(code); pc = holder->instruction_start() + pc_offset; *pc_address = pc; } } StackFrame::Type StackFrame::ComputeType(Isolate* isolate, State* state) { ASSERT(state->fp != NULL); if (StandardFrame::IsArgumentsAdaptorFrame(state->fp)) { return ARGUMENTS_ADAPTOR; } // The marker and function offsets overlap. If the marker isn't a // smi then the frame is a JavaScript frame -- and the marker is // really the function. const int offset = StandardFrameConstants::kMarkerOffset; Object* marker = Memory::Object_at(state->fp + offset); if (!marker->IsSmi()) { // If we're using a "safe" stack iterator, we treat optimized // frames as normal JavaScript frames to avoid having to look // into the heap to determine the state. This is safe as long // as nobody tries to GC... if (SafeStackFrameIterator::is_active(isolate)) return JAVA_SCRIPT; Code::Kind kind = GetContainingCode(isolate, *(state->pc_address))->kind(); ASSERT(kind == Code::FUNCTION || kind == Code::OPTIMIZED_FUNCTION); return (kind == Code::OPTIMIZED_FUNCTION) ? OPTIMIZED : JAVA_SCRIPT; } return static_cast(Smi::cast(marker)->value()); } StackFrame::Type StackFrame::GetCallerState(State* state) const { ComputeCallerState(state); return ComputeType(isolate(), state); } Code* EntryFrame::unchecked_code() const { return HEAP->raw_unchecked_js_entry_code(); } void EntryFrame::ComputeCallerState(State* state) const { GetCallerState(state); } void EntryFrame::SetCallerFp(Address caller_fp) { const int offset = EntryFrameConstants::kCallerFPOffset; Memory::Address_at(this->fp() + offset) = caller_fp; } StackFrame::Type EntryFrame::GetCallerState(State* state) const { const int offset = EntryFrameConstants::kCallerFPOffset; Address fp = Memory::Address_at(this->fp() + offset); return ExitFrame::GetStateForFramePointer(fp, state); } Code* EntryConstructFrame::unchecked_code() const { return HEAP->raw_unchecked_js_construct_entry_code(); } Object*& ExitFrame::code_slot() const { const int offset = ExitFrameConstants::kCodeOffset; return Memory::Object_at(fp() + offset); } Code* ExitFrame::unchecked_code() const { return reinterpret_cast(code_slot()); } void ExitFrame::ComputeCallerState(State* state) const { // Setup the caller state. state->sp = caller_sp(); state->fp = Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset); state->pc_address = reinterpret_cast(fp() + ExitFrameConstants::kCallerPCOffset); } void ExitFrame::SetCallerFp(Address caller_fp) { Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset) = caller_fp; } void ExitFrame::Iterate(ObjectVisitor* v) const { // The arguments are traversed as part of the expression stack of // the calling frame. IteratePc(v, pc_address(), LookupCode()); v->VisitPointer(&code_slot()); } Address ExitFrame::GetCallerStackPointer() const { return fp() + ExitFrameConstants::kCallerSPDisplacement; } StackFrame::Type ExitFrame::GetStateForFramePointer(Address fp, State* state) { if (fp == 0) return NONE; Address sp = ComputeStackPointer(fp); FillState(fp, sp, state); ASSERT(*state->pc_address != NULL); return EXIT; } void ExitFrame::FillState(Address fp, Address sp, State* state) { state->sp = sp; state->fp = fp; state->pc_address = reinterpret_cast(sp - 1 * kPointerSize); } Address StandardFrame::GetExpressionAddress(int n) const { const int offset = StandardFrameConstants::kExpressionsOffset; return fp() + offset - n * kPointerSize; } int StandardFrame::ComputeExpressionsCount() const { const int offset = StandardFrameConstants::kExpressionsOffset + kPointerSize; Address base = fp() + offset; Address limit = sp(); ASSERT(base >= limit); // stack grows downwards // Include register-allocated locals in number of expressions. return static_cast((base - limit) / kPointerSize); } void StandardFrame::ComputeCallerState(State* state) const { state->sp = caller_sp(); state->fp = caller_fp(); state->pc_address = reinterpret_cast(ComputePCAddress(fp())); } void StandardFrame::SetCallerFp(Address caller_fp) { Memory::Address_at(fp() + StandardFrameConstants::kCallerFPOffset) = caller_fp; } bool