// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_ARM_MACRO_ASSEMBLER_ARM_H_
#define V8_ARM_MACRO_ASSEMBLER_ARM_H_
#include "assembler.h"
namespace v8 {
namespace internal {
// Forward declaration.
class CallWrapper;
// ----------------------------------------------------------------------------
// Static helper functions
// Generate a MemOperand for loading a field from an object.
static inline MemOperand FieldMemOperand(Register object, int offset) {
return MemOperand(object, offset - kHeapObjectTag);
}
static inline Operand SmiUntagOperand(Register object) {
return Operand(object, ASR, kSmiTagSize);
}
// Give alias names to registers
const Register cp = { 8 }; // JavaScript context pointer
const Register roots = { 10 }; // Roots array pointer.
enum InvokeJSFlags {
CALL_JS,
JUMP_JS
};
// Flags used for the AllocateInNewSpace functions.
enum AllocationFlags {
// No special flags.
NO_ALLOCATION_FLAGS = 0,
// Return the pointer to the allocated already tagged as a heap object.
TAG_OBJECT = 1 << 0,
// The content of the result register already contains the allocation top in
// new space.
RESULT_CONTAINS_TOP = 1 << 1,
// Specify that the requested size of the space to allocate is specified in
// words instead of bytes.
SIZE_IN_WORDS = 1 << 2
};
// Flags used for the ObjectToDoubleVFPRegister function.
enum ObjectToDoubleFlags {
// No special flags.
NO_OBJECT_TO_DOUBLE_FLAGS = 0,
// Object is known to be a non smi.
OBJECT_NOT_SMI = 1 << 0,
// Don't load NaNs or infinities, branch to the non number case instead.
AVOID_NANS_AND_INFINITIES = 1 << 1
};
// MacroAssembler implements a collection of frequently used macros.
class MacroAssembler: public Assembler {
public:
// The isolate parameter can be NULL if the macro assembler should
// not use isolate-dependent functionality. In this case, it's the
// responsibility of the caller to never invoke such function on the
// macro assembler.
MacroAssembler(Isolate* isolate, void* buffer, int size);
// Jump, Call, and Ret pseudo instructions implementing inter-working.
void Jump(Register target, Condition cond = al);
void Jump(byte* target, RelocInfo::Mode rmode, Condition cond = al);
void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
static int CallSize(Register target, Condition cond = al);
void Call(Register target, Condition cond = al);
static int CallSize(byte* target, RelocInfo::Mode rmode, Condition cond = al);
void Call(byte* target, RelocInfo::Mode rmode, Condition cond = al);
static int CallSize(Handle<Code> code,
RelocInfo::Mode rmode,
Condition cond = al);
void Call(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
void Ret(Condition cond = al);
// Emit code to discard a non-negative number of pointer-sized elements
// from the stack, clobbering only the sp register.
void Drop(int count, Condition cond = al);
void Ret(int drop, Condition cond = al);
// Swap two registers. If the scratch register is omitted then a slightly
// less efficient form using xor instead of mov is emitted.
void Swap(Register reg1,
Register reg2,
Register scratch = no_reg,
Condition cond = al);
void And(Register dst, Register src1, const Operand& src2,
Condition cond = al);
void Ubfx(Register dst, Register src, int lsb, int width,
Condition cond = al);
void Sbfx(Register dst, Register src, int lsb, int width,
Condition cond = al);
// The scratch register is not used for ARMv7.
// scratch can be the same register as src (in which case it is trashed), but
// not the same as dst.
void Bfi(Register dst,
Register src,
Register scratch,
int lsb,
int width,
Condition cond = al);
void Bfc(Register dst, int lsb, int width, Condition cond = al);
void Usat(Register dst, int satpos, const Operand& src,
Condition cond = al);
void Call(Label* target);
void Move(Register dst, Handle<Object> value);
// May do nothing if the registers are identical.
void Move(Register dst, Register src);
// Jumps to the label at the index given by the Smi in "index".
void SmiJumpTable(Register index, Vector<Label*> targets);
// Load an object from the root table.
void LoadRoot(Register destination,
Heap::RootListIndex index,
Condition cond = al);
// Store an object to the root table.
void StoreRoot(Register source,
Heap::RootListIndex index,
Condition cond = al);
// Check if object is in new space.
