/*
* Copyright (C) 2006-2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SkBitmap.h"
#include "SkColorPriv.h"
#include "SkDither.h"
#include "SkFlattenable.h"
#include "SkMallocPixelRef.h"
#include "SkMask.h"
#include "SkPixelRef.h"
#include "SkThread.h"
#include "SkUnPreMultiply.h"
#include "SkUtils.h"
#include "SkPackBits.h"
#include <new>
extern int32_t SkNextPixelRefGenerationID();
static bool isPos32Bits(const Sk64& value) {
return !value.isNeg() && value.is32();
}
struct MipLevel {
void* fPixels;
uint32_t fRowBytes;
uint32_t fWidth, fHeight;
};
struct SkBitmap::MipMap : SkNoncopyable {
int32_t fRefCnt;
int fLevelCount;
// MipLevel fLevel[fLevelCount];
// Pixels[]
static MipMap* Alloc(int levelCount, size_t pixelSize) {
if (levelCount < 0) {
return NULL;
}
Sk64 size;
size.setMul(levelCount + 1, sizeof(MipLevel));
size.add(sizeof(MipMap));
size.add(pixelSize);
if (!isPos32Bits(size)) {
return NULL;
}
MipMap* mm = (MipMap*)sk_malloc_throw(size.get32());
mm->fRefCnt = 1;
mm->fLevelCount = levelCount;
return mm;
}
const MipLevel* levels() const { return (const MipLevel*)(this + 1); }
MipLevel* levels() { return (MipLevel*)(this + 1); }
const void* pixels() const { return levels() + fLevelCount; }
void* pixels() { return levels() + fLevelCount; }
void ref() {
if (SK_MaxS32 == sk_atomic_inc(&fRefCnt)) {
sk_throw();
}
}
void unref() {
SkASSERT(fRefCnt > 0);
if (sk_atomic_dec(&fRefCnt) == 1) {
sk_free(this);
}
}
};
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
SkBitmap::SkBitmap() {
sk_bzero(this, sizeof(*this));
}
SkBitmap::SkBitmap(const SkBitmap& src) {
SkDEBUGCODE(src.validate();)
sk_bzero(this, sizeof(*this));
*this = src;
SkDEBUGCODE(this->validate();)
}
SkBitmap::~SkBitmap() {
SkDEBUGCODE(this->validate();)
this->freePixels();
}
SkBitmap& SkBitmap::operator=(const SkBitmap& src) {
if (this != &src) {
this->freePixels();
memcpy(this, &src, sizeof(src));
// inc src reference counts
SkSafeRef(src.fPixelRef);
SkSafeRef(src.fMipMap);
// we reset our locks if we get blown away
fPixelLockCount = 0;
/* The src could be in 3 states
1. no pixelref, in which case we just copy/ref the pixels/ctable
2. unlocked pixelref, pixels/ctable should be null
3. locked pixelref, we should lock the ref again ourselves
*/
if (NULL == fPixelRef) {
// leave fPixels as it is
SkSafeRef(fColorTable); // ref the user's ctable if present
} else { // we have a pixelref, so pixels/ctable reflect it
// ignore the values from the memcpy
fPixels = NULL;
fColorTable = NULL;
// Note that what to for genID is somewhat arbitrary. We have no
// way to track changes to raw pixels across multiple SkBitmaps.
// Would benefit from an SkRawPixelRef type created by
// setPixels.
// Just leave the memcpy'ed one but they'll get out of sync
// as soon either is modified.
