return SetPropertyWithFailedAccessCheck(result, name, value, true); } if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return value; ASSERT(proto->IsJSGlobalObject()); return JSObject::cast(proto)->SetProperty( result, name, value, attributes, strict_mode); } if (!result->IsProperty() && !IsJSContextExtensionObject()) { // We could not find a local property so let's check whether there is an // accessor that wants to handle the property. LookupResult accessor_result; LookupCallbackSetterInPrototypes(name, &accessor_result); if (accessor_result.IsProperty()) { return SetPropertyWithCallback(accessor_result.GetCallbackObject(), name, value, accessor_result.holder()); } } if (!result->IsFound()) { // Neither properties nor transitions found. return AddProperty(name, value, attributes, strict_mode); } if (result->IsReadOnly() && result->IsProperty()) { if (strict_mode == kStrictMode) { HandleScope scope; Handle key(name); Handle holder(this); Handle args[2] = { key, holder }; return heap->isolate()->Throw(*heap->isolate()->factory()->NewTypeError( "strict_read_only_property", HandleVector(args, 2))); } else { return value; } } // This is a real property that is not read-only, or it is a // transition or null descriptor and there are no setters in the prototypes. switch (result->type()) { case NORMAL: return SetNormalizedProperty(result, value); case FIELD: return FastPropertyAtPut(result->GetFieldIndex(), value); case MAP_TRANSITION: if (attributes == result->GetAttributes()) { // Only use map transition if the attributes match. return AddFastPropertyUsingMap(result->GetTransitionMap(), name, value); } return ConvertDescriptorToField(name, value, attributes); case CONSTANT_FUNCTION: // Only replace the function if necessary. if (value == result->GetConstantFunction()) return value; // Preserve the attributes of this existing property. attributes = result->GetAttributes(); return ConvertDescriptorToField(name, value, attributes); case CALLBACKS: return SetPropertyWithCallback(result->GetCallbackObject(), name, value, result->holder()); case INTERCEPTOR: return SetPropertyWithInterceptor(name, value, attributes, strict_mode); case CONSTANT_TRANSITION: { // If the same constant function is being added we can simply // transition to the target map. Map* target_map = result->GetTransitionMap(); DescriptorArray* target_descriptors = target_map->instance_descriptors(); int number = target_descriptors->SearchWithCache(name); ASSERT(number != DescriptorArray::kNotFound); ASSERT(target_descriptors->GetType(number) == CONSTANT_FUNCTION); JSFunction* function = JSFunction::cast(target_descriptors->GetValue(number)); ASSERT(!HEAP->InNewSpace(function)); if (value == function) { set_map(target_map); return value; } // Otherwise, replace with a MAP_TRANSITION to a new map with a // FIELD, even if the value is a constant function. return ConvertDescriptorToFieldAndMapTransition(name, value, attributes); } case NULL_DESCRIPTOR: case EXTERNAL_ARRAY_TRANSITION: return ConvertDescriptorToFieldAndMapTransition(name, value, attributes); default: UNREACHABLE(); } UNREACHABLE(); return value; } // Set a real local property, even if it is READ_ONLY. If the property is not // present, add it with attributes NONE. This code is an exact clone of // SetProperty, with the check for IsReadOnly and the check for a // callback setter removed. The two lines looking up the LookupResult // result are also added. If one of the functions is changed, the other // should be. MaybeObject* JSObject::SetLocalPropertyIgnoreAttributes( String* name, Object* value, PropertyAttributes attributes) { // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc; LookupResult result; LocalLookup(name, &result); // Check access rights if needed. if (IsAccessCheckNeeded()) { Heap* heap = GetHeap(); if (!heap->isolate()->MayNamedAccess(this, name, v8::ACCESS_SET)) { return SetPropertyWithFailedAccessCheck(&result, name, value, false); } } if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return value; ASSERT(proto->IsJSGlobalObject()); return JSObject::cast(proto)->SetLocalPropertyIgnoreAttributes( name, value, attributes); } // Check for accessor in prototype chain removed here in clone. if (!result.IsFound()) { // Neither properties nor transitions found. return AddProperty(name, value, attributes, kNonStrictMode); } PropertyDetails details = PropertyDetails(attributes, NORMAL); // Check of IsReadOnly removed from here in clone. switch (result.type()) { case NORMAL: return SetNormalizedProperty(name, value, details); case FIELD: return FastPropertyAtPut(result.GetFieldIndex(), value); case MAP_TRANSITION: if (attributes == result.GetAttributes()) { // Only use map transition if the attributes match. return AddFastPropertyUsingMap(result.GetTransitionMap(), name, value); } return ConvertDescriptorToField(name, value, attributes); case CONSTANT_FUNCTION: // Only replace the function if necessary. if (value == result.GetConstantFunction()) return value; // Preserve the attributes of this existing property. attributes = result.GetAttributes(); return ConvertDescriptorToField(name, value, attributes); case CALLBACKS: case INTERCEPTOR: // Override callback in clone return ConvertDescriptorToField(name, value, attributes); case CONSTANT_TRANSITION: // Replace with a MAP_TRANSITION to a new map with a FIELD, even // if the value is a function. return ConvertDescriptorToFieldAndMapTransition(name, value, attributes); case NULL_DESCRIPTOR: case EXTERNAL_ARRAY_TRANSITION: return ConvertDescriptorToFieldAndMapTransition(name, value, attributes); default: UNREACHABLE(); } UNREACHABLE(); return value; } PropertyAttributes JSObject::GetPropertyAttributePostInterceptor( JSObject* receiver, String* name, bool continue_search) { // Check local property, ignore interceptor. LookupResult result; LocalLookupRealNamedProperty(name, &result); if (result.IsProperty()) return result.GetAttributes(); if (continue_search) { // Continue searching via the prototype chain. Object* pt = GetPrototype(); if (!pt->IsNull()) { return JSObject::cast(pt)-> GetPropertyAttributeWithReceiver(receiver, name); } } return ABSENT; } PropertyAttributes JSObject::GetPropertyAttributeWithInterceptor( JSObject* receiver, String* name, bool continue_search) { Isolate* isolate = GetIsolate(); // Make sure that the top context does not change when doing // callbacks or interceptor calls. AssertNoContextChange ncc; HandleScope scope(isolate); Handle interceptor(GetNamedInterceptor()); Handle receiver_handle(receiver); Handle holder_handle(this); Handle name_handle(name); CustomArguments args(isolate, interceptor->data(), receiver, this); v8::AccessorInfo info(args.end()); if (!interceptor->query()->IsUndefined()) { v8::NamedPropertyQuery query = v8::ToCData(interceptor->query()); LOG(isolate, ApiNamedPropertyAccess("interceptor-named-has", *holder_handle, name)); v8::Handle result; { // Leaving JavaScript. VMState state(isolate, EXTERNAL); result = query(v8::Utils::ToLocal(name_handle), info); } if (!result.IsEmpty()) { ASSERT(result->IsInt32()); return static_cast(result->Int32Value()); } } else if (!interceptor->getter()->IsUndefined()) { v8::NamedPropertyGetter getter = v8::ToCData(interceptor->getter()); LOG(isolate, ApiNamedPropertyAccess("interceptor-named-get-has", this, name)); v8::Handle result; { // Leaving JavaScript. VMState state(isolate, EXTERNAL); result = getter(v8::Utils::ToLocal(name_handle), info); } if (!result.IsEmpty()) return DONT_ENUM; } return holder_handle->GetPropertyAttributePostInterceptor(*receiver_handle, *name_handle, continue_search); } PropertyAttributes JSObject::GetPropertyAttributeWithReceiver( JSObject* receiver, String* key) { uint32_t index = 0; if (key->AsArrayIndex(&index)) { if (HasElementWithReceiver(receiver, index)) return NONE; return ABSENT; } // Named property. LookupResult result; Lookup(key, &result); return GetPropertyAttribute(receiver, &result, key, true); } PropertyAttributes JSObject::GetPropertyAttribute(JSObject* receiver, LookupResult* result, String* name, bool continue_search) { // Check access rights if needed. if (IsAccessCheckNeeded()) { Heap* heap = GetHeap(); if (!heap->isolate()->MayNamedAccess(this, name, v8::ACCESS_HAS)) { return GetPropertyAttributeWithFailedAccessCheck(receiver, result, name, continue_search); } } if (result->IsProperty()) { switch (result->type()) { case NORMAL: // fall through case FIELD: case CONSTANT_FUNCTION: case CALLBACKS: return result->GetAttributes(); case INTERCEPTOR: return result->holder()-> GetPropertyAttributeWithInterceptor(receiver, name, continue_search); default: UNREACHABLE(); } } return ABSENT; } PropertyAttributes JSObject::GetLocalPropertyAttribute(String* name) { // Check whether the name is an array index. uint32_t index = 0; if (name->AsArrayIndex(&index)) { if (HasLocalElement(index)) return NONE; return ABSENT; } // Named property. LookupResult result; LocalLookup(name, &result); return GetPropertyAttribute(this, &result, name, false); } MaybeObject* NormalizedMapCache::Get(JSObject* obj, PropertyNormalizationMode mode) { Isolate* isolate = obj->GetIsolate(); Map* fast = obj->map(); int index = Hash(fast) % kEntries; Object* result = get(index); if (result->IsMap() && CheckHit(Map::cast(result), fast, mode)) { #ifdef DEBUG if (FLAG_enable_slow_asserts) { // The cached map should match newly created normalized map bit-by-bit. Object* fresh; { MaybeObject* maybe_fresh = fast->CopyNormalized(mode, SHARED_NORMALIZED_MAP); if (maybe_fresh->ToObject(&fresh)) { ASSERT(memcmp(Map::cast(fresh)->address(), Map::cast(result)->address(), Map::kSize) == 0); } } } #endif return result; } { MaybeObject* maybe_result = fast->CopyNormalized(mode, SHARED_NORMALIZED_MAP); if (!maybe_result->ToObject(&result)) return maybe_result; } set(index, result); isolate->counters()->normalized_maps()->Increment(); return result; } void NormalizedMapCache::Clear() { int entries = length(); for (int i = 0; i != entries; i++) { set_undefined(i); } } int NormalizedMapCache::Hash(Map* fast) { // For performance reasons we only hash the 3 most variable fields of a map: // constructor, prototype and bit_field2. // Shift away the tag. int hash = (static_cast( reinterpret_cast(fast->constructor())) >> 2); // XOR-ing the prototype and constructor directly yields too many zero bits // when the two pointers are close (which is fairly common). // To avoid this we shift the prototype 4 bits relatively to the constructor. hash ^= (static_cast( reinterpret_cast(fast->prototype())) << 2); return hash ^ (hash >> 16) ^ fast->bit_field2(); } bool NormalizedMapCache::CheckHit(Map* slow, Map* fast, PropertyNormalizationMode mode) { #ifdef DEBUG slow->SharedMapVerify(); #endif return slow->constructor() == fast->constructor() && slow->prototype() == fast->prototype() && slow->inobject_properties() == ((mode == CLEAR_INOBJECT_PROPERTIES) ? 0 : fast->inobject_properties()) && slow->instance_type() == fast->instance_type() && slow->bit_field() == fast->bit_field() && (slow->bit_field2() & ~(1<bit_field2(); } MaybeObject* JSObject::UpdateMapCodeCache(String* name, Code* code) { if (map()->is_shared()) { // Fast case maps are never marked as shared. ASSERT(!HasFastProperties()); // Replace the map with an identical copy that can be safely modified. Object* obj; { MaybeObject* maybe_obj = map()->CopyNormalized(KEEP_INOBJECT_PROPERTIES, UNIQUE_NORMALIZED_MAP); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } GetIsolate()->counters()->normalized_maps()->Increment(); set_map(Map::cast(obj)); } return map()->UpdateCodeCache(name, code); } MaybeObject* JSObject::NormalizeProperties(PropertyNormalizationMode mode, int expected_additional_properties) { if (!HasFastProperties()) return this; // The global object is always normalized. ASSERT(!IsGlobalObject()); // JSGlobalProxy must never be normalized ASSERT(!IsJSGlobalProxy()); Map* map_of_this = map(); // Allocate new content. int property_count = map_of_this->NumberOfDescribedProperties(); if (expected_additional_properties > 0) { property_count += expected_additional_properties; } else { property_count += 2; // Make space for two more properties. } Object* obj; { MaybeObject* maybe_obj = StringDictionary::Allocate(property_count); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } StringDictionary* dictionary = StringDictionary::cast(obj); DescriptorArray* descs = map_of_this->instance_descriptors(); for (int i = 0; i < descs->number_of_descriptors(); i++) { PropertyDetails details(descs->GetDetails(i)); switch (details.type()) { case CONSTANT_FUNCTION: { PropertyDetails d = PropertyDetails(details.attributes(), NORMAL, details.index()); Object* value = descs->GetConstantFunction(i); Object* result; { MaybeObject* maybe_result = dictionary->Add(descs->GetKey(i), value, d); if (!maybe_result->ToObject(&result)) return maybe_result; } dictionary = StringDictionary::cast(result); break; } case FIELD: { PropertyDetails d = PropertyDetails(details.attributes(), NORMAL, details.index()); Object* value = FastPropertyAt(descs->GetFieldIndex(i)); Object* result; { MaybeObject* maybe_result = dictionary->Add(descs->GetKey(i), value, d); if (!maybe_result->ToObject(&result)) return