// scratch can be object itself, but it will be clobbered.
void InNewSpace(Register object,
Register scratch,
Condition cond, // eq for new space, ne otherwise
Label* branch);
// For the page containing |object| mark the region covering [address]
// dirty. The object address must be in the first 8K of an allocated page.
void RecordWriteHelper(Register object,
Register address,
Register scratch);
// For the page containing |object| mark the region covering
// [object+offset] dirty. The object address must be in the first 8K
// of an allocated page. The 'scratch' registers are used in the
// implementation and all 3 registers are clobbered by the
// operation, as well as the ip register. RecordWrite updates the
// write barrier even when storing smis.
void RecordWrite(Register object,
Operand offset,
Register scratch0,
Register scratch1);
// For the page containing |object| mark the region covering
// [address] dirty. The object address must be in the first 8K of an
// allocated page. All 3 registers are clobbered by the operation,
// as well as the ip register. RecordWrite updates the write barrier
// even when storing smis.
void RecordWrite(Register object,
Register address,
Register scratch);
// Push two registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Condition cond = al) {
ASSERT(!src1.is(src2));
if (src1.code() > src2.code()) {
stm(db_w, sp, src1.bit() | src2.bit(), cond);
} else {
str(src1, MemOperand(sp, 4, NegPreIndex), cond);
str(src2, MemOperand(sp, 4, NegPreIndex), cond);
}
}
// Push three registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Register src3, Condition cond = al) {
ASSERT(!src1.is(src2));
ASSERT(!src2.is(src3));
ASSERT(!src1.is(src3));
if (src1.code() > src2.code()) {
if (src2.code() > src3.code()) {
stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
} else {
stm(db_w, sp, src1.bit() | src2.bit(), cond);
str(src3, MemOperand(sp, 4, NegPreIndex), cond);
}
} else {
str(src1, MemOperand(sp, 4, NegPreIndex), cond);
Push(src2, src3, cond);
}
}
// Push four registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2,
Register src3, Register src4, Condition cond = al) {
ASSERT(!src1.is(src2));
ASSERT(!src2.is(src3));
ASSERT(!src1.is(src3));
ASSERT(!src1.is(src4));
ASSERT(!src2.is(src4));
ASSERT(!src3.is(src4));
if (src1.code() > src2.code()) {
if (src2.code() > src3.code()) {
if (src3.code() > src4.code()) {
stm(db_w,
sp,
src1.bit() | src2.bit() | src3.bit() | src4.bit(),
cond);
} else {
stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
str(src4, MemOperand(sp, 4, NegPreIndex), cond);
}
} else {
stm(db_w, sp, src1.bit() | src2.bit(), cond);
Push(src3, src4, cond);
}
} else {
str(src1, MemOperand(sp, 4, NegPreIndex), cond);
Push(src2, src3, src4, cond);
}
}
// Pop two registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2, Condition cond = al) {
ASSERT(!src1.is(src2));
if (src1.code() > src2.code()) {
ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
} else {
ldr(src2, MemOperand(sp, 4, PostIndex), cond);
ldr(src1, MemOperand(sp, 4, PostIndex), cond);
}
}
// Push and pop the registers that can hold pointers, as defined by the
// RegList constant kSafepointSavedRegisters.
void PushSafepointRegisters();
void PopSafepointRegisters();
void PushSafepointRegistersAndDoubles();
void PopSafepointRegistersAndDoubles();
// Store value in register src in the safepoint stack slot for
// register dst.
void StoreToSafepointRegisterSlot(Register src, Register dst);
void StoreToSafepointRegistersAndDoublesSlot(Register src, Register dst);
// Load the value of the src register from its safepoint stack slot
// into register dst.
void LoadFromSafepointRegisterSlot(Register dst, Register src);
// Load two consecutive registers with two consecutive memory locations.