}
}
SkDEBUGCODE(this->validate();)
return *this;
}
void SkBitmap::swap(SkBitmap& other) {
SkTSwap(fColorTable, other.fColorTable);
SkTSwap(fPixelRef, other.fPixelRef);
SkTSwap(fPixelRefOffset, other.fPixelRefOffset);
SkTSwap(fPixelLockCount, other.fPixelLockCount);
SkTSwap(fMipMap, other.fMipMap);
SkTSwap(fPixels, other.fPixels);
SkTSwap(fRawPixelGenerationID, other.fRawPixelGenerationID);
SkTSwap(fRowBytes, other.fRowBytes);
SkTSwap(fWidth, other.fWidth);
SkTSwap(fHeight, other.fHeight);
SkTSwap(fConfig, other.fConfig);
SkTSwap(fFlags, other.fFlags);
SkTSwap(fBytesPerPixel, other.fBytesPerPixel);
SkDEBUGCODE(this->validate();)
}
void SkBitmap::reset() {
this->freePixels();
sk_bzero(this, sizeof(*this));
}
int SkBitmap::ComputeBytesPerPixel(SkBitmap::Config config) {
int bpp;
switch (config) {
case kNo_Config:
case kA1_Config:
bpp = 0; // not applicable
break;
case kRLE_Index8_Config:
case kA8_Config:
case kIndex8_Config:
bpp = 1;
break;
case kRGB_565_Config:
case kARGB_4444_Config:
bpp = 2;
break;
case kARGB_8888_Config:
bpp = 4;
break;
default:
SkASSERT(!"unknown config");
bpp = 0; // error
break;
}
return bpp;
}
int SkBitmap::ComputeRowBytes(Config c, int width) {
if (width < 0) {
return 0;
}
Sk64 rowBytes;
rowBytes.setZero();
switch (c) {
case kNo_Config:
case kRLE_Index8_Config:
break;
case kA1_Config:
rowBytes.set(width);
rowBytes.add(7);
rowBytes.shiftRight(3);
break;
case kA8_Config:
case kIndex8_Config:
rowBytes.set(width);
break;
case kRGB_565_Config:
case kARGB_4444_Config:
rowBytes.set(width);
rowBytes.shiftLeft(1);
break;
case kARGB_8888_Config:
rowBytes.set(width);
rowBytes.shiftLeft(2);
break;
default:
SkASSERT(!"unknown config");
break;
}
return isPos32Bits(rowBytes) ? rowBytes.get32() : 0;
}
Sk64 SkBitmap::ComputeSize64(Config c, int width, int height) {
Sk64 size;
size.setMul(SkBitmap::ComputeRowBytes(c, width), height);
return size;
}
size_t SkBitmap::ComputeSize(Config c, int width, int height) {
Sk64 size = SkBitmap::ComputeSize64(c, width, height);
return isPos32Bits(size) ? size.get32() : 0;
}
Sk64 SkBitmap::ComputeSafeSize64(Config config,
uint32_t width,
uint32_t height,
uint32_t rowBytes) {
Sk64 safeSize;
safeSize.setZero();
if (height > 0) {
safeSize.set(ComputeRowBytes(config, width));
Sk64 sizeAllButLastRow;
sizeAllButLastRow.setMul(height - 1, rowBytes);
safeSize.add(sizeAllButLastRow);
}
SkASSERT(!safeSize.isNeg());
return safeSize;
}
size_t SkBitmap::ComputeSafeSize(Config config,
uint32_t width,
uint32_t height,
uint32_t rowBytes) {
Sk64 safeSize = ComputeSafeSize64(config, width, height, rowBytes);
return (safeSize.is32() ? safeSize.get32() : 0);
}
void SkBitmap::setConfig(Config c, int width, int height, int rowBytes) {
this->freePixels();
if ((width | height | rowBytes) < 0) {
goto err;
}
if (rowBytes == 0) {
rowBytes = SkBitmap::ComputeRowBytes(c, width);
if (0 == rowBytes && kNo_Config != c) {
goto err;
}
}
fConfig = SkToU8(c);
fWidth = width;
fHeight = height;
fRowBytes = rowBytes;
fBytesPerPixel = (uint8_t)ComputeBytesPerPixel(c);
SkDEBUGCODE(this->validate();)
return;
// if we got here, we had an error, so we reset the bitmap to empty
err:
this->reset();
}
void SkBitmap::updatePixelsFromRef() const {
if (NULL != fPixelRef) {
if (fPixelLockCount > 0) {
SkASSERT(fPixelRef->getLockCount() > 0);
void* p = fPixelRef->pixels();
if (NULL != p) {
