// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
#define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
#include "assembler.h"
#include "mips/assembler-mips.h"
namespace v8 {
namespace internal {
// Forward declaration.
class JumpTarget;
class PostCallGenerator;
// Reserved Register Usage Summary.
//
// Registers t8, t9, and at are reserved for use by the MacroAssembler.
//
// The programmer should know that the MacroAssembler may clobber these three,
// but won't touch other registers except in special cases.
//
// Per the MIPS ABI, register t9 must be used for indirect function call
// via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
// trying to update gp register for position-independent-code. Whenever
// MIPS generated code calls C code, it must be via t9 register.
// Registers aliases
// cp is assumed to be a callee saved register.
const Register roots = s6; // Roots array pointer.
const Register cp = s7; // JavaScript context pointer
const Register fp = s8_fp; // Alias fp
// Register used for condition evaluation.
const Register condReg1 = s4;
const Register condReg2 = s5;
enum InvokeJSFlags {
CALL_JS,
JUMP_JS
};
// Flags used for the AllocateInNewSpace functions.
enum AllocationFlags {
// No special flags.
NO_ALLOCATION_FLAGS = 0,
// Return the pointer to the allocated already tagged as a heap object.
TAG_OBJECT = 1 << 0,
// The content of the result register already contains the allocation top in
// new space.
RESULT_CONTAINS_TOP = 1 << 1,
// Specify that the requested size of the space to allocate is specified in
// words instead of bytes.
SIZE_IN_WORDS = 1 << 2
};
// Flags used for the ObjectToDoubleFPURegister function.
enum ObjectToDoubleFlags {
// No special flags.
NO_OBJECT_TO_DOUBLE_FLAGS = 0,
// Object is known to be a non smi.
OBJECT_NOT_SMI = 1 << 0,
// Don't load NaNs or infinities, branch to the non number case instead.
AVOID_NANS_AND_INFINITIES = 1 << 1
};
// Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
enum BranchDelaySlot {
USE_DELAY_SLOT,
PROTECT
};
// MacroAssembler implements a collection of frequently used macros.
class MacroAssembler: public Assembler {
public:
MacroAssembler(void* buffer, int size);
// Arguments macros
#define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
#define COND_ARGS cond, r1, r2
// ** Prototypes
// * Prototypes for functions with no target (eg Ret()).
#define DECLARE_NOTARGET_PROTOTYPE(Name) \
void Name(BranchDelaySlot bd = PROTECT); \
void Name(COND_TYPED_ARGS, BranchDelaySlot bd = PROTECT); \
inline void Name(BranchDelaySlot bd, COND_TYPED_ARGS) { \
Name(COND_ARGS, bd); \
}
// * Prototypes for functions with a target.
// Cases when relocation may be needed.
#define DECLARE_RELOC_PROTOTYPE(Name, target_type) \
void Name(target_type target, \
RelocInfo::Mode rmode, \
BranchDelaySlot bd = PROTECT); \
inline void Name(BranchDelaySlot bd, \
target_type target, \
RelocInfo::Mode rmode) { \
Name(target, rmode, bd); \
} \
void Name(target_type target, \
RelocInfo::Mode rmode, \
COND_TYPED_ARGS, \
BranchDelaySlot bd = PROTECT); \
inline void Name(BranchDelaySlot bd, \
target_type target, \
RelocInfo::Mode rmode, \
COND_TYPED_ARGS) { \
Name(target, rmode, COND_ARGS, bd); \
}
// Cases when relocation is not needed.
#define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
void Name(target_type target, BranchDelaySlot bd = PROTECT); \
inline void Name(BranchDelaySlot bd, target_type target) { \
Name(target, bd); \
} \
void Name(target_type target, \
COND_TYPED_ARGS, \
BranchDelaySlot bd = PROTECT); \
inline void Name(BranchDelaySlot bd, \
target_type target, \
COND_TYPED_ARGS) { \
Name(target, COND_ARGS, bd); \
}
// ** Target prototypes.