StandardFrame::IsExpressionInsideHandler(int n) const { Address address = GetExpressionAddress(n); for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) { if (it.handler()->includes(address)) return true; } return false; } void OptimizedFrame::Iterate(ObjectVisitor* v) const { #ifdef DEBUG // Make sure that optimized frames do not contain any stack handlers. StackHandlerIterator it(this, top_handler()); ASSERT(it.done()); #endif // Make sure that we're not doing "safe" stack frame iteration. We cannot // possibly find pointers in optimized frames in that state. ASSERT(!SafeStackFrameIterator::is_active(isolate())); // Compute the safepoint information. unsigned stack_slots = 0; SafepointEntry safepoint_entry; Code* code = StackFrame::GetSafepointData( isolate(), pc(), &safepoint_entry, &stack_slots); unsigned slot_space = stack_slots * kPointerSize; // Visit the outgoing parameters. Object** parameters_base = &Memory::Object_at(sp()); Object** parameters_limit = &Memory::Object_at( fp() + JavaScriptFrameConstants::kFunctionOffset - slot_space); // Visit the parameters that may be on top of the saved registers. if (safepoint_entry.argument_count() > 0) { v->VisitPointers(parameters_base, parameters_base + safepoint_entry.argument_count()); parameters_base += safepoint_entry.argument_count(); } // Skip saved double registers. if (safepoint_entry.has_doubles()) { parameters_base += DoubleRegister::kNumAllocatableRegisters * kDoubleSize / kPointerSize; } // Visit the registers that contain pointers if any. if (safepoint_entry.HasRegisters()) { for (int i = kNumSafepointRegisters - 1; i >=0; i--) { if (safepoint_entry.HasRegisterAt(i)) { int reg_stack_index = MacroAssembler::SafepointRegisterStackIndex(i); v->VisitPointer(parameters_base + reg_stack_index); } } // Skip the words containing the register values. parameters_base += kNumSafepointRegisters; } // We're done dealing with the register bits. uint8_t* safepoint_bits = safepoint_entry.bits(); safepoint_bits += kNumSafepointRegisters >> kBitsPerByteLog2; // Visit the rest of the parameters. v->VisitPointers(parameters_base, parameters_limit); // Visit pointer spill slots and locals. for (unsigned index = 0; index < stack_slots; index++) { int byte_index = index >> kBitsPerByteLog2; int bit_index = index & (kBitsPerByte - 1); if ((safepoint_bits[byte_index] & (1U << bit_index)) != 0) { v->VisitPointer(parameters_limit + index); } } // Visit the context and the function. Object** fixed_base = &Memory::Object_at( fp() + JavaScriptFrameConstants::kFunctionOffset); Object** fixed_limit = &Memory::Object_at(fp()); v->VisitPointers(fixed_base, fixed_limit); // Visit the return address in the callee and incoming arguments. IteratePc(v, pc_address(), code); } bool JavaScriptFrame::IsConstructor() const { Address fp = caller_fp(); if (has_adapted_arguments()) { // Skip the arguments adaptor frame and look at the real caller. fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset); } return IsConstructFrame(fp); } Code* JavaScriptFrame::unchecked_code() const { JSFunction* function = JSFunction::cast(this->function()); return function->unchecked_code(); } int JavaScriptFrame::GetNumberOfIncomingArguments() const { ASSERT(!SafeStackFrameIterator::is_active(isolate()) && isolate()->heap()->gc_state() == Heap::NOT_IN_GC); JSFunction* function = JSFunction::cast(this->function()); return function->shared()->formal_parameter_count(); } Address JavaScriptFrame::GetCallerStackPointer() const { return fp() + StandardFrameConstants::kCallerSPOffset; } void JavaScriptFrame::GetFunctions(List* functions) { ASSERT(functions->length() == 0); functions->Add(JSFunction::cast(function())); } void JavaScriptFrame::Summarize(List* functions) { ASSERT(functions->length() == 0); Code* code_pointer = LookupCode(); int offset = static_cast(pc() - code_pointer->address()); FrameSummary summary(receiver(), JSFunction::cast(function()), code_pointer, offset, IsConstructor()); functions->Add(summary); } void