p = (char*)p + fPixelRefOffset;
}
fPixels = p;
SkRefCnt_SafeAssign(fColorTable, fPixelRef->colorTable());
} else {
SkASSERT(0 == fPixelLockCount);
fPixels = NULL;
if (fColorTable) {
fColorTable->unref();
fColorTable = NULL;
}
}
}
}
SkPixelRef* SkBitmap::setPixelRef(SkPixelRef* pr, size_t offset) {
// do this first, we that we never have a non-zero offset with a null ref
if (NULL == pr) {
offset = 0;
}
if (fPixelRef != pr || fPixelRefOffset != offset) {
if (fPixelRef != pr) {
this->freePixels();
SkASSERT(NULL == fPixelRef);
SkSafeRef(pr);
fPixelRef = pr;
}
fPixelRefOffset = offset;
this->updatePixelsFromRef();
}
SkDEBUGCODE(this->validate();)
return pr;
}
void SkBitmap::lockPixels() const {
if (NULL != fPixelRef && 1 == ++fPixelLockCount) {
fPixelRef->lockPixels();
this->updatePixelsFromRef();
}
SkDEBUGCODE(this->validate();)
}
void SkBitmap::unlockPixels() const {
SkASSERT(NULL == fPixelRef || fPixelLockCount > 0);
if (NULL != fPixelRef && 0 == --fPixelLockCount) {
fPixelRef->unlockPixels();
this->updatePixelsFromRef();
}
SkDEBUGCODE(this->validate();)
}
void SkBitmap::setPixels(void* p, SkColorTable* ctable) {
this->freePixels();
fPixels = p;
SkRefCnt_SafeAssign(fColorTable, ctable);
SkDEBUGCODE(this->validate();)
}
bool SkBitmap::allocPixels(Allocator* allocator, SkColorTable* ctable) {
HeapAllocator stdalloc;
if (NULL == allocator) {
allocator = &stdalloc;
}
return allocator->allocPixelRef(this, ctable);
}
void SkBitmap::freePixels() {
// if we're gonna free the pixels, we certainly need to free the mipmap
this->freeMipMap();
if (fColorTable) {
fColorTable->unref();
fColorTable = NULL;
}
if (NULL != fPixelRef) {
if (fPixelLockCount > 0) {
fPixelRef->unlockPixels();
}
fPixelRef->unref();
fPixelRef = NULL;
fPixelRefOffset = 0;
}
fPixelLockCount = 0;
fPixels = NULL;
}
void SkBitmap::freeMipMap() {
if (fMipMap) {
fMipMap->unref();
fMipMap = NULL;
}
}
uint32_t SkBitmap::getGenerationID() const {
if (fPixelRef) {
return fPixelRef->getGenerationID();
} else {
SkASSERT(fPixels || !fRawPixelGenerationID);
if (fPixels && !fRawPixelGenerationID) {
fRawPixelGenerationID = SkNextPixelRefGenerationID();
}
return fRawPixelGenerationID;
}
}
void SkBitmap::notifyPixelsChanged() const {
if (fPixelRef) {
fPixelRef->notifyPixelsChanged();
} else {
fRawPixelGenerationID = 0; // will grab next ID in getGenerationID
}
}
SkGpuTexture* SkBitmap::getTexture() const {
return fPixelRef ? fPixelRef->getTexture() : NULL;
}
///////////////////////////////////////////////////////////////////////////////
/** We explicitly use the same allocator for our pixels that SkMask does,
so that we can freely assign memory allocated by one class to the other.
*/
bool SkBitmap::HeapAllocator::allocPixelRef(SkBitmap* dst,
SkColorTable* ctable) {
Sk64 size = dst->getSize64();
if (size.isNeg() || !size.is32()) {
return false;
}
void* addr = sk_malloc_flags(size.get32(), 0); // returns NULL on failure
if (NULL == addr) {
return false;
}
dst->setPixelRef(new SkMallocPixelRef(addr, size.get32(), ctable))->unref();
// since we're already allocated, we lockPixels right away
dst->lockPixels();
return true;
}
///////////////////////////////////////////////////////////////////////////////
size_t SkBitmap::getSafeSize() const {
// This is intended to be a size_t version of ComputeSafeSize64(), just
// faster. The computation is meant to be identical.