maybe_result; } dictionary = StringDictionary::cast(result); break; } case CALLBACKS: { PropertyDetails d = PropertyDetails(details.attributes(), CALLBACKS, details.index()); Object* value = descs->GetCallbacksObject(i); Object* result; { MaybeObject* maybe_result = dictionary->Add(descs->GetKey(i), value, d); if (!maybe_result->ToObject(&result)) return maybe_result; } dictionary = StringDictionary::cast(result); break; } case MAP_TRANSITION: case CONSTANT_TRANSITION: case NULL_DESCRIPTOR: case INTERCEPTOR: break; default: UNREACHABLE(); } } Heap* current_heap = map_of_this->heap(); // Copy the next enumeration index from instance descriptor. int index = map_of_this->instance_descriptors()->NextEnumerationIndex(); dictionary->SetNextEnumerationIndex(index); { MaybeObject* maybe_obj = current_heap->isolate()->context()->global_context()-> normalized_map_cache()->Get(this, mode); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } Map* new_map = Map::cast(obj); // We have now successfully allocated all the necessary objects. // Changes can now be made with the guarantee that all of them take effect. // Resize the object in the heap if necessary. int new_instance_size = new_map->instance_size(); int instance_size_delta = map_of_this->instance_size() - new_instance_size; ASSERT(instance_size_delta >= 0); current_heap->CreateFillerObjectAt(this->address() + new_instance_size, instance_size_delta); set_map(new_map); new_map->set_instance_descriptors(current_heap->empty_descriptor_array()); set_properties(dictionary); current_heap->isolate()->counters()->props_to_dictionary()->Increment(); #ifdef DEBUG if (FLAG_trace_normalization) { PrintF("Object properties have been normalized:\n"); Print(); } #endif return this; } MaybeObject* JSObject::TransformToFastProperties(int unused_property_fields) { if (HasFastProperties()) return this; ASSERT(!IsGlobalObject()); return property_dictionary()-> TransformPropertiesToFastFor(this, unused_property_fields); } MaybeObject* JSObject::NormalizeElements() { ASSERT(!HasExternalArrayElements()); if (HasDictionaryElements()) return this; Map* old_map = map(); ASSERT(old_map->has_fast_elements()); Object* obj; { MaybeObject* maybe_obj = old_map->GetSlowElementsMap(); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } Map* new_map = Map::cast(obj); // Get number of entries. FixedArray* array = FixedArray::cast(elements()); // Compute the effective length. int length = IsJSArray() ? Smi::cast(JSArray::cast(this)->length())->value() : array->length(); { MaybeObject* maybe_obj = NumberDictionary::Allocate(length); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } NumberDictionary* dictionary = NumberDictionary::cast(obj); // Copy entries. for (int i = 0; i < length; i++) { Object* value = array->get(i); if (!value->IsTheHole()) { PropertyDetails details = PropertyDetails(NONE, NORMAL); Object* result; { MaybeObject* maybe_result = dictionary->AddNumberEntry(i, array->get(i), details); if (!maybe_result->ToObject(&result)) return maybe_result; } dictionary = NumberDictionary::cast(result); } } // Switch to using the dictionary as the backing storage for // elements. Set the new map first to satify the elements type // assert in set_elements(). set_map(new_map); set_elements(dictionary); new_map->heap()->isolate()->counters()->elements_to_dictionary()-> Increment(); #ifdef DEBUG if (FLAG_trace_normalization) { PrintF("Object elements have been normalized:\n"); Print(); } #endif return this; } MaybeObject* JSObject::DeletePropertyPostInterceptor(String* name, DeleteMode mode) { // Check local property, ignore interceptor. LookupResult result; LocalLookupRealNamedProperty(name, &result); if (!result.IsProperty()) return GetHeap()->true_value(); // Normalize object if needed. Object* obj; { MaybeObject* maybe_obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } return DeleteNormalizedProperty(name, mode); } MaybeObject* JSObject::DeletePropertyWithInterceptor(String* name) { Isolate* isolate = GetIsolate(); HandleScope scope(isolate); Handle interceptor(GetNamedInterceptor()); Handle name_handle(name); Handle this_handle(this); if (!interceptor->deleter()->IsUndefined()) { v8::NamedPropertyDeleter deleter = v8::ToCData(interceptor->deleter()); LOG(isolate, ApiNamedPropertyAccess("interceptor-named-delete", *this_handle, name)); CustomArguments args(isolate, interceptor->data(), this, this); v8::AccessorInfo info(args.end()); v8::Handle result; { // Leaving JavaScript. VMState state(isolate, EXTERNAL); result = deleter(v8::Utils::ToLocal(name_handle), info); } RETURN_IF_SCHEDULED_EXCEPTION(isolate); if (!result.IsEmpty()) { ASSERT(result->IsBoolean()); return *v8::Utils::OpenHandle(*result); } } MaybeObject* raw_result = this_handle->DeletePropertyPostInterceptor(*name_handle, NORMAL_DELETION); RETURN_IF_SCHEDULED_EXCEPTION(isolate); return raw_result; } MaybeObject* JSObject::DeleteElementPostInterceptor(uint32_t index, DeleteMode mode) { ASSERT(!HasExternalArrayElements()); switch (GetElementsKind()) { case FAST_ELEMENTS: { Object* obj; { MaybeObject* maybe_obj = EnsureWritableFastElements(); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } uint32_t length = IsJSArray() ? static_cast(Smi::cast(JSArray::cast(this)->length())->value()) : static_cast(FixedArray::cast(elements())->length()); if (index < length) { FixedArray::cast(elements())->set_the_hole(index); } break; } case DICTIONARY_ELEMENTS: { NumberDictionary* dictionary = element_dictionary(); int entry = dictionary->FindEntry(index); if (entry != NumberDictionary::kNotFound) { return dictionary->DeleteProperty(entry, mode); } break; } default: UNREACHABLE(); break; } return GetHeap()->true_value(); } MaybeObject* JSObject::DeleteElementWithInterceptor(uint32_t index) { Isolate* isolate = GetIsolate(); Heap* heap = isolate->heap(); // Make sure that the top context does not change when doing // callbacks or interceptor calls. AssertNoContextChange ncc; HandleScope scope(isolate); Handle interceptor(GetIndexedInterceptor()); if (interceptor->deleter()->IsUndefined()) return heap->false_value(); v8::IndexedPropertyDeleter deleter = v8::ToCData(interceptor->deleter()); Handle this_handle(this); LOG(isolate, ApiIndexedPropertyAccess("interceptor-indexed-delete", this, index)); CustomArguments args(isolate, interceptor->data(), this, this); v8::AccessorInfo info(args.end()); v8::Handle result; { // Leaving JavaScript. VMState state(isolate, EXTERNAL); result = deleter(index, info); } RETURN_IF_SCHEDULED_EXCEPTION(isolate); if (!result.IsEmpty()) { ASSERT(result->IsBoolean()); return *v8::Utils::OpenHandle(*result); } MaybeObject* raw_result = this_handle->DeleteElementPostInterceptor(index, NORMAL_DELETION); RETURN_IF_SCHEDULED_EXCEPTION(isolate); return raw_result; } MaybeObject* JSObject::DeleteElement(uint32_t index, DeleteMode mode) { Isolate* isolate = GetIsolate(); // Check access rights if needed. if (IsAccessCheckNeeded() && !isolate->MayIndexedAccess(this, index, v8::ACCESS_DELETE)) { isolate->ReportFailedAccessCheck(this, v8::ACCESS_DELETE); return isolate->heap()->false_value(); } if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return isolate->heap()->false_value(); ASSERT(proto->IsJSGlobalObject()); return JSGlobalObject::cast(proto)->DeleteElement(index, mode); } if (HasIndexedInterceptor()) { // Skip interceptor if forcing deletion. if (mode == FORCE_DELETION) { return DeleteElementPostInterceptor(index, mode); } return DeleteElementWithInterceptor(index); } switch (GetElementsKind()) { case FAST_ELEMENTS: { Object* obj; { MaybeObject* maybe_obj = EnsureWritableFastElements(); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } uint32_t length = IsJSArray() ? static_cast(Smi::cast(JSArray::cast(this)->length())->value()) : static_cast(FixedArray::cast(elements())->length()); if (index < length) { FixedArray::cast(elements())->set_the_hole(index); } break; } case EXTERNAL_PIXEL_ELEMENTS: case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: case EXTERNAL_FLOAT_ELEMENTS: // Pixel and external array elements cannot be deleted. Just // silently ignore here. break; case DICTIONARY_ELEMENTS: { NumberDictionary* dictionary = element_dictionary(); int entry = dictionary->FindEntry(index); if (entry != NumberDictionary::kNotFound) { Object* result = dictionary->DeleteProperty(entry, mode); if (mode == STRICT_DELETION && result == isolate->heap()->false_value()) { // In strict mode, deleting a non-configurable property throws // exception. dictionary->DeleteProperty will return false_value() // if a non-configurable property is being deleted. HandleScope scope; Handle i = isolate->factory()->NewNumberFromUint(index); Handle args[2] = { i, Handle(this) }; return isolate->Throw(*isolate->factory()->NewTypeError( "strict_delete_property", HandleVector(args, 2))); } } break; } default: UNREACHABLE(); break; } return isolate->heap()->true_value(); } MaybeObject* JSObject::DeleteProperty(String* name, DeleteMode mode) { Isolate* isolate = GetIsolate(); // ECMA-262, 3rd, 8.6.2.5 ASSERT(name->IsString()); // Check access rights if needed. if (IsAccessCheckNeeded() && !isolate->MayNamedAccess(this, name, v8::ACCESS_DELETE)) { isolate->ReportFailedAccessCheck(this, v8::ACCESS_DELETE); return isolate->heap()->false_value(); } if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return isolate->heap()->false_value(); ASSERT(proto->IsJSGlobalObject()); return JSGlobalObject::cast(proto)->DeleteProperty(name, mode); } uint32_t index = 0; if (name->AsArrayIndex(&index)) { return DeleteElement(index, mode); } else { LookupResult result; LocalLookup(name, &result); if (!result.IsProperty()) return isolate->heap()->true_value(); // Ignore attributes if forcing a deletion. if (result.IsDontDelete() && mode != FORCE_DELETION) { if (mode == STRICT_DELETION) { // Deleting a non-configurable property in strict mode. HandleScope scope(isolate); Handle args[2] = { Handle(name), Handle(this) }; return isolate->Throw(*isolate->factory()->NewTypeError( "strict_delete_property", HandleVector(args, 2))); } return isolate->heap()->false_value(); } // Check for interceptor. if (result.type() == INTERCEPTOR) { // Skip interceptor if forcing a deletion. if (mode == FORCE_DELETION) { return DeletePropertyPostInterceptor(name, mode); } return DeletePropertyWithInterceptor(name); } // Normalize object if needed. Object* obj; { MaybeObject* maybe_obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } // Make sure the properties are normalized before removing the entry. return DeleteNormalizedProperty(name, mode); } } // Check whether this object references another object. bool JSObject::ReferencesObject(Object* obj) { Map* map_of_this = map(); Heap* heap = map_of_this->heap(); AssertNoAllocation no_alloc; // Is the object the constructor for this object? if (map_of_this->constructor() == obj) { return true; } // Is the object the prototype for this object? if (map_of_this->prototype() == obj) { return true; } // Check if the object is among the named properties. Object* key = SlowReverseLookup(obj); if (!key->IsUndefined()) { return true; } // Check if the object is among the indexed properties. switch (GetElementsKind()) { case EXTERNAL_PIXEL_ELEMENTS: case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: case EXTERNAL_FLOAT_ELEMENTS: // Raw pixels and external arrays do not reference other // objects. break; case FAST_ELEMENTS: { int length = IsJSArray() ? Smi::cast(JSArray::cast(this)->length())->value() : FixedArray::cast(elements())->length(); for (int i = 0; i < length; i++) { Object* element = FixedArray::cast(elements())->get(i); if (!element->IsTheHole() && element == obj) { return true; } } break; } case DICTIONARY_ELEMENTS: { key = element_dictionary()->SlowReverseLookup(obj); if (!key->IsUndefined()) { return true; } break; } default: UNREACHABLE(); break; } // For functions check the context. if (IsJSFunction()) { // Get the constructor function for arguments array. JSObject* arguments_boilerplate = heap->isolate()->context()->global_context()-> arguments_boilerplate(); JSFunction* arguments_function = JSFunction::cast(arguments_boilerplate->map()->constructor()); // Get the context and don't check if it is the global context. JSFunction* f = JSFunction::cast(this); Context* context = f->context(); if (context->IsGlobalContext()) { return false; } // Check the non-special context slots. for (int i = Context::MIN_CONTEXT_SLOTS; i < context->length(); i++) { // Only check JS objects. if (context->get(i)->IsJSObject()) { JSObject* ctxobj = JSObject::cast(context->get(i)); // If it is an arguments array check the content. if (ctxobj->map()->constructor() == arguments_function) { if (ctxobj->ReferencesObject(obj)) { return true; } } else if (ctxobj == obj) { return true; } } } // Check the context extension if any. if (context->has_extension()) { return context->extension()->ReferencesObject(obj); } } // No references to object. return false; } MaybeObject* JSObject::PreventExtensions() { Isolate* isolate = GetIsolate(); if (IsAccessCheckNeeded() && !isolate->MayNamedAccess(this, isolate->heap()->undefined_value(), v8::ACCESS_KEYS)) { isolate->ReportFailedAccessCheck(this, v8::ACCESS_KEYS); return