FrameSummary::Print() { PrintF("receiver: "); receiver_->ShortPrint(); PrintF("\nfunction: "); function_->shared()->DebugName()->ShortPrint(); PrintF("\ncode: "); code_->ShortPrint(); if (code_->kind() == Code::FUNCTION) PrintF(" NON-OPT"); if (code_->kind() == Code::OPTIMIZED_FUNCTION) PrintF(" OPT"); PrintF("\npc: %d\n", offset_); } void OptimizedFrame::Summarize(List* frames) { ASSERT(frames->length() == 0); ASSERT(is_optimized()); int deopt_index = Safepoint::kNoDeoptimizationIndex; DeoptimizationInputData* data = GetDeoptimizationData(&deopt_index); // BUG(3243555): Since we don't have a lazy-deopt registered at // throw-statements, we can't use the translation at the call-site of // throw. An entry with no deoptimization index indicates a call-site // without a lazy-deopt. As a consequence we are not allowed to inline // functions containing throw. if (deopt_index == Safepoint::kNoDeoptimizationIndex) { JavaScriptFrame::Summarize(frames); return; } TranslationIterator it(data->TranslationByteArray(), data->TranslationIndex(deopt_index)->value()); Translation::Opcode opcode = static_cast(it.Next()); ASSERT(opcode == Translation::BEGIN); int frame_count = it.Next(); // We create the summary in reverse order because the frames // in the deoptimization translation are ordered bottom-to-top. int i = frame_count; while (i > 0) { opcode = static_cast(it.Next()); if (opcode == Translation::FRAME) { // We don't inline constructor calls, so only the first, outermost // frame can be a constructor frame in case of inlining. bool is_constructor = (i == frame_count) && IsConstructor(); i--; int ast_id = it.Next(); int function_id = it.Next(); it.Next(); // Skip height. JSFunction* function = JSFunction::cast(data->LiteralArray()->get(function_id)); // The translation commands are ordered and the receiver is always // at the first position. Since we are always at a call when we need // to construct a stack trace, the receiver is always in a stack slot. opcode = static_cast(it.Next()); ASSERT(opcode == Translation::STACK_SLOT); int input_slot_index = it.Next(); // Get the correct receiver in the optimized frame. Object* receiver = NULL; // Positive index means the value is spilled to the locals area. Negative // means it is stored in the incoming parameter area. if (input_slot_index >= 0) { receiver = GetExpression(input_slot_index); } else { // Index -1 overlaps with last parameter, -n with the first parameter, // (-n - 1) with the receiver with n being the number of parameters // of the outermost, optimized frame. int parameter_count = ComputeParametersCount(); int parameter_index = input_slot_index + parameter_count; receiver = (parameter_index == -1) ? this->receiver() : this->GetParameter(parameter_index); } Code* code = function->shared()->code(); DeoptimizationOutputData* output_data = DeoptimizationOutputData::cast(code->deoptimization_data()); unsigned entry = Deoptimizer::GetOutputInfo(output_data, ast_id, function->shared()); unsigned pc_offset = FullCodeGenerator::PcField::decode(entry) + Code::kHeaderSize; ASSERT(pc_offset > 0); FrameSummary summary(receiver, function, code, pc_offset, is_constructor); frames->Add(summary); } else { // Skip over operands to advance to the next opcode. it.Skip(Translation::NumberOfOperandsFor(opcode)); } } } DeoptimizationInputData* OptimizedFrame::GetDeoptimizationData( int* deopt_index) { ASSERT(is_optimized()); JSFunction* opt_function = JSFunction::cast(function()); Code* code = opt_function->code(); // The code object may have been replaced by lazy deoptimization. Fall // back to a slow search in this case to find the original optimized // code object. if (!code->contains(pc())) { code = isolate()->pc_to_code_cache()->GcSafeFindCodeForPc(pc()); } ASSERT(code != NULL); ASSERT(code->kind() == Code::OPTIMIZED_FUNCTION); SafepointEntry safepoint_entry = code->GetSafepointEntry(pc()); *deopt_index = safepoint_entry.deoptimization_index(); ASSERT(*deopt_index != Safepoint::kNoDeoptimizationIndex); return