void Ldrd(Register dst1,
Register dst2,
const MemOperand& src,
Condition cond = al);
// Store two consecutive registers to two consecutive memory locations.
void Strd(Register src1,
Register src2,
const MemOperand& dst,
Condition cond = al);
// Clear specified FPSCR bits.
void ClearFPSCRBits(const uint32_t bits_to_clear,
const Register scratch,
const Condition cond = al);
// Compare double values and move the result to the normal condition flags.
void VFPCompareAndSetFlags(const DwVfpRegister src1,
const DwVfpRegister src2,
const Condition cond = al);
void VFPCompareAndSetFlags(const DwVfpRegister src1,
const double src2,
const Condition cond = al);
// Compare double values and then load the fpscr flags to a register.
void VFPCompareAndLoadFlags(const DwVfpRegister src1,
const DwVfpRegister src2,
const Register fpscr_flags,
const Condition cond = al);
void VFPCompareAndLoadFlags(const DwVfpRegister src1,
const double src2,
const Register fpscr_flags,
const Condition cond = al);
// ---------------------------------------------------------------------------
// Activation frames
void EnterInternalFrame() { EnterFrame(StackFrame::INTERNAL); }
void LeaveInternalFrame() { LeaveFrame(StackFrame::INTERNAL); }
void EnterConstructFrame() { EnterFrame(StackFrame::CONSTRUCT); }
void LeaveConstructFrame() { LeaveFrame(StackFrame::CONSTRUCT); }
// Enter exit frame.
// stack_space - extra stack space, used for alignment before call to C.
void EnterExitFrame(bool save_doubles, int stack_space = 0);
// Leave the current exit frame. Expects the return value in r0.
// Expect the number of values, pushed prior to the exit frame, to
// remove in a register (or no_reg, if there is nothing to remove).
void LeaveExitFrame(bool save_doubles, Register argument_count);
// Get the actual activation frame alignment for target environment.
static int ActivationFrameAlignment();
void LoadContext(Register dst, int context_chain_length);
void LoadGlobalFunction(int index, Register function);
// Load the initial map from the global function. The registers
// function and map can be the same, function is then overwritten.
void LoadGlobalFunctionInitialMap(Register function,
Register map,
Register scratch);
// ---------------------------------------------------------------------------
// JavaScript invokes
// Invoke the JavaScript function code by either calling or jumping.
void InvokeCode(Register code,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
CallWrapper* call_wrapper = NULL);
void InvokeCode(Handle<Code> code,
const ParameterCount& expected,
const ParameterCount& actual,
RelocInfo::Mode rmode,
InvokeFlag flag);
// Invoke the JavaScript function in the given register. Changes the
// current context to the context in the function before invoking.
void InvokeFunction(Register function,
const ParameterCount& actual,
InvokeFlag flag,
CallWrapper* call_wrapper = NULL);
void InvokeFunction(JSFunction* function,
const ParameterCount& actual,
InvokeFlag flag);
void IsObjectJSObjectType(Register heap_object,
Register map,
Register scratch,
Label* fail);
void IsInstanceJSObjectType(Register map,
Register scratch,
Label* fail);
void IsObjectJSStringType(Register object,
Register scratch,
Label* fail);
#ifdef ENABLE_DEBUGGER_SUPPORT
// ---------------------------------------------------------------------------
// Debugger Support
void DebugBreak();
#endif
// ---------------------------------------------------------------------------
// Exception handling
// Push a new try handler and link into try handler chain.
// The return address must be passed in register lr.
// On exit, r0 contains TOS (code slot).
void PushTryHandler(CodeLocation try_location, HandlerType type);
// Unlink the stack handler on top of the stack from the try handler chain.