isolate->heap()->false_value(); } if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return this; ASSERT(proto->IsJSGlobalObject()); return JSObject::cast(proto)->PreventExtensions(); } // If there are fast elements we normalize. if (HasFastElements()) { Object* ok; { MaybeObject* maybe_ok = NormalizeElements(); if (!maybe_ok->ToObject(&ok)) return maybe_ok; } } // Make sure that we never go back to fast case. element_dictionary()->set_requires_slow_elements(); // Do a map transition, other objects with this map may still // be extensible. Object* new_map; { MaybeObject* maybe_new_map = map()->CopyDropTransitions(); if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; } Map::cast(new_map)->set_is_extensible(false); set_map(Map::cast(new_map)); ASSERT(!map()->is_extensible()); return new_map; } // Tests for the fast common case for property enumeration: // - This object and all prototypes has an enum cache (which means that it has // no interceptors and needs no access checks). // - This object has no elements. // - No prototype has enumerable properties/elements. bool JSObject::IsSimpleEnum() { Heap* heap = GetHeap(); for (Object* o = this; o != heap->null_value(); o = JSObject::cast(o)->GetPrototype()) { JSObject* curr = JSObject::cast(o); if (!curr->map()->instance_descriptors()->HasEnumCache()) return false; ASSERT(!curr->HasNamedInterceptor()); ASSERT(!curr->HasIndexedInterceptor()); ASSERT(!curr->IsAccessCheckNeeded()); if (curr->NumberOfEnumElements() > 0) return false; if (curr != this) { FixedArray* curr_fixed_array = FixedArray::cast(curr->map()->instance_descriptors()->GetEnumCache()); if (curr_fixed_array->length() > 0) return false; } } return true; } int Map::NumberOfDescribedProperties() { int result = 0; DescriptorArray* descs = instance_descriptors(); for (int i = 0; i < descs->number_of_descriptors(); i++) { if (descs->IsProperty(i)) result++; } return result; } int Map::PropertyIndexFor(String* name) { DescriptorArray* descs = instance_descriptors(); for (int i = 0; i < descs->number_of_descriptors(); i++) { if (name->Equals(descs->GetKey(i)) && !descs->IsNullDescriptor(i)) { return descs->GetFieldIndex(i); } } return -1; } int Map::NextFreePropertyIndex() { int max_index = -1; DescriptorArray* descs = instance_descriptors(); for (int i = 0; i < descs->number_of_descriptors(); i++) { if (descs->GetType(i) == FIELD) { int current_index = descs->GetFieldIndex(i); if (current_index > max_index) max_index = current_index; } } return max_index + 1; } AccessorDescriptor* Map::FindAccessor(String* name) { DescriptorArray* descs = instance_descriptors(); for (int i = 0; i < descs->number_of_descriptors(); i++) { if (name->Equals(descs->GetKey(i)) && descs->GetType(i) == CALLBACKS) { return descs->GetCallbacks(i); } } return NULL; } void JSObject::LocalLookup(String* name, LookupResult* result) { ASSERT(name->IsString()); Heap* heap = GetHeap(); if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return result->NotFound(); ASSERT(proto->IsJSGlobalObject()); return JSObject::cast(proto)->LocalLookup(name, result); } // Do not use inline caching if the object is a non-global object // that requires access checks. if (!IsJSGlobalProxy() && IsAccessCheckNeeded()) { result->DisallowCaching(); } // Check __proto__ before interceptor. if (name->Equals(heap->Proto_symbol()) && !IsJSContextExtensionObject()) { result->ConstantResult(this); return; } // Check for lookup interceptor except when bootstrapping. if (HasNamedInterceptor() && !heap->isolate()->bootstrapper()->IsActive()) { result->InterceptorResult(this); return; } LocalLookupRealNamedProperty(name, result); } void JSObject::Lookup(String* name, LookupResult* result) { // Ecma-262 3rd 8.6.2.4 Heap* heap = GetHeap(); for (Object* current = this; current != heap->null_value(); current = JSObject::cast(current)->GetPrototype()) { JSObject::cast(current)->LocalLookup(name, result); if (result->IsProperty()) return; } result->NotFound(); } // Search object and it's prototype chain for callback properties. void JSObject::LookupCallback(String* name, LookupResult* result) { Heap* heap = GetHeap(); for (Object* current = this; current != heap->null_value(); current = JSObject::cast(current)->GetPrototype()) { JSObject::cast(current)->LocalLookupRealNamedProperty(name, result); if (result->IsProperty() && result->type() == CALLBACKS) return; } result->NotFound(); } MaybeObject* JSObject::DefineGetterSetter(String* name, PropertyAttributes attributes) { Heap* heap = GetHeap(); // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc; // Try to flatten before operating on the string. name->TryFlatten(); if (!CanSetCallback(name)) { return heap->undefined_value(); } uint32_t index = 0; bool is_element = name->AsArrayIndex(&index); if (is_element) { switch (GetElementsKind()) { case FAST_ELEMENTS: break; case EXTERNAL_PIXEL_ELEMENTS: case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: case EXTERNAL_FLOAT_ELEMENTS: // Ignore getters and setters on pixel and external array // elements. return heap->undefined_value(); case DICTIONARY_ELEMENTS: { // Lookup the index. NumberDictionary* dictionary = element_dictionary(); int entry = dictionary->FindEntry(index); if (entry != NumberDictionary::kNotFound) { Object* result = dictionary->ValueAt(entry); PropertyDetails details = dictionary->DetailsAt(entry); if (details.IsReadOnly()) return heap->undefined_value(); if (details.type() == CALLBACKS) { if (result->IsFixedArray()) { return result; } // Otherwise allow to override it. } } break; } default: UNREACHABLE(); break; } } else { // Lookup the name. LookupResult result; LocalLookup(name, &result); if (result.IsProperty()) { if (result.IsReadOnly()) return heap->undefined_value(); if (result.type() == CALLBACKS) { Object* obj = result.GetCallbackObject(); // Need to preserve old getters/setters. if (obj->IsFixedArray()) { // Use set to update attributes. return SetPropertyCallback(name, obj, attributes); } } } } // Allocate the fixed array to hold getter and setter. Object* structure; { MaybeObject* maybe_structure = heap->AllocateFixedArray(2, TENURED); if (!maybe_structure->ToObject(&structure)) return maybe_structure; } if (is_element) { return SetElementCallback(index, structure, attributes); } else { return SetPropertyCallback(name, structure, attributes); } } bool JSObject::CanSetCallback(String* name) { ASSERT(!IsAccessCheckNeeded() || Isolate::Current()->MayNamedAccess(this, name, v8::ACCESS_SET)); // Check if there is an API defined callback object which prohibits // callback overwriting in this object or it's prototype chain. // This mechanism is needed for instance in a browser setting, where // certain accessors such as window.location should not be allowed // to be overwritten because allowing overwriting could potentially // cause security problems. LookupResult callback_result; LookupCallback(name, &callback_result); if (callback_result.IsProperty()) { Object* obj = callback_result.GetCallbackObject(); if (obj->IsAccessorInfo() && AccessorInfo::cast(obj)->prohibits_overwriting()) { return false; } } return true; } MaybeObject* JSObject::SetElementCallback(uint32_t index, Object* structure, PropertyAttributes attributes) { PropertyDetails details = PropertyDetails(attributes, CALLBACKS); // Normalize elements to make this operation simple. Object* ok; { MaybeObject* maybe_ok = NormalizeElements(); if (!maybe_ok->ToObject(&ok)) return maybe_ok; } // Update the dictionary with the new CALLBACKS property. Object* dict; { MaybeObject* maybe_dict = element_dictionary()->Set(index, structure, details); if (!maybe_dict->ToObject(&dict)) return maybe_dict; } NumberDictionary* elements = NumberDictionary::cast(dict); elements->set_requires_slow_elements(); // Set the potential new dictionary on the object. set_elements(elements); return structure; } MaybeObject* JSObject::SetPropertyCallback(String* name, Object* structure, PropertyAttributes attributes) { PropertyDetails details = PropertyDetails(attributes, CALLBACKS); bool convert_back_to_fast = HasFastProperties() && (map()->instance_descriptors()->number_of_descriptors() < DescriptorArray::kMaxNumberOfDescriptors); // Normalize object to make this operation simple. Object* ok; { MaybeObject* maybe_ok = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); if (!maybe_ok->ToObject(&ok)) return maybe_ok; } // For the global object allocate a new map to invalidate the global inline // caches which have a global property cell reference directly in the code. if (IsGlobalObject()) { Object* new_map; { MaybeObject* maybe_new_map = map()->CopyDropDescriptors(); if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; } set_map(Map::cast(new_map)); // When running crankshaft, changing the map is not enough. We // need to deoptimize all functions that rely on this global // object. Deoptimizer::DeoptimizeGlobalObject(this); } // Update the dictionary with the new CALLBACKS property. Object* result; { MaybeObject* maybe_result = SetNormalizedProperty(name, structure, details); if (!maybe_result->ToObject(&result)) return maybe_result; } if (convert_back_to_fast) { { MaybeObject* maybe_ok = TransformToFastProperties(0); if (!maybe_ok->ToObject(&ok)) return maybe_ok; } } return result; } MaybeObject* JSObject::DefineAccessor(String* name, bool is_getter, Object* fun, PropertyAttributes attributes) { ASSERT(fun->IsJSFunction() || fun->IsUndefined()); Isolate* isolate = GetIsolate(); // Check access rights if needed. if (IsAccessCheckNeeded() && !isolate->MayNamedAccess(this, name, v8::ACCESS_SET)) { isolate->ReportFailedAccessCheck(this, v8::ACCESS_SET); return isolate->heap()->undefined_value(); } if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return this; ASSERT(proto->IsJSGlobalObject()); return JSObject::cast(proto)->DefineAccessor(name, is_getter, fun, attributes); } Object* array; { MaybeObject* maybe_array = DefineGetterSetter(name, attributes); if (!maybe_array->ToObject(&array)) return maybe_array; } if (array->IsUndefined()) return array; FixedArray::cast(array)->set(is_getter ? 0 : 1, fun); return this; } MaybeObject* JSObject::DefineAccessor(AccessorInfo* info) { Isolate* isolate = GetIsolate(); String* name = String::cast(info->name()); // Check access rights if needed. if (IsAccessCheckNeeded() && !isolate->MayNamedAccess(this, name, v8::ACCESS_SET)) { isolate->ReportFailedAccessCheck(this, v8::ACCESS_SET); return isolate->heap()->undefined_value(); } if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return this; ASSERT(proto->IsJSGlobalObject()); return JSObject::cast(proto)->DefineAccessor(info); } // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc; // Try to flatten before operating on the string. name->TryFlatten(); if (!CanSetCallback(name)) { return isolate->heap()->undefined_value(); } uint32_t index = 0; bool is_element = name->AsArrayIndex(&index); if (is_element) { if (IsJSArray()) return isolate->heap()->undefined_value(); // Accessors overwrite previous callbacks (cf. with getters/setters). switch (GetElementsKind()) { case FAST_ELEMENTS: break; case EXTERNAL_PIXEL_ELEMENTS: case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: case EXTERNAL_FLOAT_ELEMENTS: // Ignore getters and setters on pixel and external array // elements. return isolate->heap()->undefined_value(); case DICTIONARY_ELEMENTS: break; default: UNREACHABLE(); break; } Object* ok; { MaybeObject* maybe_ok = SetElementCallback(index, info, info->property_attributes()); if (!maybe_ok->ToObject(&ok)) return maybe_ok; } } else { // Lookup the name. LookupResult result; LocalLookup(name, &result); // ES5 forbids turning a property into an accessor if it's not // configurable (that is IsDontDelete in ES3 and v8), see 8.6.1 (Table 5). if (result.IsProperty() && (result.IsReadOnly() || result.IsDontDelete())) { return isolate->heap()->undefined_value(); } Object* ok; { MaybeObject* maybe_ok = SetPropertyCallback(name, info, info->property_attributes()); if (!maybe_ok->ToObject(&ok)) return maybe_ok; } } return this; } Object* JSObject::LookupAccessor(String* name, bool is_getter) { Heap* heap = GetHeap(); // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc; // Check access rights if needed. if (IsAccessCheckNeeded() && !heap->isolate()->MayNamedAccess(this, name, v8::ACCESS_HAS)) { heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_HAS); return heap->undefined_value(); } // Make the lookup and include prototypes. int accessor_index = is_getter ? kGetterIndex : kSetterIndex; uint32_t index = 0; if (name->AsArrayIndex(&index)) { for (Object* obj = this; obj != heap->null_value(); obj = JSObject::cast(obj)->GetPrototype()) { JSObject* js_object = JSObject::cast(obj); if (js_object->HasDictionaryElements()) { NumberDictionary* dictionary = js_object->element_dictionary(); int entry = dictionary->FindEntry(index); if (entry != NumberDictionary::kNotFound) { Object* element = dictionary->ValueAt(entry); PropertyDetails details = dictionary->DetailsAt(entry); if (details.type() == CALLBACKS) { if (element->IsFixedArray()) { return FixedArray::cast(element)->get(accessor_index); } } } } } } else { for (Object* obj = this; obj != heap->null_value(); obj = JSObject::cast(obj)->GetPrototype()) { LookupResult result; JSObject::cast(obj)->LocalLookup(name, &result); if (result.IsProperty()) { if (result.IsReadOnly()) return heap->undefined_value(); if (result.type() == CALLBACKS) { Object* obj = result.GetCallbackObject(); if (obj->IsFixedArray()) { return FixedArray::cast(obj)->get(accessor_index); } } } } } return heap->undefined_value(); } Object* JSObject::SlowReverseLookup(Object* value) { if (HasFastProperties()) { DescriptorArray* descs = map()->instance_descriptors(); for (int i = 0; i < descs->number_of_descriptors(); i++) { if (descs->GetType(i) == FIELD) { if (FastPropertyAt(descs->GetFieldIndex(i)) == value) { return descs->GetKey(i); } } else if (descs->GetType(i) == CONSTANT_FUNCTION) { if (descs->GetConstantFunction(i) == value) { return descs->GetKey(i); } } } return GetHeap()->undefined_value(); } else { return property_dictionary()->SlowReverseLookup(value); } } MaybeObject* Map::CopyDropDescriptors() { Heap* heap = GetHeap(); Object* result; { MaybeObject* maybe_result = heap->AllocateMap(instance_type(), instance_size()); if (!maybe_result->ToObject(&result)) return maybe_result; } Map::cast(result)->set_prototype(prototype()); Map::cast(result)->set_constructor(constructor()); // Don't copy descriptors, so map transitions always remain a forest. // If we retained the same descriptors we would have two maps // pointing to the same transition which is bad because the garbage // collector relies on being able to reverse pointers from transitions // to maps. If properties need to be retained use CopyDropTransitions. Map::cast(result)->set_instance_descriptors( heap->empty_descriptor_array()); // Please note instance_type and instance_size are set when allocated. Map::cast(result)->set_inobject_properties(inobject_properties()); Map::cast(result)->set_unused_property_fields(unused_property_fields()); // If the map has pre-allocated properties always start out with a descriptor // array describing these properties. if (pre_allocated_property_fields() > 0) { ASSERT(constructor()->IsJSFunction()); JSFunction* ctor = JSFunction::cast(constructor()); Object* descriptors; { MaybeObject* maybe_descriptors = ctor->initial_map()->instance_descriptors()->RemoveTransitions(); if (!maybe_descriptors->ToObject(&descriptors)) return maybe_descriptors; } Map::cast(result)->set_instance_descriptors( DescriptorArray::cast(descriptors)); Map::cast(result)->set_pre_allocated_property_fields( pre_allocated_property_fields()); } Map::cast(result)->set_bit_field(bit_field()); Map::cast(result)->set_bit_field2(bit_field2()); Map::cast(result)->set_is_shared(false); Map::cast(result)->ClearCodeCache(heap); return result; } MaybeObject* Map::CopyNormalized(PropertyNormalizationMode mode, NormalizedMapSharingMode sharing) { int new_instance_size = instance_size(); if (mode == CLEAR_INOBJECT_PROPERTIES) { new_instance_size -= inobject_properties() * kPointerSize; } Object* result; { MaybeObject* maybe_result = GetHeap()->AllocateMap(instance_type(), new_instance_size); if (!maybe_result->ToObject(&result)) return maybe_result; } if (mode != CLEAR_INOBJECT_PROPERTIES) { Map::cast(result)->set_inobject_properties(inobject_properties()); } Map::cast(result)->set_prototype(prototype()); Map::cast(result)->set_constructor(constructor()); Map::cast(result)->set_bit_field(bit_field()); Map::cast(result)->set_bit_field2(bit_field2()); Map::cast(result)->set_is_shared(sharing == SHARED_NORMALIZED_MAP); #ifdef DEBUG if (Map::cast(result)->is_shared()) { Map::cast(result)->SharedMapVerify(); } #endif return result; } MaybeObject* Map::CopyDropTransitions() { Object* new_map; { MaybeObject* maybe_new_map = CopyDropDescriptors(); if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; } Object* descriptors; { MaybeObject* maybe_descriptors = instance_descriptors()->RemoveTransitions(); if (!maybe_descriptors->ToObject(&descriptors)) return maybe_descriptors; } cast(new_map)->set_instance_descriptors(DescriptorArray::cast(descriptors)); return new_map; } MaybeObject* Map::UpdateCodeCache(String* name, Code* code) { // Allocate the code cache if not present. if (code_cache()->IsFixedArray()) { Object* result; { MaybeObject* maybe_result = code->heap()->AllocateCodeCache(); if (!maybe_result->ToObject(&result)) return maybe_result; } set_code_cache(result); } // Update the code cache. return CodeCache::cast(code_cache())->Update(name, code); } Object* Map::FindInCodeCache(String* name, Code::Flags flags) { // Do a lookup if a code cache exists. if (!code_cache()->IsFixedArray()) { return CodeCache::cast(code_cache())->Lookup(name, flags); } else { return GetHeap()->undefined_value(); } } int Map::IndexInCodeCache(Object* name, Code* code) { // Get the internal index if a code cache exists. if (!code_cache()->IsFixedArray()) { return CodeCache::cast(code_cache())->GetIndex(name, code); } return -1; } void Map::RemoveFromCodeCache(String* name, Code* code, int index) { // No GC is supposed to happen between a call to IndexInCodeCache and // RemoveFromCodeCache so the code cache must be there. ASSERT(!code_cache()->IsFixedArray()); CodeCache::cast(code_cache())->RemoveByIndex(name, code, index); } void Map::TraverseTransitionTree(TraverseCallback callback, void* data) { // Traverse the transition tree without using a stack. We do this by // reversing the pointers in the maps and descriptor arrays. Map* current = this; Map* meta_map = heap()->meta_map(); Object** map_or_index_field = NULL; while (current != meta_map) { DescriptorArray* d = reinterpret_cast( *RawField(current, Map::kInstanceDescriptorsOffset)); if (!d->IsEmpty()) { FixedArray* contents = reinterpret_cast( d->get(DescriptorArray::kContentArrayIndex)); map_or_index_field = RawField(contents, HeapObject::kMapOffset); Object* map_or_index = *map_or_index_field; bool map_done = true; // Controls a nested continue statement. for (int i = map_or_index->IsSmi() ? Smi::cast(map_or_index)->value() : 0; i < contents->length(); i += 2) { PropertyDetails details(Smi::cast(contents->get(i + 1))); if (details.IsTransition()) { // Found a map in the transition array. We record our progress in // the transition array by recording the current map in the map field // of the next map and recording the index in the transition array in // the map field of the array. Map* next = Map::cast(contents->get(i)); next->set_map(current); *map_or_index_field = Smi::FromInt(i + 2); current = next; map_done = false; break; } } if (!map_done) continue; } else { map_or_index_field = NULL; } // That was the regular transitions, now for the prototype transitions. FixedArray* prototype_transitions = current->unchecked_prototype_transitions(); Object** proto_map_or_index_field = RawField(prototype_transitions, HeapObject::kMapOffset); Object* map_or_index = *proto_map_or_index_field; const int start = 2; int i = map_or_index->IsSmi() ? Smi::cast(map_or_index)->value() : start; if (i < prototype_transitions->length()) { // Found a map in the prototype transition array. Record progress in // an analogous way to the regular transitions array above. Object* perhaps_map = prototype_transitions->get(i); if (perhaps_map->IsMap()) { Map* next = Map::cast(perhaps_map); next->set_map(current); *proto_map_or_index_field = Smi::FromInt(i + 2); current = next; continue; } } *proto_map_or_index_field = heap()->fixed_array_map(); if (map_or_index_field != NULL) { *map_or_index_field = heap()->fixed_array_map(); } // The callback expects a map to have a real map as its map, so we save // the map field, which is being used to track the traversal and put the // correct map (the meta_map) in place while we do the callback. Map* prev = current->map(); current->set_map(meta_map); callback(current, data); current = prev; } } MaybeObject* CodeCache::Update(String* name, Code* code) { ASSERT(code->ic_state() == MONOMORPHIC); // The number of monomorphic stubs for normal load/store/call IC's can grow to // a large number and therefore they need to go into a hash table. They are // used to load global properties from cells. if (code->type() == NORMAL) { // Make sure that a hash table is allocated for the normal load code cache. if (normal_type_cache()->IsUndefined()) { Object* result; { MaybeObject* maybe_result = CodeCacheHashTable::Allocate(CodeCacheHashTable::kInitialSize); if (!maybe_result->ToObject(&result)) return maybe_result; } set_normal_type_cache(result); } return UpdateNormalTypeCache(name, code); } else { ASSERT(default_cache()->IsFixedArray()); return UpdateDefaultCache(name, code); } } MaybeObject* CodeCache::UpdateDefaultCache(String* name, Code* code) { // When updating the default code cache we disregard the type encoded in the // flags. This allows call constant stubs to overwrite call field // stubs, etc. Code::Flags flags = Code::RemoveTypeFromFlags(code->flags()); // First check whether we can update existing code cache without // extending it. FixedArray* cache = default_cache(); int length = cache->length(); int deleted_index = -1; for (int i = 0; i < length; i += kCodeCacheEntrySize) { Object* key = cache->get(i); if (key->IsNull()) { if (deleted_index < 0) deleted_index = i; continue; } if (key->IsUndefined()) { if (deleted_index >= 0) i = deleted_index; cache->set(i + kCodeCacheEntryNameOffset, name); cache->set(i + kCodeCacheEntryCodeOffset, code); return this; } if (name->Equals(String::cast(key))) { Code::Flags found = Code::cast(cache->get(i + kCodeCacheEntryCodeOffset))->flags(); if (Code::RemoveTypeFromFlags(found) == flags) { cache->set(i + kCodeCacheEntryCodeOffset, code); return this; } } } // Reached the end of the code cache. If there were deleted // elements, reuse the space for the first of them. if (deleted_index >= 0) { cache->set(deleted_index + kCodeCacheEntryNameOffset, name); cache->set(deleted_index + kCodeCacheEntryCodeOffset, code); return this; } // Extend the code cache with some new entries (at least one). Must be a // multiple of the entry size. int new_length = length + ((length >> 1)) + kCodeCacheEntrySize; new_length = new_length - new_length % kCodeCacheEntrySize; ASSERT((new_length % kCodeCacheEntrySize) == 0); Object* result; { MaybeObject* maybe_result = cache->CopySize(new_length); if (!maybe_result->ToObject(&result)) return maybe_result; } // Add the (name, code) pair to the new cache. cache = FixedArray::cast(result); cache->set(length + kCodeCacheEntryNameOffset, name); cache->set(length + kCodeCacheEntryCodeOffset, code); set_default_cache(cache); return this; } MaybeObject* CodeCache::UpdateNormalTypeCache(String* name, Code* code) { // Adding a new entry can cause a new cache to be allocated. CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); Object* new_cache; { MaybeObject* maybe_new_cache = cache->Put(name, code); if (!maybe_new_cache->ToObject(&new_cache)) return maybe_new_cache; } set_normal_type_cache(new_cache); return this; } Object* CodeCache::Lookup(String* name, Code::Flags flags) { if (Code::ExtractTypeFromFlags(flags) == NORMAL) { return LookupNormalTypeCache(name, flags); } else { return LookupDefaultCache(name, flags); } } Object* CodeCache::LookupDefaultCache(String* name, Code::Flags flags) { FixedArray* cache = default_cache(); int length = cache->length(); for (int i = 0; i < length; i += kCodeCacheEntrySize) { Object* key = cache->get(i + kCodeCacheEntryNameOffset); // Skip deleted elements. if (key->IsNull()) continue; if (key->IsUndefined()) return key; if (name->Equals(String::cast(key))) { Code* code = Code::cast(cache->get(i + kCodeCacheEntryCodeOffset)); if (code->flags() == flags) { return code; } } } return GetHeap()->undefined_value(); } Object* CodeCache::LookupNormalTypeCache(String* name, Code::Flags flags) { if (!normal_type_cache()->IsUndefined()) { CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); return cache->Lookup(name, flags); } else { return GetHeap()->undefined_value(); } } int CodeCache::GetIndex(Object* name, Code* code) { if (code->type() == NORMAL) { if (normal_type_cache()->IsUndefined()) return -1; CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); return cache->GetIndex(String::cast(name), code->flags()); } FixedArray* array = default_cache(); int len = array->length(); for (int i = 0; i < len; i += kCodeCacheEntrySize) { if (array->get(i + kCodeCacheEntryCodeOffset) == code) return i + 1; } return -1; } void CodeCache::RemoveByIndex(Object* name, Code* code, int index) { if (code->type() == NORMAL) { ASSERT(!normal_type_cache()->IsUndefined()); CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); ASSERT(cache->GetIndex(String::cast(name), code->flags()) == index); cache->RemoveByIndex(index); } else { FixedArray* array = default_cache(); ASSERT(array->length() >= index && array->get(index)->IsCode()); // Use null instead of undefined for deleted elements to distinguish // deleted elements from unused elements. This distinction is used // when looking up in the cache and when updating the cache. ASSERT_EQ(1, kCodeCacheEntryCodeOffset - kCodeCacheEntryNameOffset); array->set_null(index - 1); // Name. array->set_null(index); // Code. } } // The key in the code cache hash table