#define DECLARE_JUMP_CALL_PROTOTYPES(Name) \
DECLARE_NORELOC_PROTOTYPE(Name, Register) \
DECLARE_NORELOC_PROTOTYPE(Name, const Operand&) \
DECLARE_RELOC_PROTOTYPE(Name, byte*) \
DECLARE_RELOC_PROTOTYPE(Name, Handle<Code>)
#define DECLARE_BRANCH_PROTOTYPES(Name) \
DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
DECLARE_NORELOC_PROTOTYPE(Name, int16_t)
DECLARE_JUMP_CALL_PROTOTYPES(Jump)
DECLARE_JUMP_CALL_PROTOTYPES(Call)
DECLARE_BRANCH_PROTOTYPES(Branch)
DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
DECLARE_NOTARGET_PROTOTYPE(Ret)
#undef COND_TYPED_ARGS
#undef COND_ARGS
#undef DECLARE_NOTARGET_PROTOTYPE
#undef DECLARE_NORELOC_PROTOTYPE
#undef DECLARE_RELOC_PROTOTYPE
#undef DECLARE_JUMP_CALL_PROTOTYPES
#undef DECLARE_BRANCH_PROTOTYPES
// Emit code to discard a non-negative number of pointer-sized elements
// from the stack, clobbering only the sp register.
void Drop(int count,
Condition cond = cc_always,
Register reg = no_reg,
const Operand& op = Operand(no_reg));
void DropAndRet(int drop = 0,
Condition cond = cc_always,
Register reg = no_reg,
const Operand& op = Operand(no_reg));
// Swap two registers. If the scratch register is omitted then a slightly
// less efficient form using xor instead of mov is emitted.
void Swap(Register reg1, Register reg2, Register scratch = no_reg);
void Call(Label* target);
// May do nothing if the registers are identical.
void Move(Register dst, Register src);
// Jump unconditionally to given label.
// We NEED a nop in the branch delay slot, as it used by v8, for example in
// CodeGenerator::ProcessDeferred().
// Currently the branch delay slot is filled by the MacroAssembler.
// Use rather b(Label) for code generation.
void jmp(Label* L) {
Branch(L);
}
// Load an object from the root table.
void LoadRoot(Register destination,
Heap::RootListIndex index);
void LoadRoot(Register destination,
Heap::RootListIndex index,
Condition cond, Register src1, const Operand& src2);
// Store an object to the root table.
void StoreRoot(Register source,
Heap::RootListIndex index);
void StoreRoot(Register source,
Heap::RootListIndex index,
Condition cond, Register src1, const Operand& src2);
// Check if object is in new space.
// scratch can be object itself, but it will be clobbered.
void InNewSpace(Register object,
Register scratch,
Condition cc, // eq for new space, ne otherwise.
Label* branch);
// For the page containing |object| mark the region covering [address]
// dirty. The object address must be in the first 8K of an allocated page.
void RecordWriteHelper(Register object,
Register address,
Register scratch);
// For the page containing |object| mark the region covering
// [object+offset] dirty. The object address must be in the first 8K
// of an allocated page. The 'scratch' registers are used in the
// implementation and all 3 registers are clobbered by the
// operation, as well as the 'at' register. RecordWrite updates the
// write barrier even when storing smis.
void RecordWrite(Register object,
Operand offset,
Register scratch0,
Register scratch1);
// For the page containing |object| mark the region covering
// [address] dirty. The object address must be in the first 8K of an
// allocated page. All 3 registers are clobbered by the operation,
// as well as the ip register. RecordWrite updates the write barrier
// even when storing smis.
void RecordWrite(Register object,
Register address,
Register scratch);
// ---------------------------------------------------------------------------
// Inline caching support
// Generate code for checking access rights - used for security checks
// on access to global objects across environments. The holder register
// is left untouched, whereas both scratch registers are clobbered.
void CheckAccessGlobalProxy(Register holder_reg,
Register scratch,
Label* miss);
inline void MarkCode(NopMarkerTypes type) {
nop(type);
}
// Check if the given instruction is a 'type' marker.
// ie. check if it is a sll zero_reg, zero_reg, <type> (referenced as
// nop(type)). These instructions are generated to mark special location in
// the code, like some special IC code.
static inline bool IsMarkedCode(Instr instr, int type) {
ASSERT((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
return IsNop(instr, type);
}
static inline int GetCodeMarker(Instr instr) {
uint32_t opcode = ((instr & kOpcodeMask));
uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);
// Return <n> if we have a sll zero_reg, zero_reg, n
// else return -1.