// Must preserve the result register.
void PopTryHandler();
// Passes thrown value (in r0) to the handler of top of the try handler chain.
void Throw(Register value);
// Propagates an uncatchable exception to the top of the current JS stack's
// handler chain.
void ThrowUncatchable(UncatchableExceptionType type, Register value);
// ---------------------------------------------------------------------------
// Inline caching support
// Generate code for checking access rights - used for security checks
// on access to global objects across environments. The holder register
// is left untouched, whereas both scratch registers are clobbered.
void CheckAccessGlobalProxy(Register holder_reg,
Register scratch,
Label* miss);
inline void MarkCode(NopMarkerTypes type) {
nop(type);
}
// Check if the given instruction is a 'type' marker.
// ie. check if is is a mov r<type>, r<type> (referenced as nop(type))
// These instructions are generated to mark special location in the code,
// like some special IC code.
static inline bool IsMarkedCode(Instr instr, int type) {
ASSERT((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
return IsNop(instr, type);
}
static inline int GetCodeMarker(Instr instr) {
int dst_reg_offset = 12;
int dst_mask = 0xf << dst_reg_offset;
int src_mask = 0xf;
int dst_reg = (instr & dst_mask) >> dst_reg_offset;
int src_reg = instr & src_mask;
uint32_t non_register_mask = ~(dst_mask | src_mask);
uint32_t mov_mask = al | 13 << 21;
// Return <n> if we have a mov rn rn, else return -1.
int type = ((instr & non_register_mask) == mov_mask) &&
(dst_reg == src_reg) &&
(FIRST_IC_MARKER <= dst_reg) && (dst_reg < LAST_CODE_MARKER)
? src_reg
: -1;
ASSERT((type == -1) ||
((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
return type;
}
// ---------------------------------------------------------------------------
// Allocation support
// Allocate an object in new space. The object_size is specified
// either in bytes or in words if the allocation flag SIZE_IN_WORDS
// is passed. If the new space is exhausted control continues at the
// gc_required label. The allocated object is returned in result. If
// the flag tag_allocated_object is true the result is tagged as as
// a heap object. All registers are clobbered also when control
// continues at the gc_required label.
void AllocateInNewSpace(int object_size,
Register result,
Register scratch1,
Register scratch2,
Label* gc_required,
AllocationFlags flags);
void AllocateInNewSpace(Register object_size,
Register result,
Register scratch1,
Register scratch2,
Label* gc_required,
AllocationFlags flags);
// Undo allocation in new space. The object passed and objects allocated after
// it will no longer be allocated. The caller must make sure that no pointers
// are left to the object(s) no longer allocated as they would be invalid when
// allocation is undone.
void UndoAllocationInNewSpace(Register object, Register scratch);
void AllocateTwoByteString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required);
void AllocateAsciiString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required);
void AllocateTwoByteConsString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required);
void AllocateAsciiConsString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required);
// Allocates a heap number or jumps to the gc_required label if the young
// space is full and a scavenge is needed. All registers are clobbered also
// when control continues at the gc_required label.
void AllocateHeapNumber(Register result,
Register scratch1,
Register scratch2,
Register heap_number_map,
Label* gc_required);
void AllocateHeapNumberWithValue(Register result,
DwVfpRegister value,
Register scratch1,
Register scratch2,
Register heap_number_map,
Label* gc_required);
// Copies a fixed number of fields of heap objects from src to dst.
void CopyFields(Register dst, Register src, RegList temps, int field_count);
// Copies a number of bytes from src to dst. All registers are clobbered. On
// exit src and dst will point to the place just after where the last byte was
// read or written and length will be zero.
void CopyBytes(Register src,
Register dst,
Register length,
Register scratch);
// ---------------------------------------------------------------------------
// Support functions.
// Try to get function prototype of a function and puts the value in
// the result register. Checks that the function really is a
// function and jumps to the miss label if the fast checks fail. The
// function register will be untouched; the other registers may be
// clobbered.
void TryGetFunctionPrototype(Register function,
Register result,
Register scratch,
Label* miss);
// Compare object type for heap object. heap_object contains a non-Smi
// whose object type should be compared with the given type. This both
// sets the flags and leaves the object type in the type_reg register.