consists of the property name and the // code object. The actual match is on the name and the code flags. If a key // is created using the flags and not a code object it can only be used for // lookup not to create a new entry. class CodeCacheHashTableKey : public HashTableKey { public: CodeCacheHashTableKey(String* name, Code::Flags flags) : name_(name), flags_(flags), code_(NULL) { } CodeCacheHashTableKey(String* name, Code* code) : name_(name), flags_(code->flags()), code_(code) { } bool IsMatch(Object* other) { if (!other->IsFixedArray()) return false; FixedArray* pair = FixedArray::cast(other); String* name = String::cast(pair->get(0)); Code::Flags flags = Code::cast(pair->get(1))->flags(); if (flags != flags_) { return false; } return name_->Equals(name); } static uint32_t NameFlagsHashHelper(String* name, Code::Flags flags) { return name->Hash() ^ flags; } uint32_t Hash() { return NameFlagsHashHelper(name_, flags_); } uint32_t HashForObject(Object* obj) { FixedArray* pair = FixedArray::cast(obj); String* name = String::cast(pair->get(0)); Code* code = Code::cast(pair->get(1)); return NameFlagsHashHelper(name, code->flags()); } MUST_USE_RESULT MaybeObject* AsObject() { ASSERT(code_ != NULL); Object* obj; { MaybeObject* maybe_obj = code_->heap()->AllocateFixedArray(2); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } FixedArray* pair = FixedArray::cast(obj); pair->set(0, name_); pair->set(1, code_); return pair; } private: String* name_; Code::Flags flags_; Code* code_; }; Object* CodeCacheHashTable::Lookup(String* name, Code::Flags flags) { CodeCacheHashTableKey key(name, flags); int entry = FindEntry(&key); if (entry == kNotFound) return GetHeap()->undefined_value(); return get(EntryToIndex(entry) + 1); } MaybeObject* CodeCacheHashTable::Put(String* name, Code* code) { CodeCacheHashTableKey key(name, code); Object* obj; { MaybeObject* maybe_obj = EnsureCapacity(1, &key); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } // Don't use this, as the table might have grown. CodeCacheHashTable* cache = reinterpret_cast(obj); int entry = cache->FindInsertionEntry(key.Hash()); Object* k; { MaybeObject* maybe_k = key.AsObject(); if (!maybe_k->ToObject(&k)) return maybe_k; } cache->set(EntryToIndex(entry), k); cache->set(EntryToIndex(entry) + 1, code); cache->ElementAdded(); return cache; } int CodeCacheHashTable::GetIndex(String* name, Code::Flags flags) { CodeCacheHashTableKey key(name, flags); int entry = FindEntry(&key); return (entry == kNotFound) ? -1 : entry; } void CodeCacheHashTable::RemoveByIndex(int index) { ASSERT(index >= 0); Heap* heap = GetHeap(); set(EntryToIndex(index), heap->null_value()); set(EntryToIndex(index) + 1, heap->null_value()); ElementRemoved(); } static bool HasKey(FixedArray* array, Object* key) { int len0 = array->length(); for (int i = 0; i < len0; i++) { Object* element = array->get(i); if (element->IsSmi() && key->IsSmi() && (element == key)) return true; if (element->IsString() && key->IsString() && String::cast(element)->Equals(String::cast(key))) { return true; } } return false; } MaybeObject* FixedArray::AddKeysFromJSArray(JSArray* array) { ASSERT(!array->HasExternalArrayElements()); switch (array->GetElementsKind()) { case JSObject::FAST_ELEMENTS: return UnionOfKeys(FixedArray::cast(array->elements())); case JSObject::DICTIONARY_ELEMENTS: { NumberDictionary* dict = array->element_dictionary(); int size = dict->NumberOfElements(); // Allocate a temporary fixed array. Object* object; { MaybeObject* maybe_object = GetHeap()->AllocateFixedArray(size); if (!maybe_object->ToObject(&object)) return maybe_object; } FixedArray* key_array = FixedArray::cast(object); int capacity = dict->Capacity(); int pos = 0; // Copy the elements from the JSArray to the temporary fixed array. for (int i = 0; i < capacity; i++) { if (dict->IsKey(dict->KeyAt(i))) { key_array->set(pos++, dict->ValueAt(i)); } } // Compute the union of this and the temporary fixed array. return UnionOfKeys(key_array); } default: UNREACHABLE(); } UNREACHABLE(); return GetHeap()->null_value(); // Failure case needs to "return" a value. } MaybeObject* FixedArray::UnionOfKeys(FixedArray* other) { int len0 = length(); #ifdef DEBUG if (FLAG_enable_slow_asserts) { for (int i = 0; i < len0; i++) { ASSERT(get(i)->IsString() || get(i)->IsNumber()); } } #endif int len1 = other->length(); // Optimize if 'other' is empty. // We cannot optimize if 'this' is empty, as other may have holes // or non keys. if (len1 == 0) return this; // Compute how many elements are not in this. int extra = 0; for (int y = 0; y < len1; y++) { Object* value = other->get(y); if (!value->IsTheHole() && !HasKey(this, value)) extra++; } if (extra == 0) return this; // Allocate the result Object* obj; { MaybeObject* maybe_obj = GetHeap()->AllocateFixedArray(len0 + extra); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } // Fill in the content AssertNoAllocation no_gc; FixedArray* result = FixedArray::cast(obj); WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); for (int i = 0; i < len0; i++) { Object* e = get(i); ASSERT(e->IsString() || e->IsNumber()); result->set(i, e, mode); } // Fill in the extra keys. int index = 0; for (int y = 0; y < len1; y++) { Object* value = other->get(y); if (!value->IsTheHole() && !HasKey(this, value)) { Object* e = other->get(y); ASSERT(e->IsString() || e->IsNumber()); result->set(len0 + index, e, mode); index++; } } ASSERT(extra == index); return result; } MaybeObject* FixedArray::CopySize(int new_length) { Heap* heap = GetHeap(); if (new_length == 0) return heap->empty_fixed_array(); Object* obj; { MaybeObject* maybe_obj = heap->AllocateFixedArray(new_length); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } FixedArray* result = FixedArray::cast(obj); // Copy the content AssertNoAllocation no_gc; int len = length(); if (new_length < len) len = new_length; result->set_map(map()); WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); for (int i = 0; i < len; i++) { result->set(i, get(i), mode); } return result; } void FixedArray::CopyTo(int pos, FixedArray* dest, int dest_pos, int len) { AssertNoAllocation no_gc; WriteBarrierMode mode = dest->GetWriteBarrierMode(no_gc); for (int index = 0; index < len; index++) { dest->set(dest_pos+index, get(pos+index), mode); } } #ifdef DEBUG bool FixedArray::IsEqualTo(FixedArray* other) { if (length() != other->length()) return false; for (int i = 0 ; i < length(); ++i) { if (get(i) != other->get(i)) return false; } return true; } #endif MaybeObject* DescriptorArray::Allocate(int number_of_descriptors) { Heap* heap = Isolate::Current()->heap(); if (number_of_descriptors == 0) { return heap->empty_descriptor_array(); } // Allocate the array of keys. Object* array; { MaybeObject* maybe_array = heap->AllocateFixedArray(ToKeyIndex(number_of_descriptors)); if (!maybe_array->ToObject(&array)) return maybe_array; } // Do not use DescriptorArray::cast on incomplete object. FixedArray* result = FixedArray::cast(array); // Allocate the content array and set it in the descriptor array. { MaybeObject* maybe_array = heap->AllocateFixedArray(number_of_descriptors << 1); if (!maybe_array->ToObject(&array)) return maybe_array; } result->set(kContentArrayIndex, array); result->set(kEnumerationIndexIndex, Smi::FromInt(PropertyDetails::kInitialIndex)); return result; } void DescriptorArray::SetEnumCache(FixedArray* bridge_storage, FixedArray* new_cache) { ASSERT(bridge_storage->length() >= kEnumCacheBridgeLength); if (HasEnumCache()) { FixedArray::cast(get(kEnumerationIndexIndex))-> set(kEnumCacheBridgeCacheIndex, new_cache); } else { if (IsEmpty()) return; // Do nothing for empty descriptor array. FixedArray::cast(bridge_storage)-> set(kEnumCacheBridgeCacheIndex, new_cache); fast_set(FixedArray::cast(bridge_storage), kEnumCacheBridgeEnumIndex, get(kEnumerationIndexIndex)); set(kEnumerationIndexIndex, bridge_storage); } } MaybeObject* DescriptorArray::CopyInsert(Descriptor* descriptor, TransitionFlag transition_flag) { // Transitions are only kept when inserting another transition. // This precondition is not required by this function's implementation, but // is currently required by the semantics of maps, so we check it. // Conversely, we filter after replacing, so replacing a transition and // removing all other transitions is not supported. bool remove_transitions = transition_flag == REMOVE_TRANSITIONS; ASSERT(remove_transitions == !descriptor->GetDetails().IsTransition()); ASSERT(descriptor->GetDetails().type() != NULL_DESCRIPTOR); // Ensure the key is a symbol. Object* result; { MaybeObject* maybe_result = descriptor->KeyToSymbol(); if (!maybe_result->ToObject(&result)) return maybe_result; } int transitions = 0; int null_descriptors = 0; if (remove_transitions) { for (int i = 0; i < number_of_descriptors(); i++) { if (IsTransition(i)) transitions++; if (IsNullDescriptor(i)) null_descriptors++; } } else { for (int i = 0; i < number_of_descriptors(); i++) { if (IsNullDescriptor(i)) null_descriptors++; } } int new_size = number_of_descriptors() - transitions - null_descriptors; // If key is in descriptor, we replace it in-place when filtering. // Count a null descriptor for key as inserted, not replaced. int index = Search(descriptor->GetKey()); const bool inserting = (index == kNotFound); const bool replacing = !inserting; bool keep_enumeration_index = false; if (inserting) { ++new_size; } if (replacing) { // We are replacing an existing descriptor. We keep the enumeration // index of a visible property. PropertyType t = PropertyDetails(GetDetails(index)).type(); if (t == CONSTANT_FUNCTION || t == FIELD || t == CALLBACKS || t == INTERCEPTOR) { keep_enumeration_index = true; } else if (remove_transitions) { // Replaced descriptor has been counted as removed if it is // a transition that will be replaced. Adjust count in this case. ++new_size; } } { MaybeObject* maybe_result = Allocate(new_size); if (!maybe_result->ToObject(&result)) return maybe_result; } DescriptorArray* new_descriptors = DescriptorArray::cast(result); // Set the enumeration index in the descriptors and set the enumeration index // in the result. int enumeration_index = NextEnumerationIndex(); if (!descriptor->GetDetails().IsTransition()) { if (keep_enumeration_index) { descriptor->SetEnumerationIndex( PropertyDetails(GetDetails(index)).index()); } else { descriptor->SetEnumerationIndex(enumeration_index); ++enumeration_index; } } new_descriptors->SetNextEnumerationIndex(enumeration_index); // Copy the descriptors, filtering out transitions and null descriptors, // and inserting or replacing a descriptor. uint32_t descriptor_hash = descriptor->GetKey()->Hash(); int from_index = 0; int to_index = 0; for (; from_index < number_of_descriptors(); from_index++) { String* key = GetKey(from_index); if (key->Hash() > descriptor_hash || key == descriptor->GetKey()) { break; } if (IsNullDescriptor(from_index)) continue; if (remove_transitions && IsTransition(from_index)) continue; new_descriptors->CopyFrom(to_index++, this, from_index); } new_descriptors->Set(to_index++, descriptor); if (replacing) from_index++; for (; from_index < number_of_descriptors(); from_index++) { if (IsNullDescriptor(from_index)) continue; if (remove_transitions && IsTransition(from_index)) continue; new_descriptors->CopyFrom(to_index++, this, from_index); } ASSERT(to_index == new_descriptors->number_of_descriptors()); SLOW_ASSERT(new_descriptors->IsSortedNoDuplicates()); return new_descriptors; } MaybeObject* DescriptorArray::RemoveTransitions() { // Remove all transitions and null descriptors. Return a copy of the array // with all transitions removed, or a Failure object if the new array could // not be allocated. // Compute the size of the map transition entries to be removed. int num_removed = 0; for (int i = 0; i < number_of_descriptors(); i++) { if (!IsProperty(i)) num_removed++; } // Allocate the new descriptor array. Object* result; { MaybeObject* maybe_result = Allocate(number_of_descriptors() - num_removed); if (!maybe_result->ToObject(&result)) return maybe_result; } DescriptorArray* new_descriptors = DescriptorArray::cast(result); // Copy the content. int next_descriptor = 0; for (int i = 0; i < number_of_descriptors(); i++) { if (IsProperty(i)) new_descriptors->CopyFrom(next_descriptor++, this, i); } ASSERT(next_descriptor == new_descriptors->number_of_descriptors()); return new_descriptors; } void DescriptorArray::SortUnchecked() { // In-place heap sort. int len = number_of_descriptors(); // Bottom-up max-heap construction. // Index of the last node with children const int max_parent_index = (len / 2) - 1; for (int i = max_parent_index; i >= 0; --i) { int parent_index = i; const uint32_t parent_hash = GetKey(i)->Hash(); while (parent_index <= max_parent_index) { int child_index = 2 * parent_index + 1; uint32_t child_hash = GetKey(child_index)->Hash(); if (child_index + 1 < len) { uint32_t right_child_hash = GetKey(child_index + 1)->Hash(); if (right_child_hash > child_hash) { child_index++; child_hash = right_child_hash; } } if (child_hash <= parent_hash) break; Swap(parent_index, child_index); // Now element at child_index could be < its children. parent_index = child_index; // parent_hash