return (fHeight ? ((fHeight - 1) * fRowBytes) +
ComputeRowBytes(getConfig(), fWidth): 0);
}
Sk64 SkBitmap::getSafeSize64() const {
return ComputeSafeSize64(getConfig(), fWidth, fHeight, fRowBytes);
}
bool SkBitmap::copyPixelsTo(void* const dst, size_t dstSize, int dstRowBytes)
const {
if (dstRowBytes == -1)
dstRowBytes = fRowBytes;
SkASSERT(dstRowBytes >= 0);
if (getConfig() == kRLE_Index8_Config ||
dstRowBytes < ComputeRowBytes(getConfig(), fWidth) ||
dst == NULL || (getPixels() == NULL && pixelRef() == NULL))
return false;
if (static_cast<uint32_t>(dstRowBytes) == fRowBytes) {
size_t safeSize = getSafeSize();
if (safeSize > dstSize || safeSize == 0)
return false;
else {
SkAutoLockPixels lock(*this);
// This implementation will write bytes beyond the end of each row,
// excluding the last row, if the bitmap's stride is greater than
// strictly required by the current config.
memcpy(dst, getPixels(), safeSize);
return true;
}
} else {
// If destination has different stride than us, then copy line by line.
if (ComputeSafeSize(getConfig(), fWidth, fHeight, dstRowBytes) >
dstSize)
return false;
else {
// Just copy what we need on each line.
uint32_t rowBytes = ComputeRowBytes(getConfig(), fWidth);
SkAutoLockPixels lock(*this);
const uint8_t* srcP = reinterpret_cast<const uint8_t*>(getPixels());
uint8_t* dstP = reinterpret_cast<uint8_t*>(dst);
for (uint32_t row = 0; row < fHeight;
row++, srcP += fRowBytes, dstP += dstRowBytes) {
memcpy(dstP, srcP, rowBytes);
}
return true;
}
}
}
bool SkBitmap::copyPixelsFrom(const void* const src, size_t srcSize,
int srcRowBytes) {
if (srcRowBytes == -1)
srcRowBytes = fRowBytes;
SkASSERT(srcRowBytes >= 0);
size_t safeSize = getSafeSize();
uint32_t rowBytes = ComputeRowBytes(getConfig(), fWidth);
if (getConfig() == kRLE_Index8_Config || src == NULL ||
static_cast<uint32_t>(srcRowBytes) < rowBytes ||
safeSize == 0 ||
srcSize < ComputeSafeSize(getConfig(), fWidth, fHeight, srcRowBytes)) {
return false;
}
SkAutoLockPixels lock(*this);
if (static_cast<uint32_t>(srcRowBytes) == fRowBytes) {
// This implementation will write bytes beyond the end of each row,
// excluding the last row, if the bitmap's stride is greater than
// strictly required by the current config.
memcpy(getPixels(), src, safeSize);
} else {
// Just copy the bytes we need on each line.
const uint8_t* srcP = reinterpret_cast<const uint8_t*>(src);
uint8_t* dstP = reinterpret_cast<uint8_t*>(getPixels());
for (uint32_t row = 0; row < fHeight;
row++, srcP += srcRowBytes, dstP += fRowBytes) {
memcpy(dstP, srcP, rowBytes);
}
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
bool SkBitmap::isOpaque() const {
switch (fConfig) {
case kNo_Config:
return true;
case kA1_Config:
case kA8_Config:
case kARGB_4444_Config:
case kARGB_8888_Config:
return (fFlags & kImageIsOpaque_Flag) != 0;
case kIndex8_Config:
case kRLE_Index8_Config: {
uint32_t flags = 0;
this->lockPixels();
// if lockPixels failed, we may not have a ctable ptr
if (fColorTable) {
flags = fColorTable->getFlags();
}
this->unlockPixels();
return (flags & SkColorTable::kColorsAreOpaque_Flag) != 0;
}
case kRGB_565_Config:
return true;
default:
SkASSERT(!"unknown bitmap config pased to isOpaque");
return false;
}
}
void SkBitmap::setIsOpaque(bool isOpaque) {
/* we record this regardless of fConfig, though it is ignored in
isOpaque() for configs that can't support per-pixel alpha.