bool sllzz = (opcode == SLL &&
rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
rs == static_cast<uint32_t>(ToNumber(zero_reg)));
int type =
(sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1;
ASSERT((type == -1) ||
((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
return type;
}
// ---------------------------------------------------------------------------
// Allocation support
// Allocate an object in new space. The object_size is specified
// either in bytes or in words if the allocation flag SIZE_IN_WORDS
// is passed. If the new space is exhausted control continues at the
// gc_required label. The allocated object is returned in result. If
// the flag tag_allocated_object is true the result is tagged as as
// a heap object. All registers are clobbered also when control
// continues at the gc_required label.
void AllocateInNewSpace(int object_size,
Register result,
Register scratch1,
Register scratch2,
Label* gc_required,
AllocationFlags flags);
void AllocateInNewSpace(Register object_size,
Register result,
Register scratch1,
Register scratch2,
Label* gc_required,
AllocationFlags flags);
// Undo allocation in new space. The object passed and objects allocated after
// it will no longer be allocated. The caller must make sure that no pointers
// are left to the object(s) no longer allocated as they would be invalid when
// allocation is undone.
void UndoAllocationInNewSpace(Register object, Register scratch);
void AllocateTwoByteString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required);
void AllocateAsciiString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required);
void AllocateTwoByteConsString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required);
void AllocateAsciiConsString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required);
// Allocates a heap number or jumps to the gc_required label if the young
// space is full and a scavenge is needed. All registers are clobbered also
// when control continues at the gc_required label.
void AllocateHeapNumber(Register result,
Register scratch1,
Register scratch2,
Register heap_number_map,
Label* gc_required);
void AllocateHeapNumberWithValue(Register result,
FPURegister value,
Register scratch1,
Register scratch2,
Label* gc_required);
// ---------------------------------------------------------------------------
// Instruction macros
#define DEFINE_INSTRUCTION(instr) \
void instr(Register rd, Register rs, const Operand& rt); \
void instr(Register rd, Register rs, Register rt) { \
instr(rd, rs, Operand(rt)); \
} \
void instr(Register rs, Register rt, int32_t j) { \
instr(rs, rt, Operand(j)); \
}
#define DEFINE_INSTRUCTION2(instr) \
void instr(Register rs, const Operand& rt); \
void instr(Register rs, Register rt) { \
instr(rs, Operand(rt)); \
} \
void instr(Register rs, int32_t j) { \
instr(rs, Operand(j)); \
}
DEFINE_INSTRUCTION(Addu);
DEFINE_INSTRUCTION(Subu);
DEFINE_INSTRUCTION(Mul);
DEFINE_INSTRUCTION2(Mult);
DEFINE_INSTRUCTION2(Multu);
DEFINE_INSTRUCTION2(Div);
DEFINE_INSTRUCTION2(Divu);
DEFINE_INSTRUCTION(And);
DEFINE_INSTRUCTION(Or);
DEFINE_INSTRUCTION(Xor);
DEFINE_INSTRUCTION(Nor);
DEFINE_INSTRUCTION(Slt);
DEFINE_INSTRUCTION(Sltu);
// MIPS32 R2 instruction macro.
DEFINE_INSTRUCTION(Ror);
#undef DEFINE_INSTRUCTION
#undef DEFINE_INSTRUCTION2
//------------Pseudo-instructions-------------
void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
// load int32 in the rd register
void li(Register rd, Operand j, bool gen2instr = false);
inline void li(Register rd, int32_t j, bool gen2instr = false) {
li(rd, Operand(j), gen2instr);
}
inline void li(Register dst, Handle<Object> value, bool gen2instr = false) {
li(dst, Operand(value), gen2instr);
}
// Exception-generating instructions and debugging support
void stop(const char* msg);
// Push multiple registers on the stack.
// Registers are saved in numerical order, with higher numbered registers
// saved in higher memory addresses
void MultiPush(RegList regs);
void MultiPushReversed(RegList regs);
void Push(Register src) {
Addu(sp, sp, Operand(-kPointerSize));
sw(src, MemOperand(sp, 0));
}
// Push two registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Condition cond = al) {
ASSERT(cond == al); // Do not support conditional versions yet.
Subu(sp, sp, Operand(2 * kPointerSize));
sw(src1, MemOperand(sp, 1 * kPointerSize));
sw(src2, MemOperand(sp, 0 * kPointerSize));
}
// Push three registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Register src3, Condition cond = al) {
ASSERT(cond == al); // Do not support conditional versions yet.