// It leaves the map in the map register (unless the type_reg and map register
// are the same register). It leaves the heap object in the heap_object
// register unless the heap_object register is the same register as one of the
// other registers.
void CompareObjectType(Register heap_object,
Register map,
Register type_reg,
InstanceType type);
// Compare instance type in a map. map contains a valid map object whose
// object type should be compared with the given type. This both
// sets the flags and leaves the object type in the type_reg register. It
// leaves the heap object in the heap_object register unless the heap_object
// register is the same register as type_reg.
void CompareInstanceType(Register map,
Register type_reg,
InstanceType type);
// Check if the map of an object is equal to a specified map (either
// given directly or as an index into the root list) and branch to
// label if not. Skip the smi check if not required (object is known
// to be a heap object)
void CheckMap(Register obj,
Register scratch,
Handle<Map> map,
Label* fail,
bool is_heap_object);
void CheckMap(Register obj,
Register scratch,
Heap::RootListIndex index,
Label* fail,
bool is_heap_object);
// Compare the object in a register to a value from the root list.
// Uses the ip register as scratch.
void CompareRoot(Register obj, Heap::RootListIndex index);
// Load and check the instance type of an object for being a string.
// Loads the type into the second argument register.
// Returns a condition that will be enabled if the object was a string.
Condition IsObjectStringType(Register obj,
Register type) {
ldr(type, FieldMemOperand(obj, HeapObject::kMapOffset));
ldrb(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
tst(type, Operand(kIsNotStringMask));
ASSERT_EQ(0, kStringTag);
return eq;
}
// Generates code for reporting that an illegal operation has
// occurred.
void IllegalOperation(int num_arguments);
// Picks out an array index from the hash field.
// Register use:
// hash - holds the index's hash. Clobbered.
// index - holds the overwritten index on exit.
void IndexFromHash(Register hash, Register index);
// Get the number of least significant bits from a register
void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
// Uses VFP instructions to Convert a Smi to a double.
void IntegerToDoubleConversionWithVFP3(Register inReg,
Register outHighReg,
Register outLowReg);
// Load the value of a number object into a VFP double register. If the object
// is not a number a jump to the label not_number is performed and the VFP
// double register is unchanged.
void ObjectToDoubleVFPRegister(
Register object,
DwVfpRegister value,
Register scratch1,
Register scratch2,
Register heap_number_map,
SwVfpRegister scratch3,
Label* not_number,
ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);
// Load the value of a smi object into a VFP double register. The register
// scratch1 can be the same register as smi in which case smi will hold the
// untagged value afterwards.
void SmiToDoubleVFPRegister(Register smi,
DwVfpRegister value,
Register scratch1,
SwVfpRegister scratch2);
// Convert the HeapNumber pointed to by source to a 32bits signed integer
// dest. If the HeapNumber does not fit into a 32bits signed integer branch
// to not_int32 label. If VFP3 is available double_scratch is used but not
// scratch2.
void ConvertToInt32(Register source,
Register dest,
Register scratch,
Register scratch2,
DwVfpRegister double_scratch,
Label *not_int32);
// Truncates a double using a specific rounding mode.
// Clears the z flag (ne condition) if an overflow occurs.
// If exact_conversion is true, the z flag is also cleared if the conversion
// was inexact, ie. if the double value could not be converted exactly
// to a 32bit integer.
void EmitVFPTruncate(VFPRoundingMode rounding_mode,
SwVfpRegister result,
DwVfpRegister double_input,
Register scratch1,
Register scratch2,
CheckForInexactConversion check
= kDontCheckForInexactConversion);
// Helper for EmitECMATruncate.
// This will truncate a floating-point value outside of the singed 32bit
// integer range to a 32bit signed integer.
// Expects the double value loaded in input_high and input_low.
// Exits with the answer in 'result'.
// Note that this code does not work for values in the 32bit range!
void EmitOutOfInt32RangeTruncate(Register result,
Register input_high,
Register input_low,
Register scratch);
// Performs a truncating conversion of a floating point number as used by
// the JS bitwise operations. See ECMA-262 9.5: ToInt32.