*/
if (isOpaque) {
fFlags |= kImageIsOpaque_Flag;
} else {
fFlags &= ~kImageIsOpaque_Flag;
}
}
void* SkBitmap::getAddr(int x, int y) const {
SkASSERT((unsigned)x < (unsigned)this->width());
SkASSERT((unsigned)y < (unsigned)this->height());
char* base = (char*)this->getPixels();
if (base) {
base += y * this->rowBytes();
switch (this->config()) {
case SkBitmap::kARGB_8888_Config:
base += x << 2;
break;
case SkBitmap::kARGB_4444_Config:
case SkBitmap::kRGB_565_Config:
base += x << 1;
break;
case SkBitmap::kA8_Config:
case SkBitmap::kIndex8_Config:
base += x;
break;
case SkBitmap::kA1_Config:
base += x >> 3;
break;
case kRLE_Index8_Config:
SkASSERT(!"Can't return addr for kRLE_Index8_Config");
base = NULL;
break;
default:
SkASSERT(!"Can't return addr for config");
base = NULL;
break;
}
}
return base;
}
SkColor SkBitmap::getColor(int x, int y) const {
SkASSERT((unsigned)x < (unsigned)this->width());
SkASSERT((unsigned)y < (unsigned)this->height());
switch (this->config()) {
case SkBitmap::kA1_Config: {
uint8_t* addr = this->getAddr1(x, y);
uint8_t mask = 1 << (7 - (x % 8));
if (addr[0] & mask) {
return SK_ColorBLACK;
} else {
return 0;
}
}
case SkBitmap::kA8_Config: {
uint8_t* addr = this->getAddr8(x, y);
return SkColorSetA(0, addr[0]);
}
case SkBitmap::kIndex8_Config: {
SkPMColor c = this->getIndex8Color(x, y);
return SkUnPreMultiply::PMColorToColor(c);
}
case SkBitmap::kRGB_565_Config: {
uint16_t* addr = this->getAddr16(x, y);
return SkPixel16ToColor(addr[0]);
}
case SkBitmap::kARGB_4444_Config: {
uint16_t* addr = this->getAddr16(x, y);
SkPMColor c = SkPixel4444ToPixel32(addr[0]);
return SkUnPreMultiply::PMColorToColor(c);
}
case SkBitmap::kARGB_8888_Config: {
uint32_t* addr = this->getAddr32(x, y);
return SkUnPreMultiply::PMColorToColor(addr[0]);
}
case kRLE_Index8_Config: {
uint8_t dst;
const SkBitmap::RLEPixels* rle =
(const SkBitmap::RLEPixels*)this->getPixels();
SkPackBits::Unpack8(&dst, x, 1, rle->packedAtY(y));
return SkUnPreMultiply::PMColorToColor((*fColorTable)[dst]);
}
case kNo_Config:
case kConfigCount:
SkASSERT(false);
return 0;
}
SkASSERT(false); // Not reached.
return 0;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
void SkBitmap::eraseARGB(U8CPU a, U8CPU r, U8CPU g, U8CPU b) const {
SkDEBUGCODE(this->validate();)
if (0 == fWidth || 0 == fHeight ||
kNo_Config == fConfig || kIndex8_Config == fConfig) {
return;
}
SkAutoLockPixels alp(*this);
// perform this check after the lock call
if (!this->readyToDraw()) {
return;
}
int height = fHeight;
const int width = fWidth;
const int rowBytes = fRowBytes;
// make rgb premultiplied
if (255 != a) {
r = SkAlphaMul(r, a);
g = SkAlphaMul(g, a);
b = SkAlphaMul(b, a);
}
switch (fConfig) {
case kA1_Config: {
uint8_t* p = (uint8_t*)fPixels;
const int count = (width + 7) >> 3;
a = (a >> 7) ? 0xFF : 0;
SkASSERT(count <= rowBytes);
while (--height >= 0) {
memset(p, a, count);
p += rowBytes;
}
break;
}
case kA8_Config: {
uint8_t* p = (uint8_t*)fPixels;
while (--height >= 0) {
memset(p, a, width);
p += rowBytes;
}
break;
}
case kARGB_4444_Config:
case kRGB_565_Config: {
uint16_t* p = (uint16_t*)fPixels;
uint16_t v;
if (kARGB_4444_Config == fConfig) {
v = SkPackARGB4444(a >> 4, r >> 4, g >> 4, b >> 4);
} else { // kRGB_565_Config
v = SkPackRGB16(r >> (8 - SK_R16_BITS), g >> (8 - SK_G16_BITS),
b >> (8 - SK_B16_BITS));
}
while (--height >= 0) {
sk_memset16(p, v, width);
p = (uint16_t*)((char*)p + rowBytes);
}
break;
}
case kARGB_8888_Config: {
uint32_t* p = (uint32_t*)fPixels;