Addu(sp, sp, Operand(3 * -kPointerSize));
sw(src1, MemOperand(sp, 2 * kPointerSize));
sw(src2, MemOperand(sp, 1 * kPointerSize));
sw(src3, MemOperand(sp, 0 * kPointerSize));
}
// Push four registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2,
Register src3, Register src4, Condition cond = al) {
ASSERT(cond == al); // Do not support conditional versions yet.
Addu(sp, sp, Operand(4 * -kPointerSize));
sw(src1, MemOperand(sp, 3 * kPointerSize));
sw(src2, MemOperand(sp, 2 * kPointerSize));
sw(src3, MemOperand(sp, 1 * kPointerSize));
sw(src4, MemOperand(sp, 0 * kPointerSize));
}
inline void push(Register src) { Push(src); }
inline void pop(Register src) { Pop(src); }
void Push(Register src, Condition cond, Register tst1, Register tst2) {
// Since we don't have conditionnal execution we use a Branch.
Branch(3, cond, tst1, Operand(tst2));
Addu(sp, sp, Operand(-kPointerSize));
sw(src, MemOperand(sp, 0));
}
// Pops multiple values from the stack and load them in the
// registers specified in regs. Pop order is the opposite as in MultiPush.
void MultiPop(RegList regs);
void MultiPopReversed(RegList regs);
void Pop(Register dst) {
lw(dst, MemOperand(sp, 0));
Addu(sp, sp, Operand(kPointerSize));
}
void Pop(uint32_t count = 1) {
Addu(sp, sp, Operand(count * kPointerSize));
}
// ---------------------------------------------------------------------------
// These functions are only used by crankshaft, so they are currently
// unimplemented.
// Push and pop the registers that can hold pointers, as defined by the
// RegList constant kSafepointSavedRegisters.
void PushSafepointRegisters() {
UNIMPLEMENTED_MIPS();
}
void PopSafepointRegisters() {
UNIMPLEMENTED_MIPS();
}
void PushSafepointRegistersAndDoubles() {
UNIMPLEMENTED_MIPS();
}
void PopSafepointRegistersAndDoubles() {
UNIMPLEMENTED_MIPS();
}
static int SafepointRegisterStackIndex(int reg_code) {
UNIMPLEMENTED_MIPS();
return 0;
}
// ---------------------------------------------------------------------------
// MIPS32 R2 instruction macro.
void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
// Convert unsigned word to double.
void Cvt_d_uw(FPURegister fd, FPURegister fs);
void Cvt_d_uw(FPURegister fd, Register rs);
// Convert double to unsigned word.
void Trunc_uw_d(FPURegister fd, FPURegister fs);
void Trunc_uw_d(FPURegister fd, Register rs);
// Convert the HeapNumber pointed to by source to a 32bits signed integer
// dest. If the HeapNumber does not fit into a 32bits signed integer branch
// to not_int32 label. If FPU is available double_scratch is used but not
// scratch2.
void ConvertToInt32(Register source,
Register dest,
Register scratch,
Register scratch2,
FPURegister double_scratch,
Label *not_int32);
// -------------------------------------------------------------------------
// Activation frames
void EnterInternalFrame() { EnterFrame(StackFrame::INTERNAL); }
void LeaveInternalFrame() { LeaveFrame(StackFrame::INTERNAL); }
void EnterConstructFrame() { EnterFrame(StackFrame::CONSTRUCT); }
void LeaveConstructFrame() { LeaveFrame(StackFrame::CONSTRUCT); }
// Enter exit frame.
// Expects the number of arguments in register a0 and
// the builtin function to call in register a1.
// On output hold_argc, hold_function, and hold_argv are setup.
void EnterExitFrame(Register hold_argc,
Register hold_argv,
Register hold_function,
bool save_doubles);
// Leave the current exit frame. Expects the return value in v0.
void LeaveExitFrame(bool save_doubles);
// Align the stack by optionally pushing a Smi zero.
void AlignStack(int offset); // TODO(mips) : remove this function.