// Exits with 'result' holding the answer and all other registers clobbered.
void EmitECMATruncate(Register result,
DwVfpRegister double_input,
SwVfpRegister single_scratch,
Register scratch,
Register scratch2,
Register scratch3);
// Count leading zeros in a 32 bit word. On ARM5 and later it uses the clz
// instruction. On pre-ARM5 hardware this routine gives the wrong answer
// for 0 (31 instead of 32). Source and scratch can be the same in which case
// the source is clobbered. Source and zeros can also be the same in which
// case scratch should be a different register.
void CountLeadingZeros(Register zeros,
Register source,
Register scratch);
// ---------------------------------------------------------------------------
// Runtime calls
// Call a code stub.
void CallStub(CodeStub* stub, Condition cond = al);
// Call a code stub.
void TailCallStub(CodeStub* stub, Condition cond = al);
// Tail call a code stub (jump) and return the code object called. Try to
// generate the code if necessary. Do not perform a GC but instead return
// a retry after GC failure.
MUST_USE_RESULT MaybeObject* TryTailCallStub(CodeStub* stub,
Condition cond = al);
// Call a runtime routine.
void CallRuntime(const Runtime::Function* f, int num_arguments);
void CallRuntimeSaveDoubles(Runtime::FunctionId id);
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid, int num_arguments);
// Convenience function: call an external reference.
void CallExternalReference(const ExternalReference& ext,
int num_arguments);
// Tail call of a runtime routine (jump).
// Like JumpToExternalReference, but also takes care of passing the number
// of parameters.
void TailCallExternalReference(const ExternalReference& ext,
int num_arguments,
int result_size);
// Tail call of a runtime routine (jump). Try to generate the code if
// necessary. Do not perform a GC but instead return a retry after GC
// failure.
MUST_USE_RESULT MaybeObject* TryTailCallExternalReference(
const ExternalReference& ext, int num_arguments, int result_size);
// Convenience function: tail call a runtime routine (jump).
void TailCallRuntime(Runtime::FunctionId fid,
int num_arguments,
int result_size);
// Before calling a C-function from generated code, align arguments on stack.
// After aligning the frame, non-register arguments must be stored in
// sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
// are word sized.
// Some compilers/platforms require the stack to be aligned when calling
// C++ code.
// Needs a scratch register to do some arithmetic. This register will be
// trashed.
void PrepareCallCFunction(int num_arguments, Register scratch);
// Calls a C function and cleans up the space for arguments allocated
// by PrepareCallCFunction. The called function is not allowed to trigger a
// garbage collection, since that might move the code and invalidate the
// return address (unless this is somehow accounted for by the called
// function).
void CallCFunction(ExternalReference function, int num_arguments);
void CallCFunction(Register function, Register scratch, int num_arguments);
void GetCFunctionDoubleResult(const DoubleRegister dst);
// Calls an API function. Allocates HandleScope, extracts returned value
// from handle and propagates exceptions. Restores context.
// stack_space - space to be unwound on exit (includes the call js
// arguments space and the additional space allocated for the fast call).
MaybeObject* TryCallApiFunctionAndReturn(ExternalReference function,
int stack_space);
// Jump to a runtime routine.
void JumpToExternalReference(const ExternalReference& builtin);
MaybeObject* TryJumpToExternalReference(const ExternalReference& ext);
// Invoke specified builtin JavaScript function. Adds an entry to
// the unresolved list if the name does not resolve.
void InvokeBuiltin(Builtins::JavaScript id,
InvokeJSFlags flags,
CallWrapper* call_wrapper = NULL);
// Store the code object for the given builtin in the target register and
// setup the function in r1.
void GetBuiltinEntry(Register target, Builtins::JavaScript id);
// Store the function for the given builtin in the target register.
void GetBuiltinFunction(Register target, Builtins::JavaScript id);
Handle<Object> CodeObject() {
ASSERT(!code_object_.is_null());
return code_object_;
}
// ---------------------------------------------------------------------------
// StatsCounter support
void SetCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2);
void IncrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2);
void DecrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2);
// ---------------------------------------------------------------------------
// Debugging
// Calls Abort(msg) if the condition cond is not satisfied.