uint32_t v = SkPackARGB32(a, r, g, b);
while (--height >= 0) {
sk_memset32(p, v, width);
p = (uint32_t*)((char*)p + rowBytes);
}
break;
}
}
this->notifyPixelsChanged();
}
//////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////
#define SUB_OFFSET_FAILURE ((size_t)-1)
static size_t getSubOffset(const SkBitmap& bm, int x, int y) {
SkASSERT((unsigned)x < (unsigned)bm.width());
SkASSERT((unsigned)y < (unsigned)bm.height());
switch (bm.getConfig()) {
case SkBitmap::kA8_Config:
case SkBitmap:: kIndex8_Config:
// x is fine as is for the calculation
break;
case SkBitmap::kRGB_565_Config:
case SkBitmap::kARGB_4444_Config:
x <<= 1;
break;
case SkBitmap::kARGB_8888_Config:
x <<= 2;
break;
case SkBitmap::kNo_Config:
case SkBitmap::kA1_Config:
default:
return SUB_OFFSET_FAILURE;
}
return y * bm.rowBytes() + x;
}
bool SkBitmap::extractSubset(SkBitmap* result, const SkIRect& subset) const {
SkDEBUGCODE(this->validate();)
if (NULL == result || (NULL == fPixelRef && NULL == fPixels)) {
return false; // no src pixels
}
SkIRect srcRect, r;
srcRect.set(0, 0, this->width(), this->height());
if (!r.intersect(srcRect, subset)) {
return false; // r is empty (i.e. no intersection)
}
if (kRLE_Index8_Config == fConfig) {
SkAutoLockPixels alp(*this);
// don't call readyToDraw(), since we can operate w/o a colortable
// at this stage
if (this->getPixels() == NULL) {
return false;
}
SkBitmap bm;
bm.setConfig(kIndex8_Config, r.width(), r.height());
bm.allocPixels(this->getColorTable());
if (NULL == bm.getPixels()) {
return false;
}
const RLEPixels* rle = (const RLEPixels*)this->getPixels();
uint8_t* dst = bm.getAddr8(0, 0);
const int width = bm.width();
const int rowBytes = bm.rowBytes();
for (int y = r.fTop; y < r.fBottom; y++) {
SkPackBits::Unpack8(dst, r.fLeft, width, rle->packedAtY(y));
dst += rowBytes;
}
result->swap(bm);
return true;
}
size_t offset = getSubOffset(*this, r.fLeft, r.fTop);
if (SUB_OFFSET_FAILURE == offset) {
return false; // config not supported
}
SkBitmap dst;
dst.setConfig(this->config(), r.width(), r.height(), this->rowBytes());
if (fPixelRef) {
// share the pixelref with a custom offset
dst.setPixelRef(fPixelRef, fPixelRefOffset + offset);
} else {
// share the pixels (owned by the caller)
dst.setPixels((char*)fPixels + offset, this->getColorTable());
}
SkDEBUGCODE(dst.validate();)
// we know we're good, so commit to result
result->swap(dst);
return true;
}
///////////////////////////////////////////////////////////////////////////////
#include "SkCanvas.h"
#include "SkPaint.h"
bool SkBitmap::canCopyTo(Config dstConfig) const {
if (this->getConfig() == kNo_Config) {
return false;
}
bool sameConfigs = (this->config() == dstConfig);
switch (dstConfig) {
case kA8_Config:
case kARGB_4444_Config:
case kRGB_565_Config:
case kARGB_8888_Config:
break;
case kA1_Config:
case kIndex8_Config:
if (!sameConfigs) {
return false;
}
break;
default:
return false;
}
// do not copy src if srcConfig == kA1_Config while dstConfig != kA1_Config
if (this->getConfig() == kA1_Config && !sameConfigs) {
return false;
}
return true;
}
bool SkBitmap::copyTo(SkBitmap* dst, Config dstConfig, Allocator* alloc) const {
if (!this->canCopyTo(dstConfig)) {
return false;
}
// if we have a texture, first get those pixels
SkBitmap tmpSrc;
const SkBitmap* src = this;
if (fPixelRef && fPixelRef->readPixels(&tmpSrc)) {
SkASSERT(tmpSrc.width() == this->width());
SkASSERT(tmpSrc.height() == this->height());
// did we get lucky and we can just return tmpSrc?