DeoptimizationInputData::cast(code->deoptimization_data()); } void OptimizedFrame::GetFunctions(List* functions) { ASSERT(functions->length() == 0); ASSERT(is_optimized()); int deopt_index = Safepoint::kNoDeoptimizationIndex; DeoptimizationInputData* data = GetDeoptimizationData(&deopt_index); TranslationIterator it(data->TranslationByteArray(), data->TranslationIndex(deopt_index)->value()); Translation::Opcode opcode = static_cast(it.Next()); ASSERT(opcode == Translation::BEGIN); int frame_count = it.Next(); // We insert the frames in reverse order because the frames // in the deoptimization translation are ordered bottom-to-top. while (frame_count > 0) { opcode = static_cast(it.Next()); if (opcode == Translation::FRAME) { frame_count--; it.Next(); // Skip ast id. int function_id = it.Next(); it.Next(); // Skip height. JSFunction* function = JSFunction::cast(data->LiteralArray()->get(function_id)); functions->Add(function); } else { // Skip over operands to advance to the next opcode. it.Skip(Translation::NumberOfOperandsFor(opcode)); } } } Address ArgumentsAdaptorFrame::GetCallerStackPointer() const { return fp() + StandardFrameConstants::kCallerSPOffset; } Address InternalFrame::GetCallerStackPointer() const { // Internal frames have no arguments. The stack pointer of the // caller is at a fixed offset from the frame pointer. return fp() + StandardFrameConstants::kCallerSPOffset; } Code* ArgumentsAdaptorFrame::unchecked_code() const { return isolate()->builtins()->builtin( Builtins::kArgumentsAdaptorTrampoline); } Code* InternalFrame::unchecked_code() const { const int offset = InternalFrameConstants::kCodeOffset; Object* code = Memory::Object_at(fp() + offset); ASSERT(code != NULL); return reinterpret_cast(code); } void StackFrame::PrintIndex(StringStream* accumulator, PrintMode mode, int index) { accumulator->Add((mode == OVERVIEW) ? "%5d: " : "[%d]: ", index); } void JavaScriptFrame::Print(StringStream* accumulator, PrintMode mode, int index) const { HandleScope scope; Object* receiver = this->receiver(); Object* function = this->function(); accumulator->PrintSecurityTokenIfChanged(function); PrintIndex(accumulator, mode, index); Code* code = NULL; if (IsConstructor()) accumulator->Add("new "); accumulator->PrintFunction(function, receiver, &code); Handle scope_info(SerializedScopeInfo::Empty()); if (function->IsJSFunction()) { Handle shared(JSFunction::cast(function)->shared()); scope_info = Handle(shared->scope_info()); Object* script_obj = shared->script(); if (script_obj->IsScript()) { Handle 登录后可以享受更多权益 您还没有登录,登录后您可以: 收藏Android系统代码 收藏喜欢的文章 多个平台共享账号 去登录 首次使用?从这里 注册
(code_slot()); } void ExitFrame::ComputeCallerState(State* state) const { // Setup the caller state. state->sp = caller_sp(); state->fp = Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset); state->pc_address = reinterpret_cast(fp() + ExitFrameConstants::kCallerPCOffset); } void ExitFrame::SetCallerFp(Address caller_fp) { Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset) = caller_fp; } void ExitFrame::Iterate(ObjectVisitor* v) const { // The arguments are traversed as part of the expression stack of // the calling frame. IteratePc(v, pc_address(), LookupCode()); v->VisitPointer(&code_slot()); } Address ExitFrame::GetCallerStackPointer() const { return fp() + ExitFrameConstants::kCallerSPDisplacement; } StackFrame::Type ExitFrame::GetStateForFramePointer(Address fp, State* state) { if (fp == 0) return NONE; Address sp = ComputeStackPointer(fp); FillState(fp, sp, state); ASSERT(*state->pc_address != NULL); return EXIT; } void ExitFrame::FillState(Address fp, Address sp, State* state) { state->sp = sp; state->fp = fp; state->pc_address = reinterpret_cast(sp - 1 * kPointerSize); } Address StandardFrame::GetExpressionAddress(int n) const { const int offset = StandardFrameConstants::kExpressionsOffset; return fp() + offset - n * kPointerSize; } int StandardFrame::ComputeExpressionsCount() const { const int offset = StandardFrameConstants::kExpressionsOffset + kPointerSize; Address