// Get the actual activation frame alignment for target environment.
static int ActivationFrameAlignment();
void LoadContext(Register dst, int context_chain_length);
void LoadGlobalFunction(int index, Register function);
// Load the initial map from the global function. The registers
// function and map can be the same, function is then overwritten.
void LoadGlobalFunctionInitialMap(Register function,
Register map,
Register scratch);
// -------------------------------------------------------------------------
// JavaScript invokes
// Invoke the JavaScript function code by either calling or jumping.
void InvokeCode(Register code,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
PostCallGenerator* post_call_generator = NULL);
void InvokeCode(Handle<Code> code,
const ParameterCount& expected,
const ParameterCount& actual,
RelocInfo::Mode rmode,
InvokeFlag flag);
// Invoke the JavaScript function in the given register. Changes the
// current context to the context in the function before invoking.
void InvokeFunction(Register function,
const ParameterCount& actual,
InvokeFlag flag,
PostCallGenerator* post_call_generator = NULL);
void InvokeFunction(JSFunction* function,
const ParameterCount& actual,
InvokeFlag flag);
void IsObjectJSObjectType(Register heap_object,
Register map,
Register scratch,
Label* fail);
void IsInstanceJSObjectType(Register map,
Register scratch,
Label* fail);
void IsObjectJSStringType(Register object,
Register scratch,
Label* fail);
#ifdef ENABLE_DEBUGGER_SUPPORT
// -------------------------------------------------------------------------
// Debugger Support
void DebugBreak();
#endif
// -------------------------------------------------------------------------
// Exception handling
// Push a new try handler and link into try handler chain.
// The return address must be passed in register ra.
// Clobber t0, t1, t2.
void PushTryHandler(CodeLocation try_location, HandlerType type);
// Unlink the stack handler on top of the stack from the try handler chain.
// Must preserve the result register.
void PopTryHandler();
// Copies a fixed number of fields of heap objects from src to dst.
void CopyFields(Register dst, Register src, RegList temps, int field_count);
// -------------------------------------------------------------------------
// Support functions.
// Try to get function prototype of a function and puts the value in
// the result register. Checks that the function really is a
// function and jumps to the miss label if the fast checks fail. The
// function register will be untouched; the other registers may be
// clobbered.
void TryGetFunctionPrototype(Register function,
Register result,
Register scratch,
Label* miss);
void GetObjectType(Register function,
Register map,
Register type_reg);
// Check if the map of an object is equal to a specified map (either
// given directly or as an index into the root list) and branch to
// label if not. Skip the smi check if not required (object is known
// to be a heap object)
void CheckMap(Register obj,
Register scratch,
Handle<Map> map,
Label* fail,
bool is_heap_object);
void CheckMap(Register obj,
Register scratch,
Heap::RootListIndex index,
Label* fail,
bool is_heap_object);
// Generates code for reporting that an illegal operation has
// occurred.
void IllegalOperation(int num_arguments);
// Picks out an array index from the hash field.
// Register use:
// hash - holds the index's hash. Clobbered.
// index - holds the overwritten index on exit.
void IndexFromHash(Register hash, Register index);
// Load the value of a number object into a FPU double register. If the
// object is not a number a jump to the label not_number is performed
// and the FPU double register is unchanged.
void ObjectToDoubleFPURegister(
Register object,
FPURegister value,
Register scratch1,
Register scratch2,
Register heap_number_map,
Label* not_number,
ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);
// Load the value of a smi object into a FPU double register. The register
// scratch1 can be the same register as smi in which case smi will hold the
// untagged value afterwards.
void SmiToDoubleFPURegister(Register smi,
FPURegister value,
Register scratch1);
// -------------------------------------------------------------------------
// Runtime calls
// Call a code stub.
void CallStub(CodeStub* stub, Condition cond = cc_always,
Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg));
// Tail call a code stub (jump).
void TailCallStub(CodeStub* stub);
void CallJSExitStub(CodeStub* stub);
// Call a runtime routine.
void CallRuntime(const Runtime::Function* f, int num_arguments);
void CallRuntimeSaveDoubles(Runtime::FunctionId id);
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid, int num_arguments);
// Convenience function: call an external reference.
void CallExternalReference(const ExternalReference& ext,
int num_arguments);
// Tail call of a runtime routine (jump).
// Like JumpToExternalReference, but also takes care of passing the number
// of parameters.
void TailCallExternalReference(const ExternalReference& ext,
int num_arguments,
int result_size);
// Convenience function: tail call a runtime routine (jump).
void TailCallRuntime(Runtime::FunctionId fid,
int num_arguments,
int result_size);
// Before calling a C-function from generated code, align arguments on stack
// and add space for the four mips argument slots.
// After aligning the frame, non-register arguments must be stored on the
// stack, after the argument-slots using helper: CFunctionArgumentOperand().
// The argument count assumes all arguments are word sized.
// Some compilers/platforms require the stack to be aligned when calling
// C++ code.