// Use --debug_code to enable.
void Assert(Condition cond, const char* msg);
void AssertRegisterIsRoot(Register reg, Heap::RootListIndex index);
void AssertFastElements(Register elements);
// Like Assert(), but always enabled.
void Check(Condition cond, const char* msg);
// Print a message to stdout and abort execution.
void Abort(const char* msg);
// Verify restrictions about code generated in stubs.
void set_generating_stub(bool value) { generating_stub_ = value; }
bool generating_stub() { return generating_stub_; }
void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; }
bool allow_stub_calls() { return allow_stub_calls_; }
// ---------------------------------------------------------------------------
// Number utilities
// Check whether the value of reg is a power of two and not zero. If not
// control continues at the label not_power_of_two. If reg is a power of two
// the register scratch contains the value of (reg - 1) when control falls
// through.
void JumpIfNotPowerOfTwoOrZero(Register reg,
Register scratch,
Label* not_power_of_two_or_zero);
// Check whether the value of reg is a power of two and not zero.
// Control falls through if it is, with scratch containing the mask
// value (reg - 1).
// Otherwise control jumps to the 'zero_and_neg' label if the value of reg is
// zero or negative, or jumps to the 'not_power_of_two' label if the value is
// strictly positive but not a power of two.
void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg,
Register scratch,
Label* zero_and_neg,
Label* not_power_of_two);
// ---------------------------------------------------------------------------
// Smi utilities
void SmiTag(Register reg, SBit s = LeaveCC) {
add(reg, reg, Operand(reg), s);
}
void SmiTag(Register dst, Register src, SBit s = LeaveCC) {
add(dst, src, Operand(src), s);
}
// Try to convert int32 to smi. If the value is to large, preserve
// the original value and jump to not_a_smi. Destroys scratch and
// sets flags.
void TrySmiTag(Register reg, Label* not_a_smi, Register scratch) {
mov(scratch, reg);
SmiTag(scratch, SetCC);
b(vs, not_a_smi);
mov(reg, scratch);
}
void SmiUntag(Register reg, SBit s = LeaveCC) {
mov(reg, Operand(reg, ASR, kSmiTagSize), s);
}
void SmiUntag(Register dst, Register src, SBit s = LeaveCC) {
mov(dst, Operand(src, ASR, kSmiTagSize), s);
}
// Jump the register contains a smi.
inline void JumpIfSmi(Register value, Label* smi_label) {
tst(value, Operand(kSmiTagMask));
b(eq, smi_label);
}
// Jump if either of the registers contain a non-smi.
inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
tst(value, Operand(kSmiTagMask));
b(ne, not_smi_label);
}
// Jump if either of the registers contain a non-smi.
void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
// Jump if either of the registers contain a smi.
void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
// Abort execution if argument is a smi. Used in debug code.
void AbortIfSmi(Register object);
void AbortIfNotSmi(Register object);
// Abort execution if argument is a string. Used in debug code.
void AbortIfNotString(Register object);
// Abort execution if argument is not the root value with the given index.
void AbortIfNotRootValue(Register src,
Heap::RootListIndex root_value_index,
const char* message);
// ---------------------------------------------------------------------------
// HeapNumber utilities
void JumpIfNotHeapNumber(Register object,
Register heap_number_map,
Register scratch,
Label* on_not_heap_number);
// ---------------------------------------------------------------------------
// String utilities
// Checks if both objects are sequential ASCII strings and jumps to label
// if either is not. Assumes that neither object is a smi.
void JumpIfNonSmisNotBothSequentialAsciiStrings(Register object1,
Register object2,
Register scratch1,
Register scratch2,
Label* failure);
// Checks if both objects are sequential ASCII strings and jumps to label
// if either is not.
void JumpIfNotBothSequentialAsciiStrings(Register first,
Register second,
Register scratch1,
Register scratch2,
Label* not_flat_ascii_strings);
// Checks if both instance types are sequential ASCII strings and jumps to
// label if either is not.
void JumpIfBothInstanceTypesAreNotSequentialAscii(
Register first_object_instance_type,
Register second_object_instance_type,
Register scratch1,
Register scratch2,
Label* failure);
// Check if instance type is sequential ASCII string and jump to label if
// it is not.
void JumpIfInstanceTypeIsNotSequentialAscii(Register type,
Register scratch,
Label* failure);
// ---------------------------------------------------------------------------
// Patching helpers.