base = fp() + offset; Address limit = sp(); ASSERT(base >= limit); // stack grows downwards // Include register-allocated locals in number of expressions. return static_cast((base - limit) / kPointerSize); } void StandardFrame::ComputeCallerState(State* state) const { state->sp = caller_sp(); state->fp = caller_fp(); state->pc_address = reinterpret_cast(ComputePCAddress(fp())); } void StandardFrame::SetCallerFp(Address caller_fp) { Memory::Address_at(fp() + StandardFrameConstants::kCallerFPOffset) = caller_fp; } bool StandardFrame::IsExpressionInsideHandler(int n) const { Address address = GetExpressionAddress(n); for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) { if (it.handler()->includes(address)) return true; } return false; } void OptimizedFrame::Iterate(ObjectVisitor* v) const { #ifdef DEBUG // Make sure that optimized frames do not contain any stack handlers. StackHandlerIterator it(this, top_handler()); ASSERT(it.done()); #endif // Make sure that we're not doing "safe" stack frame iteration. We cannot // possibly find pointers in optimized frames in that state. ASSERT(!SafeStackFrameIterator::is_active(isolate())); // Compute the safepoint information. unsigned stack_slots = 0; SafepointEntry safepoint_entry; Code* code = StackFrame::GetSafepointData( isolate(), pc(), &safepoint_entry, &stack_slots); unsigned slot_space = stack_slots * kPointerSize; // Visit the outgoing parameters. Object** parameters_base = &Memory::Object_at(sp()); Object** parameters_limit = &Memory::Object_at( fp() + JavaScriptFrameConstants::kFunctionOffset - slot_space); // Visit the parameters that may be on top of the saved registers. if (safepoint_entry.argument_count() > 0) { v->VisitPointers(parameters_base, parameters_base + safepoint_entry.argument_count()); parameters_base += safepoint_entry.argument_count(); } // Skip saved double registers. if (safepoint_entry.has_doubles()) { parameters_base += DoubleRegister::kNumAllocatableRegisters * kDoubleSize / kPointerSize; } // Visit the registers that contain pointers if any. if (safepoint_entry.HasRegisters()) { for (int i = kNumSafepointRegisters - 1; i >=0; i--) { if (safepoint_entry.HasRegisterAt(i)) { int reg_stack_index = MacroAssembler::SafepointRegisterStackIndex(i); v->VisitPointer(parameters_base + reg_stack_index); } } // Skip the words containing the register values. parameters_base += kNumSafepointRegisters; } // We're done dealing with the register bits. uint8_t* safepoint_bits = safepoint_entry.bits(); safepoint_bits += kNumSafepointRegisters >> kBitsPerByteLog2; // Visit the rest of the parameters. v->VisitPointers(parameters_base, parameters_limit); // Visit pointer spill slots and locals. for (unsigned index = 0; index < stack_slots; index++) { int byte_index = index >> kBitsPerByteLog2; int bit_index = index & (kBitsPerByte - 1); if ((safepoint_bits[byte_index] & (1U << bit_index)) != 0) { v->VisitPointer(parameters_limit + index); } } // Visit the context and the function. Object** fixed_base = &Memory::Object_at( fp() + JavaScriptFrameConstants::kFunctionOffset); Object** fixed_limit = &Memory::Object_at(fp()); v->VisitPointers(fixed_base, fixed_limit); // Visit the return address in the callee and incoming arguments. IteratePc(v, pc_address(), code); } bool JavaScriptFrame::IsConstructor() const { Address fp = caller_fp(); if (has_adapted_arguments()) { // Skip the arguments adaptor frame and look at the real caller. fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset); } return IsConstructFrame(fp); } Code* JavaScriptFrame::unchecked_code() const { JSFunction* function = JSFunction::cast(this->function()); return function->unchecked_code(); } int JavaScriptFrame::GetNumberOfIncomingArguments() const { ASSERT(!SafeStackFrameIterator::is_active(isolate()) && isolate()->heap()->gc_state() == Heap::NOT_IN_GC); JSFunction* function = JSFunction::cast(this->function()); return function->shared()->formal_parameter_count(); } Address JavaScriptFrame::GetCallerStackPointer() const { return