remains correct. } } // Extract elements and create sorted array. for (int i = len - 1; i > 0; --i) { // Put max element at the back of the array. Swap(0, i); // Sift down the new top element. int parent_index = 0; const uint32_t parent_hash = GetKey(parent_index)->Hash(); const int max_parent_index = (i / 2) - 1; while (parent_index <= max_parent_index) { int child_index = parent_index * 2 + 1; uint32_t child_hash = GetKey(child_index)->Hash(); if (child_index + 1 < i) { uint32_t right_child_hash = GetKey(child_index + 1)->Hash(); if (right_child_hash > child_hash) { child_index++; child_hash = right_child_hash; } } if (child_hash <= parent_hash) break; Swap(parent_index, child_index); parent_index = child_index; } } } void DescriptorArray::Sort() { SortUnchecked(); SLOW_ASSERT(IsSortedNoDuplicates()); } int DescriptorArray::BinarySearch(String* name, int low, int high) { uint32_t hash = name->Hash(); while (low <= high) { int mid = (low + high) / 2; String* mid_name = GetKey(mid); uint32_t mid_hash = mid_name->Hash(); if (mid_hash > hash) { high = mid - 1; continue; } if (mid_hash < hash) { low = mid + 1; continue; } // Found an element with the same hash-code. ASSERT(hash == mid_hash); // There might be more, so we find the first one and // check them all to see if we have a match. if (name == mid_name && !is_null_descriptor(mid)) return mid; while ((mid > low) && (GetKey(mid - 1)->Hash() == hash)) mid--; for (; (mid <= high) && (GetKey(mid)->Hash() == hash); mid++) { if (GetKey(mid)->Equals(name) && !is_null_descriptor(mid)) return mid; } break; } return kNotFound; } int DescriptorArray::LinearSearch(String* name, int len) { uint32_t hash = name->Hash(); for (int number = 0; number < len; number++) { String* entry = GetKey(number); if ((entry->Hash() == hash) && name->Equals(entry) && !is_null_descriptor(number)) { return number; } } return kNotFound; } MaybeObject* DeoptimizationInputData::Allocate(int deopt_entry_count, PretenureFlag pretenure) { ASSERT(deopt_entry_count > 0); return HEAP->AllocateFixedArray(LengthFor(deopt_entry_count), pretenure); } MaybeObject* DeoptimizationOutputData::Allocate(int number_of_deopt_points, PretenureFlag pretenure) { if (number_of_deopt_points == 0) return HEAP->empty_fixed_array(); return HEAP->AllocateFixedArray(LengthOfFixedArray(number_of_deopt_points), pretenure); } #ifdef DEBUG bool DescriptorArray::IsEqualTo(DescriptorArray* other) { if (IsEmpty()) return other->IsEmpty(); if (other->IsEmpty()) return false; if (length() != other->length()) return false; for (int i = 0; i < length(); ++i) { if (get(i) != other->get(i) && i != kContentArrayIndex) return false; } return GetContentArray()->IsEqualTo(other->GetContentArray()); } #endif bool String::LooksValid() { if (!Isolate::Current()->heap()->Contains(this)) return false; return true; } int String::Utf8Length() { if (IsAsciiRepresentation()) return length(); // Attempt to flatten before accessing the string. It probably // doesn't make Utf8Length faster, but it is very likely that // the string will be accessed later (for example by WriteUtf8) // so it's still a good idea. Heap* heap = GetHeap(); TryFlatten(); Access buffer( heap->isolate()->objects_string_input_buffer()); buffer->Reset(0, this); int result = 0; while (buffer->has_more()) result += unibrow::Utf8::Length(buffer->GetNext()); return result; } Vector String::ToAsciiVector() { ASSERT(IsAsciiRepresentation()); ASSERT(IsFlat()); int offset = 0; int length = this->length(); StringRepresentationTag string_tag = StringShape(this).representation_tag(); String* string = this; if (string_tag == kConsStringTag) { ConsString* cons = ConsString::cast(string); ASSERT(cons->second()->length() == 0); string = cons->first(); string_tag = StringShape(string).representation_tag(); } if (string_tag == kSeqStringTag) { SeqAsciiString* seq = SeqAsciiString::cast(string); char* start = seq->GetChars(); return Vector(start + offset, length); } ASSERT(string_tag == kExternalStringTag); ExternalAsciiString* ext = ExternalAsciiString::cast(string); const char* start = ext->resource()->data(); return Vector(start + offset, length); } Vector String::ToUC16Vector() { ASSERT(IsTwoByteRepresentation()); ASSERT(IsFlat()); int offset = 0; int length = this->length(); StringRepresentationTag string_tag = StringShape(this).representation_tag(); String* string = this; if (string_tag == kConsStringTag) { ConsString* cons = ConsString::cast(string); ASSERT(cons->second()->length() == 0); string = cons->first(); string_tag = StringShape(string).representation_tag(); } if (string_tag == kSeqStringTag) { SeqTwoByteString* seq = SeqTwoByteString::cast(string); return Vector(seq->GetChars() + offset, length); } ASSERT(string_tag == kExternalStringTag); ExternalTwoByteString* ext = ExternalTwoByteString::cast(string); const uc16* start = reinterpret_cast(ext->resource()->data()); return Vector(start + offset, length); } SmartPointer String::ToCString(AllowNullsFlag allow_nulls, RobustnessFlag robust_flag, int offset, int length, int* length_return) { if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) { return SmartPointer(NULL); } Heap* heap = GetHeap(); // Negative length means the to the end of the string. if (length < 0) length = kMaxInt - offset; // Compute the size of the UTF-8 string. Start at the specified offset. Access buffer( heap->isolate()->objects_string_input_buffer()); buffer->Reset(offset, this); int character_position = offset; int utf8_bytes = 0; while (buffer->has_more()) { uint16_t character = buffer->GetNext(); if (character_position < offset + length) { utf8_bytes += unibrow::Utf8::Length(character); } character_position++; } if (length_return) { *length_return = utf8_bytes; } char* result = NewArray(utf8_bytes + 1); // Convert the UTF-16 string to a UTF-8 buffer. Start at the specified offset. buffer->Rewind(); buffer->Seek(offset); character_position = offset; int utf8_byte_position = 0; while (buffer->has_more()) { uint16_t character = buffer->GetNext(); if (character_position < offset + length) { if (allow_nulls == DISALLOW_NULLS && character == 0) { character = ' '; } utf8_byte_position += unibrow::Utf8::Encode(result + utf8_byte_position, character); } character_position++; } result[utf8_byte_position] = 0; return SmartPointer(result); } SmartPointer String::ToCString(AllowNullsFlag allow_nulls, RobustnessFlag robust_flag, int* length_return) { return ToCString(allow_nulls, robust_flag, 0, -1, length_return); } const uc16* String::GetTwoByteData() { return GetTwoByteData(0); } const uc16* String::GetTwoByteData(unsigned start) { ASSERT(!IsAsciiRepresentation()); switch (StringShape(this).representation_tag()) { case kSeqStringTag: return SeqTwoByteString::cast(this)->SeqTwoByteStringGetData(start); case kExternalStringTag: return ExternalTwoByteString::cast(this)-> ExternalTwoByteStringGetData(start); case kConsStringTag: UNREACHABLE(); return NULL; } UNREACHABLE(); return NULL; } SmartPointer String::ToWideCString(RobustnessFlag robust_flag) { if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) { return SmartPointer(); } Heap* heap = GetHeap(); Access buffer( heap->isolate()->objects_string_input_buffer()); buffer->Reset(this); uc16* result = NewArray(length() + 1); int i = 0; while (buffer->has_more()) { uint16_t character = buffer->GetNext(); result[i++] = character; } result[i] = 0; return SmartPointer(result); } const uc16* SeqTwoByteString::SeqTwoByteStringGetData(unsigned start) { return reinterpret_cast( reinterpret_cast(this) - kHeapObjectTag + kHeaderSize) + start; } void SeqTwoByteString::SeqTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* rbb, unsigned* offset_ptr, unsigned max_chars) { unsigned chars_read = 0; unsigned offset = *offset_ptr; while (chars_read < max_chars) { uint16_t c = *reinterpret_cast( reinterpret_cast(this) - kHeapObjectTag + kHeaderSize + offset * kShortSize); if (c <= kMaxAsciiCharCode) { // Fast case for ASCII characters. Cursor is an input output argument. if (!unibrow::CharacterStream::EncodeAsciiCharacter(c, rbb->util_buffer, rbb->capacity, rbb->cursor)) { break; } } else { if (!unibrow::CharacterStream::EncodeNonAsciiCharacter(c, rbb->util_buffer, rbb->capacity, rbb->cursor)) { break; } } offset++; chars_read++; } *offset_ptr = offset; rbb->remaining += chars_read; } const unibrow::byte* SeqAsciiString::SeqAsciiStringReadBlock( unsigned* remaining, unsigned* offset_ptr, unsigned max_chars) { const unibrow::byte* b = reinterpret_cast(this) - kHeapObjectTag + kHeaderSize + *offset_ptr * kCharSize; *remaining = max_chars; *offset_ptr += max_chars; return b; } // This will iterate unless the block of string data spans two 'halves' of // a ConsString, in which case it will recurse. Since the block of string // data to be read has a maximum size this limits the maximum recursion // depth to something sane. Since C++ does not have tail call recursion // elimination, the iteration must be explicit. Since this is not an // -IntoBuffer method it can delegate to one of the efficient // *AsciiStringReadBlock routines. const unibrow::byte* ConsString::ConsStringReadBlock(ReadBlockBuffer* rbb, unsigned* offset_ptr, unsigned max_chars) { ConsString* current = this; unsigned offset = *offset_ptr; int offset_correction = 0; while (true) { String* left = current->first(); unsigned left_length = (unsigned)left->length(); if (left_length > offset && (max_chars <= left_length - offset || (rbb->capacity <= left_length - offset && (max_chars = left_length - offset, true)))) { // comma operator! // Left hand side only - iterate unless we have reached the bottom of // the cons tree. The assignment on the left of the comma operator is // in order to make use of the fact that the -IntoBuffer routines can // produce at most 'capacity' characters. This enables us to postpone // the point where we switch to the -IntoBuffer routines (below) in order // to maximize the chances of delegating a big chunk of work to the // efficient *AsciiStringReadBlock routines. if (StringShape(left).IsCons()) { current = ConsString::cast(left); continue; } else { const unibrow::byte* answer = String::ReadBlock(left, rbb, &offset, max_chars); *offset_ptr = offset + offset_correction; return answer; } } else if (left_length <= offset) { // Right hand side only - iterate unless we have reached the bottom of // the cons tree. String* right = current->second(); offset -= left_length; offset_correction += left_length; if (StringShape(right).IsCons()) { current = ConsString::cast(right); continue; } else { const unibrow::byte* answer = String::ReadBlock(right, rbb, &offset, max_chars); *offset_ptr = offset + offset_correction; return answer; } } else { // The block to be read spans two sides of the ConsString, so we call the // -IntoBuffer version, which will recurse. The -IntoBuffer methods // are able to assemble data from several part strings because they use // the util_buffer to store their data and never return direct pointers // to their storage. We don't try to read more than the buffer capacity // here or we can get too much recursion. ASSERT(rbb->remaining == 0); ASSERT(rbb->cursor == 0); current->ConsStringReadBlockIntoBuffer( rbb, &offset, max_chars > rbb->capacity ? rbb->capacity : max_chars); *offset_ptr = offset + offset_correction; return rbb->util_buffer; } } } uint16_t ExternalAsciiString::ExternalAsciiStringGet(int index) { ASSERT(index >= 0 && index < length()); return resource()->data()[index]; } const unibrow::byte* ExternalAsciiString::ExternalAsciiStringReadBlock( unsigned* remaining, unsigned* offset_ptr, unsigned max_chars) { // Cast const char* to unibrow::byte* (signedness difference). const unibrow::byte* b = reinterpret_cast(resource()->data()) + *offset_ptr; *remaining = max_chars; *offset_ptr += max_chars; return b; } const uc16* ExternalTwoByteString::ExternalTwoByteStringGetData( unsigned start) { return resource()->data() + start; } uint16_t ExternalTwoByteString::ExternalTwoByteStringGet(int index) { ASSERT(index >= 0 && index < length()); return resource()->data()[index]; } void ExternalTwoByteString::ExternalTwoByteStringReadBlockIntoBuffer( ReadBlockBuffer* rbb, unsigned* offset_ptr, unsigned max_chars) { unsigned chars_read = 0; unsigned offset = *offset_ptr; const uint16_t* data = resource()->data(); while (chars_read < max_chars) { uint16_t c = data[offset]; if (c <= kMaxAsciiCharCode) { // Fast case for ASCII characters. Cursor is an input output argument. if (!unibrow::CharacterStream::EncodeAsciiCharacter(c, rbb->util_buffer, rbb->capacity, rbb->cursor)) break; } else { if (!unibrow::CharacterStream::EncodeNonAsciiCharacter(c, rbb->util_buffer, rbb->capacity, rbb->cursor)) break; } offset++; chars_read++; } *offset_ptr = offset; rbb->remaining += chars_read; } void SeqAsciiString::SeqAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* rbb, unsigned* offset_ptr, unsigned max_chars) { unsigned capacity = rbb->capacity - rbb->cursor; if (max_chars > capacity) max_chars = capacity; memcpy(rbb->util_buffer + rbb->cursor, reinterpret_cast(this) - kHeapObjectTag + kHeaderSize + *offset_ptr * kCharSize, max_chars); rbb->remaining += max_chars; *offset_ptr += max_chars; rbb->cursor += max_chars; } void ExternalAsciiString::ExternalAsciiStringReadBlockIntoBuffer( ReadBlockBuffer* rbb, unsigned* offset_ptr, unsigned max_chars) { unsigned capacity = rbb->capacity - rbb->cursor; if (max_chars > capacity) max_chars = capacity; memcpy(rbb->util_buffer + rbb->cursor, resource()->data() + *offset_ptr, max_chars); rbb->remaining += max_chars; *offset_ptr += max_chars; rbb->cursor += max_chars; } // This method determines the type of string involved and then copies // a whole chunk of characters into a buffer, or returns a pointer to a buffer // where they can be found. The pointer is not necessarily valid across a GC // (see AsciiStringReadBlock). const unibrow::byte* String::ReadBlock(String* input, ReadBlockBuffer* rbb, unsigned* offset_ptr, unsigned max_chars) { ASSERT(*offset_ptr <= static_cast(input->length())); if (max_chars == 0) { rbb->remaining = 0; return NULL; } switch (StringShape(input).representation_tag()) { case kSeqStringTag: if (input->IsAsciiRepresentation()) { SeqAsciiString* str = SeqAsciiString::cast(input); return str->SeqAsciiStringReadBlock(&rbb->remaining, offset_ptr, max_chars); } else { SeqTwoByteString* str = SeqTwoByteString::cast(input); str->SeqTwoByteStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars); return rbb->util_buffer; } case kConsStringTag: return ConsString::cast(input)->ConsStringReadBlock(rbb, offset_ptr, max_chars); case kExternalStringTag: if (input->IsAsciiRepresentation()) { return ExternalAsciiString::cast(input)->ExternalAsciiStringReadBlock( &rbb->remaining, offset_ptr, max_chars); } else { ExternalTwoByteString::cast(input)-> ExternalTwoByteStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars); return rbb->util_buffer; } default: break; } UNREACHABLE(); return 0; } void Relocatable::PostGarbageCollectionProcessing() { Isolate* isolate = Isolate::Current(); Relocatable* current = isolate->relocatable_top(); while (current != NULL) { current->PostGarbageCollection(); current = current->prev_; } } // Reserve space for statics needing saving and restoring. int Relocatable::ArchiveSpacePerThread() { return sizeof(Isolate::Current()->relocatable_top()); } // Archive statics that are thread local. char* Relocatable::ArchiveState(char* to) { Isolate* isolate = Isolate::Current(); *reinterpret_cast(to) = isolate->relocatable_top(); isolate->set_relocatable_top(NULL); return to + ArchiveSpacePerThread(); } // Restore statics that are thread local. char* Relocatable::RestoreState(char* from) { Isolate* isolate = Isolate::Current(); isolate->set_relocatable_top(*reinterpret_cast(from)); return from + ArchiveSpacePerThread(); } char* Relocatable::Iterate(ObjectVisitor* v, char* thread_storage) { Relocatable* top = *reinterpret_cast(thread_storage); Iterate(v, top); return thread_storage + ArchiveSpacePerThread(); } void Relocatable::Iterate(ObjectVisitor* v) { Isolate* isolate = Isolate::Current(); Iterate(v, isolate->relocatable_top()); } void Relocatable::Iterate(ObjectVisitor* v, Relocatable* top) { Relocatable* current = top; while (current != NULL) { current->IterateInstance(v); current = current->prev_; } } FlatStringReader::FlatStringReader(Isolate* isolate, Handle str) : Relocatable(isolate), str_(str.location()), length_(str->length()) { PostGarbageCollection(); } FlatStringReader::FlatStringReader(Isolate* isolate, Vector input) : Relocatable(isolate), str_(0), is_ascii_(true), length_(input.length()), start_(input.start()) { } void FlatStringReader::PostGarbageCollection() { if (str_ == NULL) return; Handle str(str_); ASSERT(str->IsFlat()); is_ascii_ = str->IsAsciiRepresentation(); if (is_ascii_) { start_ = str->ToAsciiVector().start(); } else { start_ = str->ToUC16Vector().start(); } } void StringInputBuffer::Seek(unsigned pos) { Reset(pos, input_); } void SafeStringInputBuffer::Seek(unsigned pos) { Reset(pos, input_); } // This method determines the type of string involved and then copies // a whole chunk of characters into a buffer. It can be used with strings // that have been glued together to form a ConsString and which must cooperate // to fill up a buffer. void String::ReadBlockIntoBuffer(String* input, ReadBlockBuffer* rbb, unsigned* offset_ptr, unsigned max_chars) { ASSERT(*offset_ptr <= (unsigned)input->length()); if (max_chars == 0) return; switch (StringShape(input).representation_tag()) { case kSeqStringTag: if (input->IsAsciiRepresentation()) { SeqAsciiString::cast(input)->SeqAsciiStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars); return; } else { SeqTwoByteString::cast(input)->SeqTwoByteStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars); return; } case kConsStringTag: ConsString::cast(input)->ConsStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars); return; case kExternalStringTag: if (input->IsAsciiRepresentation()) { ExternalAsciiString::cast(input)-> ExternalAsciiStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars); } else { ExternalTwoByteString::cast(input)-> ExternalTwoByteStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars); } return; default: break; } UNREACHABLE(); return; } const unibrow::byte* String::ReadBlock(String* input, unibrow::byte* util_buffer, unsigned capacity, unsigned* remaining, unsigned* offset_ptr) { ASSERT(*offset_ptr <= (unsigned)input->length()); unsigned chars = input->length() - *offset_ptr; ReadBlockBuffer rbb(util_buffer, 0, capacity, 0); const unibrow::byte* answer = ReadBlock(input, &rbb, offset_ptr, chars); ASSERT(rbb.remaining <= static_cast(input->length())); *remaining = rbb.remaining; return answer; } const unibrow::byte* String::ReadBlock(String** raw_input, unibrow::byte* util_buffer, unsigned capacity, unsigned* remaining, unsigned* offset_ptr) { Handle input(raw_input); ASSERT(*offset_ptr <= (unsigned)input->length()); unsigned chars = input->length() - *offset_ptr; if (chars > capacity) chars = capacity; ReadBlockBuffer rbb(util_buffer, 0, capacity, 0); ReadBlockIntoBuffer(*input, &rbb, offset_ptr, chars); ASSERT(rbb.remaining <= static_cast(input->length())); *remaining = rbb.remaining; return rbb.util_buffer; } // This will iterate unless the block of string data spans two 'halves' of // a ConsString, in which case it will recurse. Since the block of string // data to be read has a maximum size this limits the maximum recursion // depth to something sane. Since C++ does not have tail call recursion // elimination, the iteration must be explicit. void ConsString::ConsStringReadBlockIntoBuffer(ReadBlockBuffer* rbb, unsigned* offset_ptr, unsigned max_chars) { ConsString* current = this; unsigned offset = *offset_ptr; int offset_correction = 0; while (true) { String* left = current->first(); unsigned left_length = (unsigned)left->length(); if (left_length > offset && max_chars <= left_length - offset) { // Left hand side only - iterate unless we have reached the bottom of // the cons tree. if (StringShape(left).IsCons()) { current = ConsString::cast(left); continue; } else { String::ReadBlockIntoBuffer(left, rbb, &offset, max_chars); *offset_ptr = offset + offset_correction; return; } } else if (left_length <= offset) { // Right hand side only - iterate unless we have reached the bottom of // the cons tree. offset -= left_length; offset_correction += left_length; String* right = current->second(); if (StringShape(right).IsCons()) { current = ConsString::cast(right); continue; } else { String::ReadBlockIntoBuffer(right, rbb, &offset, max_chars); *offset_ptr = offset + offset_correction; return; } } else { // The block to be read spans two sides of the ConsString, so we recurse. // First recurse on the left. max_chars -= left_length - offset; String::ReadBlockIntoBuffer(left, rbb, &offset, left_length - offset); // We may have reached the max or there may not have been enough space // in the buffer for the characters in the left hand side. if (offset == left_length) { // Recurse on the right. String* right = String::cast(current->second()); offset -= left_length; offset_correction += left_length; String::ReadBlockIntoBuffer(right, rbb, &offset, max_chars); } *offset_ptr = offset + offset_correction; return; } } } uint16_t ConsString::ConsStringGet(int index) { ASSERT(index >= 0 && index < this->length()); // Check for a flattened cons string if (second()->length() == 0) { String* left = first(); return left->Get(index); } String* string = String::cast(this); while (true) { if (StringShape(string).IsCons()) { ConsString* cons_string = ConsString::cast(string); String* left = cons_string->first(); if (left->length() > index) { string = left; } else { index -= left->length(); string = cons_string->second(); } } else { return string->Get(index); } } UNREACHABLE(); return 0; } template void String::WriteToFlat(String* src, sinkchar* sink, int f, int t) { String* source = src; int from = f; int to = t; while (true) { ASSERT(0 <= from && from <= to && to <= source->length()); switch (StringShape(source).full_representation_tag()) { case kAsciiStringTag | kExternalStringTag: { CopyChars(sink, ExternalAsciiString::cast(source)->resource()->data() + from, to - from); return; } case kTwoByteStringTag | kExternalStringTag: { const uc16* data = ExternalTwoByteString::cast(source)->resource()->data(); CopyChars(sink, data + from, to - from); return; } case kAsciiStringTag | kSeqStringTag: { CopyChars(sink, SeqAsciiString::cast(source)->GetChars() + from, to - from); return; } case kTwoByteStringTag | kSeqStringTag: { CopyChars(sink, SeqTwoByteString::cast(source)->GetChars() + from, to - from); return; } case kAsciiStringTag | kConsStringTag: case kTwoByteStringTag | kConsStringTag: { ConsString* cons_string = ConsString::cast(source); String* first = cons_string->first(); int boundary = first->length(); if (to - boundary >= boundary - from) { // Right hand side is longer. Recurse over left. if (from < boundary) { WriteToFlat(first, sink, from, boundary); sink += boundary - from; from = 0; } else { from -= boundary; } to -= boundary; source = cons_string->second(); } else { // Left hand side is longer. Recurse over right. if (to > boundary) { String* second = cons_string->second(); WriteToFlat(second, sink + boundary - from, 0, to - boundary); to = boundary; } source = first; } break; } } } } template static inline bool CompareStringContents(IteratorA* ia, IteratorB* ib) { // General slow case check. We know that the ia and ib iterators // have the same length. while (ia->has_more()) { uc32 ca = ia->GetNext(); uc32 cb = ib->GetNext(); if (ca != cb) return false; } return true; } // Compares the contents of two strings by reading and comparing // int-sized blocks of characters. template static inline bool CompareRawStringContents(Vector a, Vector b) { int length = a.length(); ASSERT_EQ(length, b.length()); const Char* pa = a.start(); const Char* pb = b.start(); int i = 0; #ifndef V8_HOST_CAN_READ_UNALIGNED // If this architecture isn't comfortable reading unaligned ints // then we have to check that the strings are aligned before // comparing them blockwise. const int kAlignmentMask = sizeof(uint32_t) - 1; // NOLINT uint32_t pa_addr = reinterpret_cast(pa); uint32_t pb_addr = reinterpret_cast(pb); if (((pa_addr & kAlignmentMask) | (pb_addr & kAlignmentMask)) == 0) { #endif const int kStepSize = sizeof(int) / sizeof(Char); // NOLINT int endpoint = length - kStepSize; // Compare blocks until we reach near the end of the string. for (; i <= endpoint; i += kStepSize) { uint32_t wa = *reinterpret_cast(pa + i); uint32_t wb = *reinterpret_cast(pb + i); if (wa != wb) { return false; } } #ifndef V8_HOST_CAN_READ_UNALIGNED } #endif // Compare the remaining characters that didn't fit into a block. for (; i < length; i++) { if (a[i] != b[i]) { return false; } } return true; } template static inline bool CompareStringContentsPartial(Isolate* isolate, IteratorA* ia, String* b) { if (b->IsFlat()) { if (b->IsAsciiRepresentation()) { VectorIterator ib(b->ToAsciiVector()); return CompareStringContents(ia, &ib); } else { VectorIterator ib(b->ToUC16Vector()); return CompareStringContents(ia, &ib); } } else { isolate->objects_string_compare_buffer_b()->Reset(0, b); return CompareStringContents(ia, isolate->objects_string_compare_buffer_b()); } } bool String::SlowEquals(String* other) { // Fast check: negative check with lengths. int len = length(); if (len != other->length()) return false; if (len == 0) return true; // Fast check: if hash code is computed for both strings // a fast negative check can be performed. if (HasHashCode() && other->HasHashCode()) { if (Hash() != other->Hash()) return false; } // We know the strings are both non-empty. Compare the first chars // before we try to flatten the strings. if (this->Get(0) != other->Get(0)) return false; String* lhs = this->TryFlattenGetString(); String* rhs = other->TryFlattenGetString(); if (StringShape(lhs).IsSequentialAscii() && StringShape(rhs).IsSequentialAscii()) { const char* str1 = SeqAsciiString::cast(lhs)->GetChars(); const char* str2 = SeqAsciiString::cast(rhs)->GetChars(); return CompareRawStringContents(Vector(str1, len), Vector(str2, len)); } Isolate* isolate = GetIsolate(); if (lhs->IsFlat()) { if (lhs->IsAsciiRepresentation()) { Vector vec1 = lhs->ToAsciiVector(); if (rhs->IsFlat()) { if (rhs->IsAsciiRepresentation()) { Vector vec2 = rhs->ToAsciiVector(); return CompareRawStringContents(vec1, vec2); } else { VectorIterator buf1(vec1); VectorIterator ib(rhs->ToUC16Vector()); return CompareStringContents(&buf1, &ib); } } else { VectorIterator buf1(vec1); isolate->objects_string_compare_buffer_b()->Reset(0, rhs); return CompareStringContents(&buf1, isolate->objects_string_compare_buffer_b()); } } else { Vector vec1 = lhs->ToUC16Vector(); if (rhs->IsFlat()) { if (rhs->IsAsciiRepresentation()) { VectorIterator buf1(vec1); VectorIterator ib(rhs->ToAsciiVector()); return CompareStringContents(&buf1, &ib); } else { Vector vec2(rhs->ToUC16Vector()); return CompareRawStringContents(vec1, vec2); } } else { VectorIterator buf1(vec1); isolate->objects_string_compare_buffer_b()->Reset(0, rhs); return CompareStringContents(&buf1, isolate->objects_string_compare_buffer_b()); } } } else { isolate->objects_string_compare_buffer_a()->Reset(0, lhs); return CompareStringContentsPartial(isolate, isolate->objects_string_compare_buffer_a(), rhs); } } bool String::MarkAsUndetectable() { if (StringShape(this).IsSymbol()) return false; Map* map = this->map(); Heap* heap = map->heap(); if (map == heap->string_map()) { this->set_map(heap->undetectable_string_map()); return true; } else if (map == heap->ascii_string_map()) { this->set_map(heap->undetectable_ascii_string_map()); return true; } // Rest cannot be marked as undetectable return false; } bool String::IsEqualTo(Vector str) { Isolate* isolate = GetIsolate(); int slen = length(); Access decoder(isolate->unicode_cache()->utf8_decoder()); decoder->Reset(str.start(), str.length()); int i; for (i = 0; i < slen && decoder->has_more(); i++) { uc32 r = decoder->GetNext(); if (Get(i) != r) return false; } return i == slen && !decoder->has_more(); } bool String::IsAsciiEqualTo(Vector str) { int slen = length(); if (str.length() != slen) return false; for (int i = 0; i < slen; i++) { if (Get(i) != static_cast(str[i])) return false; } return true; } bool String::IsTwoByteEqualTo(Vector str) { int slen = length(); if (str.length() != slen) return false; for (int i = 0; i < slen; i++) { if (Get(i) != str[i]) return false; } return true; } uint32_t String::ComputeAndSetHash() { // Should only be called if hash code has not yet been computed. ASSERT(!HasHashCode()); const int len = length(); // Compute the hash code. uint32_t field = 0; if (StringShape(this).IsSequentialAscii()) { field = HashSequentialString(SeqAsciiString::cast(this)->GetChars(), len); } else if (StringShape(this).IsSequentialTwoByte()) { field = HashSequentialString(SeqTwoByteString::cast(this)->GetChars(), len); } else { StringInputBuffer buffer(this); field = ComputeHashField(&buffer, len); } // Store the hash code in the object. set_hash_field(field); // Check the hash code is there. ASSERT(HasHashCode()); uint32_t result = field >> kHashShift; ASSERT(result != 0); // Ensure that the hash value of 0 is never computed. return result; } bool String::ComputeArrayIndex(unibrow::CharacterStream* buffer, uint32_t* index, int length) { if (length == 0 || length > kMaxArrayIndexSize) return false; uc32 ch = buffer->GetNext(); // If the string begins with a '0' character, it must only consist // of it to be a legal array index. if (ch == '0') { *index = 0; return length == 1; } // Convert string to uint32 array index; character by character. int d = ch - '0'; if (d < 0 || d > 9) return false; uint32_t result = d; while (buffer->has_more()) { d = buffer->GetNext() - '0'; if (d < 0 || d > 9) return false; // Check that the new result is below the 32 bit limit. if (result > 429496729U - ((d > 5) ? 1 : 0)) return false; result = (result * 10) + d; } *index = result; return true; } bool String::SlowAsArrayIndex(uint32_t* index) { if (length() <= kMaxCachedArrayIndexLength) { Hash(); // force computation of hash code uint32_t field = hash_field(); if ((field & kIsNotArrayIndexMask) != 0) return false; // Isolate the array index form the full hash field. *index = (kArrayIndexHashMask & field) >> kHashShift; return true; } else { StringInputBuffer buffer(this); return ComputeArrayIndex(&buffer, index, length()); } } uint32_t StringHasher::MakeArrayIndexHash(uint32_t value, int length) { // For array indexes mix the length into the hash as an array index could // be zero. ASSERT(length > 0); ASSERT(length <= String::kMaxArrayIndexSize); ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) < (1 << String::kArrayIndexValueBits)); value <<= String::kHashShift; value |= length << String::kArrayIndexHashLengthShift; ASSERT((value & String::kIsNotArrayIndexMask) == 0); ASSERT((length > String::kMaxCachedArrayIndexLength) || (value & String::kContainsCachedArrayIndexMask) == 0); return value; } uint32_t StringHasher::GetHashField() { ASSERT(is_valid()); if (length_ <= String::kMaxHashCalcLength) { if (is_array_index()) { return MakeArrayIndexHash(array_index(), length_); } return (GetHash() << String::kHashShift) | String::kIsNotArrayIndexMask; } else { return (length_ << String::kHashShift) | String::kIsNotArrayIndexMask; } } uint32_t String::ComputeHashField(unibrow::CharacterStream* buffer, int length) { StringHasher hasher(length); // Very long strings have a trivial hash that doesn't inspect the // string contents. if (hasher.has_trivial_hash()) { return hasher.GetHashField(); } // Do the iterative array index computation as long as there is a // chance this is an array index. while (buffer->has_more() && hasher.is_array_index()) { hasher.AddCharacter(buffer->GetNext()); } // Process the remaining characters without updating the array // index. while (buffer->has_more()) { hasher.AddCharacterNoIndex(buffer->GetNext()); } return hasher.GetHashField(); } MaybeObject* String::SubString(int start, int end, PretenureFlag pretenure) { Heap* heap = GetHeap(); if (start == 0 && end == length()) return this; MaybeObject* result = heap->AllocateSubString(this, start, end, pretenure); return result; } void String::PrintOn(FILE* file) { int length = this->length(); for (int i = 0; i < length; i++) { fprintf(file, "%c", Get(i)); } } void Map::CreateBackPointers() { DescriptorArray* descriptors = instance_descriptors(); for (int i = 0; i < descriptors->number_of_descriptors(); i++) { if (descriptors->GetType(i) == MAP_TRANSITION || descriptors->GetType(i) == EXTERNAL_ARRAY_TRANSITION || descriptors->GetType(i) == CONSTANT_TRANSITION) { // Get target. Map* target = Map::cast(descriptors->GetValue(i)); #ifdef DEBUG // Verify target. Object* source_prototype = prototype(); Object* target_prototype = target->prototype(); ASSERT(source_prototype->IsJSObject() || source_prototype->IsMap() || source_prototype->IsNull()); ASSERT(target_prototype->IsJSObject() || target_prototype->IsNull()); ASSERT(source_prototype->IsMap() || source_prototype == target_prototype); #endif // Point target back to source. set_prototype() will not let us set // the prototype to a map, as we do here. *RawField(target, kPrototypeOffset) = this; } } } void Map::ClearNonLiveTransitions(Heap* heap, Object* real_prototype) { // Live DescriptorArray objects will be marked, so we must use // low-level accessors to get and modify their data. DescriptorArray* d = reinterpret_cast( *RawField(this, Map::kInstanceDescriptorsOffset)); if (d == heap->raw_unchecked_empty_descriptor_array()) return; Smi* NullDescriptorDetails = PropertyDetails(NONE, NULL_DESCRIPTOR).AsSmi(); FixedArray* contents = reinterpret_cast( d->get(DescriptorArray::kContentArrayIndex)); ASSERT(contents->length() >= 2); for (int i = 0; i < contents->length(); i += 2) { // If the pair (value, details) is a map transition, // check if the target is live. If not, null the descriptor. // Also drop the back pointer for that map transition, so that this // map is not reached again by following a back pointer from a // non-live object. PropertyDetails details(Smi::cast(contents->get(i + 1))); if (details.type() == MAP_TRANSITION || details.type() == EXTERNAL_ARRAY_TRANSITION || details.type() == CONSTANT_TRANSITION) { Map* target = reinterpret_cast(contents->get(i)); ASSERT(target->IsHeapObject()); if (!target->IsMarked()) { ASSERT(target->IsMap()); contents->set_unchecked(i + 1, NullDescriptorDetails); contents->set_null_unchecked(heap, i); ASSERT(target->prototype() == this || target->prototype() == real_prototype); // Getter prototype() is read-only, set_prototype() has side effects. *RawField(target, Map::kPrototypeOffset) = real_prototype; } } } } void JSFunction::JSFunctionIterateBody(int object_size, ObjectVisitor* v) { // Iterate over all fields in the body but take care in dealing with // the code entry. IteratePointers(v, kPropertiesOffset, kCodeEntryOffset); v->VisitCodeEntry(this->address() + kCodeEntryOffset); IteratePointers(v, kCodeEntryOffset + kPointerSize, object_size); } void JSFunction::MarkForLazyRecompilation() { ASSERT(is_compiled() && !IsOptimized()); ASSERT(shared()->allows_lazy_compilation() || code()->optimizable()); Builtins* builtins = GetIsolate()->builtins(); ReplaceCode(builtins->builtin(Builtins::kLazyRecompile)); } uint32_t JSFunction::SourceHash() { uint32_t hash = 0; Object* script = shared()->script(); if (!script->IsUndefined()) { Object* source = Script::cast(script)->source(); if (source->IsUndefined()) hash = String::cast(source)->Hash(); } hash ^= ComputeIntegerHash(shared()->start_position_and_type()); hash += ComputeIntegerHash(shared()->end_position()); return hash; } bool JSFunction::IsInlineable() { if (IsBuiltin()) return false; SharedFunctionInfo* shared_info = shared(); // Check that the function has a script associated with it. if (!shared_info->script()->IsScript()) return false; if (shared_info->optimization_disabled()) return false; Code* code = shared_info->code(); if (code->kind() == Code::OPTIMIZED_FUNCTION) return true; // If we never ran this (unlikely) then lets try to optimize it. if (code->kind() != Code::FUNCTION) return true; return code->optimizable(); } Object* JSFunction::SetInstancePrototype(Object* value) { ASSERT(value->IsJSObject()); Heap* heap = GetHeap(); if (has_initial_map()) { initial_map()->set_prototype(value); } else { // Put the value in the initial map field until an initial map is // needed. At that point, a new initial map is created and the // prototype is put into the initial map where it belongs. set_prototype_or_initial_map(value); } heap->ClearInstanceofCache(); return value; } MaybeObject* JSFunction::SetPrototype(Object* value) { ASSERT(should_have_prototype()); Object* construct_prototype = value; // If the value is not a JSObject, store the value in the map's // constructor field so it can be accessed. Also, set the prototype // used for constructing objects to the original object prototype. // See ECMA-262 13.2.2. if (!value->IsJSObject()) { // Copy the map so this does not affect unrelated functions. // Remove map transitions because they point to maps with a // different prototype. Object* new_object; { MaybeObject* maybe_new_map = map()->CopyDropTransitions(); if (!maybe_new_map->ToObject(&new_object)) return maybe_new_map; } Map* new_map = Map::cast(new_object); Heap* heap = new_map->heap(); set_map(new_map); new_map->set_constructor(value); new_map->set_non_instance_prototype(true); construct_prototype = heap->isolate()->context()->global_context()-> initial_object_prototype(); } else { map()->set_non_instance_prototype(false); } return SetInstancePrototype(construct_prototype); } Object* JSFunction::RemovePrototype() { Context* global_context = context()->global_context(); Map* no_prototype_map = shared()->strict_mode() ? global_context->strict_mode_function_without_prototype_map() : global_context->function_without_prototype_map(); if (map() == no_prototype_map) { // Be idempotent. return this; } ASSERT(!shared()->strict_mode() || map() == global_context->strict_mode_function_map()); ASSERT(shared()->strict_mode() || map() == global_context->function_map()); set_map(no_prototype_map); set_prototype_or_initial_map(no_prototype_map->heap()->the_hole_value()); return this; } Object* JSFunction::SetInstanceClassName(String* name) { shared()->set_instance_class_name(name); return this; } void JSFunction::PrintName(FILE* out) { SmartPointer name = shared()->DebugName()->ToCString(); PrintF(out, "%s", *name); } Context* JSFunction::GlobalContextFromLiterals(FixedArray* literals) { return Context::cast(literals->get(JSFunction::kLiteralGlobalContextIndex)); } MaybeObject* Oddball::Initialize(const char* to_string, Object* to_number, byte kind) { Object* symbol; { MaybeObject* maybe_symbol = Isolate::Current()->heap()->LookupAsciiSymbol(to_string); if (!maybe_symbol->ToObject(&symbol)) return maybe_symbol; } set_to_string(String::cast(symbol)); set_to_number(to_number); set_kind(kind); return this; } String* SharedFunctionInfo::DebugName() { Object* n = name(); if (!n->IsString() || String::cast(n)->length() == 0) return inferred_name(); return String::cast(n); } bool SharedFunctionInfo::HasSourceCode() { return !script()->IsUndefined() && !reinterpret_cast 登录后可以享受更多权益 您还没有登录,登录后您可以: 收藏Android系统代码 收藏喜欢的文章 多个平台共享账号 去登录 首次使用?从这里 注册
您还没有登录,登录后您可以:
首次使用?从这里 注册