// Needs a scratch register to do some arithmetic. This register will be
// trashed.
void PrepareCallCFunction(int num_arguments, Register scratch);
// Arguments 1-4 are placed in registers a0 thru a3 respectively.
// Arguments 5..n are stored to stack using following:
// sw(t0, CFunctionArgumentOperand(5));
// Calls a C function and cleans up the space for arguments allocated
// by PrepareCallCFunction. The called function is not allowed to trigger a
// garbage collection, since that might move the code and invalidate the
// return address (unless this is somehow accounted for by the called
// function).
void CallCFunction(ExternalReference function, int num_arguments);
void CallCFunction(Register function, Register scratch, int num_arguments);
// Jump to the builtin routine.
void JumpToExternalReference(const ExternalReference& builtin);
// Invoke specified builtin JavaScript function. Adds an entry to
// the unresolved list if the name does not resolve.
void InvokeBuiltin(Builtins::JavaScript id,
InvokeJSFlags flags,
PostCallGenerator* post_call_generator = NULL);
// Store the code object for the given builtin in the target register and
// setup the function in a1.
void GetBuiltinEntry(Register target, Builtins::JavaScript id);
// Store the function for the given builtin in the target register.
void GetBuiltinFunction(Register target, Builtins::JavaScript id);
struct Unresolved {
int pc;
uint32_t flags; // see Bootstrapper::FixupFlags decoders/encoders.
const char* name;
};
Handle<Object> CodeObject() { return code_object_; }
// -------------------------------------------------------------------------
// StatsCounter support
void SetCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2);
void IncrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2);
void DecrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2);
// -------------------------------------------------------------------------
// Debugging
// Calls Abort(msg) if the condition cc is not satisfied.
// Use --debug_code to enable.
void Assert(Condition cc, const char* msg, Register rs, Operand rt);
void AssertRegisterIsRoot(Register reg, Heap::RootListIndex index);
void AssertFastElements(Register elements);
// Like Assert(), but always enabled.
void Check(Condition cc, const char* msg, Register rs, Operand rt);
// Print a message to stdout and abort execution.
void Abort(const char* msg);
// Verify restrictions about code generated in stubs.
void set_generating_stub(bool value) { generating_stub_ = value; }
bool generating_stub() { return generating_stub_; }
void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; }
bool allow_stub_calls() { return allow_stub_calls_; }
// ---------------------------------------------------------------------------
// Number utilities
// Check whether the value of reg is a power of two and not zero. If not
// control continues at the label not_power_of_two. If reg is a power of two
// the register scratch contains the value of (reg - 1) when control falls
// through.
void JumpIfNotPowerOfTwoOrZero(Register reg,
Register scratch,
Label* not_power_of_two_or_zero);
// -------------------------------------------------------------------------
// Smi utilities
// Try to convert int32 to smi. If the value is to large, preserve
// the original value and jump to not_a_smi. Destroys scratch and
// sets flags.
// This is only used by crankshaft atm so it is unimplemented on MIPS.
void TrySmiTag(Register reg, Label* not_a_smi, Register scratch) {
UNIMPLEMENTED_MIPS();
}
void SmiTag(Register reg) {
Addu(reg, reg, reg);
}
void SmiTag(Register dst, Register src) {
Addu(dst, src, src);
}
void SmiUntag(Register reg) {
sra(reg, reg, kSmiTagSize);
}
void SmiUntag(Register dst, Register src) {
sra(dst, src, kSmiTagSize);
}
// Jump the register contains a smi.
inline void JumpIfSmi(Register value, Label* smi_label,
Register scratch = at) {
ASSERT_EQ(0, kSmiTag);
andi(scratch, value, kSmiTagMask);
Branch(smi_label, eq, scratch, Operand(zero_reg));
}
// Jump if the register contains a non-smi.
inline void JumpIfNotSmi(Register value, Label* not_smi_label,
Register scratch = at) {
ASSERT_EQ(0, kSmiTag);
andi(scratch, value, kSmiTagMask);
Branch(not_smi_label, ne, scratch, Operand(zero_reg));
}
// Jump if either of the registers contain a non-smi.
void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
// Jump if either of the registers contain a smi.
void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
// Abort execution if argument is a smi. Used in debug code.
void AbortIfSmi(Register object);
void AbortIfNotSmi(Register object);
// Abort execution if argument is not the root value with the given index.