fp() + StandardFrameConstants::kCallerSPOffset; } void JavaScriptFrame::GetFunctions(List* functions) { ASSERT(functions->length() == 0); functions->Add(JSFunction::cast(function())); } void JavaScriptFrame::Summarize(List* functions) { ASSERT(functions->length() == 0); Code* code_pointer = LookupCode(); int offset = static_cast(pc() - code_pointer->address()); FrameSummary summary(receiver(), JSFunction::cast(function()), code_pointer, offset, IsConstructor()); functions->Add(summary); } void FrameSummary::Print() { PrintF("receiver: "); receiver_->ShortPrint(); PrintF("\nfunction: "); function_->shared()->DebugName()->ShortPrint(); PrintF("\ncode: "); code_->ShortPrint(); if (code_->kind() == Code::FUNCTION) PrintF(" NON-OPT"); if (code_->kind() == Code::OPTIMIZED_FUNCTION) PrintF(" OPT"); PrintF("\npc: %d\n", offset_); } void OptimizedFrame::Summarize(List* frames) { ASSERT(frames->length() == 0); ASSERT(is_optimized()); int deopt_index = Safepoint::kNoDeoptimizationIndex; DeoptimizationInputData* data = GetDeoptimizationData(&deopt_index); // BUG(3243555): Since we don't have a lazy-deopt registered at // throw-statements, we can't use the translation at the call-site of // throw. An entry with no deoptimization index indicates a call-site // without a lazy-deopt. As a consequence we are not allowed to inline // functions containing throw. if (deopt_index == Safepoint::kNoDeoptimizationIndex) { JavaScriptFrame::Summarize(frames); return; } TranslationIterator it(data->TranslationByteArray(), data->TranslationIndex(deopt_index)->value()); Translation::Opcode opcode = static_cast(it.Next()); ASSERT(opcode == Translation::BEGIN); int frame_count = it.Next(); // We create the summary in reverse order because the frames // in the deoptimization translation are ordered bottom-to-top. int i = frame_count; while (i > 0) { opcode = static_cast(it.Next()); if (opcode == Translation::FRAME) { // We don't inline constructor calls, so only the first, outermost // frame can be a constructor frame in case of inlining. bool is_constructor = (i == frame_count) && IsConstructor(); i--; int ast_id = it.Next(); int function_id = it.Next(); it.Next(); // Skip height. JSFunction* function = JSFunction::cast(data->LiteralArray()->get(function_id)); // The translation commands are ordered and the receiver is always // at the first position. Since we are always at a call when we need // to construct a stack trace, the receiver is always in a stack slot. opcode = static_cast(it.Next()); ASSERT(opcode == Translation::STACK_SLOT); int input_slot_index = it.Next(); // Get the correct receiver in the optimized frame. Object* receiver = NULL; // Positive index means the value is spilled to the locals area. Negative // means it is stored in the incoming parameter area. if (input_slot_index >= 0) { receiver = GetExpression(input_slot_index); } else { // Index -1 overlaps with last parameter, -n with the first parameter, // (-n - 1) with the receiver with n being the number of parameters // of the outermost, optimized frame. int parameter_count = ComputeParametersCount(); int parameter_index = input_slot_index + parameter_count; receiver = (parameter_index == -1) ? this->receiver() : this->GetParameter(parameter_index); } Code* code = function->shared()->code(); DeoptimizationOutputData* output_data = DeoptimizationOutputData::cast(code->deoptimization_data()); unsigned entry = Deoptimizer::GetOutputInfo(output_data, ast_id, function->shared()); unsigned pc_offset = FullCodeGenerator::PcField::decode(entry) + Code::kHeaderSize; ASSERT(pc_offset > 0); FrameSummary summary(receiver, function, code, pc_offset, is_constructor); frames->Add(summary); } else { // Skip over operands to advance to the next opcode. it.Skip(Translation::NumberOfOperandsFor(opcode)); } } } DeoptimizationInputData* OptimizedFrame::GetDeoptimizationData( int* deopt_index) { ASSERT(is_optimized()); JSFunction* opt_function = JSFunction::cast(function()); Code* code = opt_function->code(); // The code object