// Get the location of a relocated constant (its address in the constant pool)
// from its load site.
void GetRelocatedValueLocation(Register ldr_location,
Register result);
private:
void CallCFunctionHelper(Register function,
ExternalReference function_reference,
Register scratch,
int num_arguments);
void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al);
static int CallSize(intptr_t target,
RelocInfo::Mode rmode,
Condition cond = al);
void Call(intptr_t target, RelocInfo::Mode rmode, Condition cond = al);
// Helper functions for generating invokes.
void InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual,
Handle<Code> code_constant,
Register code_reg,
Label* done,
InvokeFlag flag,
CallWrapper* call_wrapper = NULL);
// Activation support.
void EnterFrame(StackFrame::Type type);
void LeaveFrame(StackFrame::Type type);
void InitializeNewString(Register string,
Register length,
Heap::RootListIndex map_index,
Register scratch1,
Register scratch2);
// Compute memory operands for safepoint stack slots.
static int SafepointRegisterStackIndex(int reg_code);
MemOperand SafepointRegisterSlot(Register reg);
MemOperand SafepointRegistersAndDoublesSlot(Register reg);
bool generating_stub_;
bool allow_stub_calls_;
// This handle will be patched with the code object on installation.
Handle<Object> code_object_;
// Needs access to SafepointRegisterStackIndex for optimized frame
// traversal.
friend class OptimizedFrame;
};
#ifdef ENABLE_DEBUGGER_SUPPORT
// The code patcher is used to patch (typically) small parts of code e.g. for
// debugging and other types of instrumentation. When using the code patcher
// the exact number of bytes specified must be emitted. It is not legal to emit
// relocation information. If any of these constraints are violated it causes
// an assertion to fail.
class CodePatcher {
public:
CodePatcher(byte* address, int instructions);
virtual ~CodePatcher();
// Macro assembler to emit code.
MacroAssembler* masm() { return &masm_; }
// Emit an instruction directly.
void Emit(Instr instr);
// Emit an address directly.
void Emit(Address addr);
// Emit the condition part of an instruction leaving the rest of the current
// instruction unchanged.
void EmitCondition(Condition cond);
private:
byte* address_; // The address of the code being patched.
int instructions_; // Number of instructions of the expected patch size.
int size_; // Number of bytes of the expected patch size.
MacroAssembler masm_; // Macro assembler used to generate the code.
};
#endif // ENABLE_DEBUGGER_SUPPORT
// Helper class for generating code or data associated with the code
// right after a call instruction. As an example this can be used to
// generate safepoint data after calls for crankshaft.
class CallWrapper {
public:
CallWrapper() { }
virtual ~CallWrapper() { }
// Called just before emitting a call. Argument is the size of the generated
// call code.
virtual void BeforeCall(int call_size) = 0;
// Called just after emitting a call, i.e., at the return site for the call.
virtual void AfterCall() = 0;
};
// -----------------------------------------------------------------------------
// Static helper functions.
static MemOperand ContextOperand(Register context, int index) {
return MemOperand(context, Context::SlotOffset(index));
}
static inline MemOperand GlobalObjectOperand() {
return ContextOperand(cp, Context::GLOBAL_INDEX);
}
#ifdef GENERATED_CODE_COVERAGE
#define CODE_COVERAGE_STRINGIFY(x) #x
#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
#define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
#else
#define ACCESS_MASM(masm) masm->
#endif
} } // namespace v8::internal
#endif // V8_ARM_MACRO_ASSEMBLER_ARM_H_