void AbortIfNotRootValue(Register src,
Heap::RootListIndex root_value_index,
const char* message);
// ---------------------------------------------------------------------------
// HeapNumber utilities
void JumpIfNotHeapNumber(Register object,
Register heap_number_map,
Register scratch,
Label* on_not_heap_number);
// -------------------------------------------------------------------------
// String utilities
// Checks if both instance types are sequential ASCII strings and jumps to
// label if either is not.
void JumpIfBothInstanceTypesAreNotSequentialAscii(
Register first_object_instance_type,
Register second_object_instance_type,
Register scratch1,
Register scratch2,
Label* failure);
// Check if instance type is sequential ASCII string and jump to label if
// it is not.
void JumpIfInstanceTypeIsNotSequentialAscii(Register type,
Register scratch,
Label* failure);
// Test that both first and second are sequential ASCII strings.
// Assume that they are non-smis.
void JumpIfNonSmisNotBothSequentialAsciiStrings(Register first,
Register second,
Register scratch1,
Register scratch2,
Label* failure);
// Test that both first and second are sequential ASCII strings.
// Check that they are non-smis.
void JumpIfNotBothSequentialAsciiStrings(Register first,
Register second,
Register scratch1,
Register scratch2,
Label* failure);
private:
void CallCFunctionHelper(Register function,
ExternalReference function_reference,
Register scratch,
int num_arguments);
void Jump(intptr_t target, RelocInfo::Mode rmode,
BranchDelaySlot bd = PROTECT);
void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = cc_always,
Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg),
BranchDelaySlot bd = PROTECT);
void Call(intptr_t target, RelocInfo::Mode rmode,
BranchDelaySlot bd = PROTECT);
void Call(intptr_t target, RelocInfo::Mode rmode, Condition cond = cc_always,
Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg),
BranchDelaySlot bd = PROTECT);
// Helper functions for generating invokes.
void InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual,
Handle<Code> code_constant,
Register code_reg,
Label* done,
InvokeFlag flag,
PostCallGenerator* post_call_generator = NULL);
// Get the code for the given builtin. Returns if able to resolve
// the function in the 'resolved' flag.
Handle<Code> ResolveBuiltin(Builtins::JavaScript id, bool* resolved);
// Activation support.
void EnterFrame(StackFrame::Type type);
void LeaveFrame(StackFrame::Type type);
void InitializeNewString(Register string,
Register length,
Heap::RootListIndex map_index,
Register scratch1,
Register scratch2);
bool generating_stub_;
bool allow_stub_calls_;
// This handle will be patched with the code object on installation.
Handle<Object> code_object_;
};
#ifdef ENABLE_DEBUGGER_SUPPORT
// The code patcher is used to patch (typically) small parts of code e.g. for
// debugging and other types of instrumentation. When using the code patcher
// the exact number of bytes specified must be emitted. It is not legal to emit
// relocation information. If any of these constraints are violated it causes
// an assertion to fail.
class CodePatcher {
public:
CodePatcher(byte* address, int instructions);
virtual ~CodePatcher();
// Macro assembler to emit code.
MacroAssembler* masm() { return &masm_; }
// Emit an instruction directly.
void Emit(Instr x);
// Emit an address directly.
void Emit(Address addr);
private:
byte* address_; // The address of the code being patched.
int instructions_; // Number of instructions of the expected patch size.
int size_; // Number of bytes of the expected patch size.
MacroAssembler masm_; // Macro assembler used to generate the code.
};
#endif // ENABLE_DEBUGGER_SUPPORT
// Helper class for generating code or data associated with the code
// right after a call instruction. As an example this can be used to
// generate safepoint data after calls for crankshaft.
class PostCallGenerator {
public:
PostCallGenerator() { }
virtual ~PostCallGenerator() { }
virtual void Generate() = 0;
};
// -----------------------------------------------------------------------------
// Static helper functions.
static MemOperand ContextOperand(Register context, int index) {
return MemOperand(context, Context::SlotOffset(index));
}
static inline MemOperand GlobalObjectOperand() {
return ContextOperand(cp, Context::GLOBAL_INDEX);
}
// Generate a MemOperand for loading a field from an object.
static inline MemOperand FieldMemOperand(Register object, int offset) {
return MemOperand(object, offset - kHeapObjectTag);
}
#ifdef GENERATED_CODE_COVERAGE
#define CODE_COVERAGE_STRINGIFY(x) #x
#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
#define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
#else
#define ACCESS_MASM(masm) masm->
#endif
} } // namespace v8::internal
#endif // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_