may have been replaced by lazy deoptimization. Fall // back to a slow search in this case to find the original optimized // code object. if (!code->contains(pc())) { code = isolate()->pc_to_code_cache()->GcSafeFindCodeForPc(pc()); } ASSERT(code != NULL); ASSERT(code->kind() == Code::OPTIMIZED_FUNCTION); SafepointEntry safepoint_entry = code->GetSafepointEntry(pc()); *deopt_index = safepoint_entry.deoptimization_index(); ASSERT(*deopt_index != Safepoint::kNoDeoptimizationIndex); return DeoptimizationInputData::cast(code->deoptimization_data()); } void OptimizedFrame::GetFunctions(List* functions) { ASSERT(functions->length() == 0); ASSERT(is_optimized()); int deopt_index = Safepoint::kNoDeoptimizationIndex; DeoptimizationInputData* data = GetDeoptimizationData(&deopt_index); TranslationIterator it(data->TranslationByteArray(), data->TranslationIndex(deopt_index)->value()); Translation::Opcode opcode = static_cast(it.Next()); ASSERT(opcode == Translation::BEGIN); int frame_count = it.Next(); // We insert the frames in reverse order because the frames // in the deoptimization translation are ordered bottom-to-top. while (frame_count > 0) { opcode = static_cast(it.Next()); if (opcode == Translation::FRAME) { frame_count--; it.Next(); // Skip ast id. int function_id = it.Next(); it.Next(); // Skip height. JSFunction* function = JSFunction::cast(data->LiteralArray()->get(function_id)); functions->Add(function); } else { // Skip over operands to advance to the next opcode. it.Skip(Translation::NumberOfOperandsFor(opcode)); } } } Address ArgumentsAdaptorFrame::GetCallerStackPointer() const { return fp() + StandardFrameConstants::kCallerSPOffset; } Address InternalFrame::GetCallerStackPointer() const { // Internal frames have no arguments. The stack pointer of the // caller is at a fixed offset from the frame pointer. return fp() + StandardFrameConstants::kCallerSPOffset; } Code* ArgumentsAdaptorFrame::unchecked_code() const { return isolate()->builtins()->builtin( Builtins::kArgumentsAdaptorTrampoline); } Code* InternalFrame::unchecked_code() const { const int offset = InternalFrameConstants::kCodeOffset; Object* code = Memory::Object_at(fp() + offset); ASSERT(code != NULL); return reinterpret_cast(code); } void StackFrame::PrintIndex(StringStream* accumulator, PrintMode mode, int index) { accumulator->Add((mode == OVERVIEW) ? "%5d: " : "[%d]: ", index); } void JavaScriptFrame::Print(StringStream* accumulator, PrintMode mode, int index) const { HandleScope scope; Object* receiver = this->receiver(); Object* function = this->function(); accumulator->PrintSecurityTokenIfChanged(function); PrintIndex(accumulator, mode, index); Code* code = NULL; if (IsConstructor()) accumulator->Add("new "); accumulator->PrintFunction(function, receiver, &code); Handle scope_info(SerializedScopeInfo::Empty()); if (function->IsJSFunction()) { Handle shared(JSFunction::cast(function)->shared()); scope_info = Handle(shared->scope_info()); Object* script_obj = shared->script(); if (script_obj->IsScript()) { Handle 登录后可以享受更多权益 您还没有登录,登录后您可以: 收藏Android系统代码 收藏喜欢的文章 多个平台共享账号 去登录 首次使用?从这里 注册
(code); } void StackFrame::PrintIndex(StringStream* accumulator, PrintMode mode, int index) { accumulator->Add((mode == OVERVIEW) ? "%5d: " : "[%d]: ", index); } void JavaScriptFrame::Print(StringStream* accumulator, PrintMode mode, int index) const { HandleScope scope; Object* receiver = this->receiver(); Object* function = this->function(); accumulator->PrintSecurityTokenIfChanged(function); PrintIndex(accumulator, mode, index); Code* code = NULL; if (IsConstructor()) accumulator->Add("new "); accumulator->PrintFunction(function, receiver, &code); Handle scope_info(SerializedScopeInfo::Empty()); if (function->IsJSFunction()) { Handle shared(JSFunction::cast(function)->shared()); scope_info = Handle(shared->scope_info()); Object* script_obj = shared->script(); if (script_obj->IsScript()) { Handle 登录后可以享受更多权益 您还没有登录,登录后您可以: 收藏Android系统代码 收藏喜欢的文章 多个平台共享账号 去登录 首次使用?从这里 注册
您还没有登录,登录后您可以:
首次使用?从这里 注册