if (tmpSrc.config() == dstConfig && NULL == alloc) {
dst->swap(tmpSrc);
return true;
}
// fall through to the raster case
src = &tmpSrc;
}
// we lock this now, since we may need its colortable
SkAutoLockPixels srclock(*src);
if (!src->readyToDraw()) {
return false;
}
SkBitmap tmpDst;
tmpDst.setConfig(dstConfig, src->width(), src->height());
// allocate colortable if srcConfig == kIndex8_Config
SkColorTable* ctable = (dstConfig == kIndex8_Config) ?
new SkColorTable(*src->getColorTable()) : NULL;
SkAutoUnref au(ctable);
if (!tmpDst.allocPixels(alloc, ctable)) {
return false;
}
SkAutoLockPixels dstlock(tmpDst);
if (!tmpDst.readyToDraw()) {
// allocator/lock failed
return false;
}
/* do memcpy for the same configs cases, else use drawing
*/
if (src->config() == dstConfig) {
if (tmpDst.getSize() == src->getSize()) {
memcpy(tmpDst.getPixels(), src->getPixels(), src->getSafeSize());
} else {
const char* srcP = reinterpret_cast<const char*>(src->getPixels());
char* dstP = reinterpret_cast<char*>(tmpDst.getPixels());
// to be sure we don't read too much, only copy our logical pixels
size_t bytesToCopy = tmpDst.width() * tmpDst.bytesPerPixel();
for (int y = 0; y < tmpDst.height(); y++) {
memcpy(dstP, srcP, bytesToCopy);
srcP += src->rowBytes();
dstP += tmpDst.rowBytes();
}
}
} else {
// if the src has alpha, we have to clear the dst first
if (!src->isOpaque()) {
tmpDst.eraseColor(0);
}
SkCanvas canvas(tmpDst);
SkPaint paint;
paint.setDither(true);
canvas.drawBitmap(*src, 0, 0, &paint);
}
tmpDst.setIsOpaque(src->isOpaque());
dst->swap(tmpDst);
return true;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
static void downsampleby2_proc32(SkBitmap* dst, int x, int y,
const SkBitmap& src) {
x <<= 1;
y <<= 1;
const SkPMColor* p = src.getAddr32(x, y);
const SkPMColor* baseP = p;
SkPMColor c, ag, rb;
c = *p; ag = (c >> 8) & 0xFF00FF; rb = c & 0xFF00FF;
if (x < src.width() - 1) {
p += 1;
}
c = *p; ag += (c >> 8) & 0xFF00FF; rb += c & 0xFF00FF;
p = baseP;
if (y < src.height() - 1) {
p += src.rowBytes() >> 2;
}
c = *p; ag += (c >> 8) & 0xFF00FF; rb += c & 0xFF00FF;
if (x < src.width() - 1) {
p += 1;
}
c = *p; ag += (c >> 8) & 0xFF00FF; rb += c & 0xFF00FF;
*dst->getAddr32(x >> 1, y >> 1) =
((rb >> 2) & 0xFF00FF) | ((ag << 6) & 0xFF00FF00);
}
static inline uint32_t expand16(U16CPU c) {
return (c & ~SK_G16_MASK_IN_PLACE) | ((c & SK_G16_MASK_IN_PLACE) << 16);
}
// returns dirt in the top 16bits, but we don't care, since we only
// store the low 16bits.
static inline U16CPU pack16(uint32_t c) {
return (c & ~SK_G16_MASK_IN_PLACE) | ((c >> 16) & SK_G16_MASK_IN_PLACE);
}
static void downsampleby2_proc16(SkBitmap* dst, int x, int y,
const SkBitmap& src) {
x <<= 1;
y <<= 1;
const uint16_t* p = src.getAddr16(x, y);
const uint16_t* baseP = p;
SkPMColor c;
c = expand16(*p);
if (x < src.width() - 1) {
p += 1;
}
c += expand16(*p);
p = baseP;
if (y < src.height() - 1) {
p += src.rowBytes() >> 1;
}
c += expand16(*p);
if (x < src.width() - 1) {
p += 1;
}
c += expand16(*p);
*dst->getAddr16(x >> 1, y >> 1) = (uint16_t)pack16(c >> 2);
}
static uint32_t expand4444(U16CPU c) {
return (c & 0xF0F) | ((c & ~0xF0F) << 12);
}
static U16CPU collaps4444(uint32_t c) {
return (c & 0xF0F) | ((c >> 12) & ~0xF0F);
}
static void downsampleby2_proc4444(SkBitmap* dst, int x, int y,
const SkBitmap& src) {
x <<= 1;
y <<= 1;
const uint16_t* p = src.getAddr16(x, y);
const uint16_t* baseP = p;
uint32_t c;
c = expand4444(*p);
if (x < src.width() - 1) {
p += 1;
}
c += expand4444(*p);
p = baseP;
if (y < src.height() - 1) {
p += src.rowBytes() >> 1;
}
c += expand4444(*p);
if (x < src.width() - 1) {
p += 1;
}
c += expand4444(*p);
*dst->getAddr16(x >> 1, y >> 1) = (uint16_t)collaps4444(c >> 2);
}
void SkBitmap::buildMipMap(bool forceRebuild) {
if (forceRebuild)
this->freeMipMap();
else if (fMipMap)
return; // we're already built
SkASSERT(NULL == fMipMap);
void (*proc)(SkBitmap* dst, int x, int y, const SkBitmap& src);
const SkBitmap::Config config = this->getConfig();
switch (config) {
case kARGB_8888_Config:
proc = downsampleby2_proc32;
break;
case kRGB_565_Config:
proc = downsampleby2_proc16;
break;
case kARGB_4444_Config:
proc = downsampleby2_proc4444;
break;
case kIndex8_Config:
case kA8_Config:
default:
return; // don't build mipmaps for these configs
}
SkAutoLockPixels alp(*this);
if (!this->readyToDraw()) {
return;
}
// whip through our loop to compute the exact size needed
size_t size = 0;
int maxLevels = 0;
{
int width = this->width();
int height = this->height();
for (;;) {
width >>= 1;
height >>= 1;
if (0 == width || 0 == height) {
break;
}
size += ComputeRowBytes(config, width) * height;
maxLevels += 1;
}
}
// nothing to build
if (0 == maxLevels) {
return;
}
SkBitmap srcBM(*this);
srcBM.lockPixels();
if (!srcBM.readyToDraw()) {
return;
}
MipMap* mm = MipMap::Alloc(maxLevels, size);
if (NULL == mm) {
return;
}
MipLevel* level = mm->levels();
uint8_t* addr = (uint8_t*)mm->pixels();
int width = this->width();
int height = this->height();
unsigned rowBytes = this->rowBytes();
SkBitmap dstBM;
for (int i = 0; i < maxLevels; i++) {
width >>= 1;
height >>= 1;
rowBytes = ComputeRowBytes(config, width);
level[i].fPixels = addr;
level[i].fWidth = width;
level[i].fHeight = height;
level[i].fRowBytes = rowBytes;
dstBM.setConfig(config, width, height, rowBytes);
dstBM.setPixels(addr);
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
proc(&dstBM, x, y, srcBM);
}
}
srcBM = dstBM;
addr += height * rowBytes;
}
SkASSERT(addr == (uint8_t*)mm->pixels() + size);
fMipMap = mm;
}
bool SkBitmap::hasMipMap() const {
return fMipMap != NULL;
}
int SkBitmap::extractMipLevel(SkBitmap* dst, SkFixed sx, SkFixed sy) {
if (NULL == fMipMap) {
return 0;
}
int level = ComputeMipLevel(sx, sy) >> 16;
SkASSERT(level >= 0);
if (level <= 0) {
return 0;
}
if (level >= fMipMap->fLevelCount) {
level = fMipMap->fLevelCount - 1;
}
if (dst) {
const MipLevel& mip = fMipMap->levels()[level - 1];
dst->setConfig((SkBitmap::Config)this->config(),
mip.fWidth, mip.fHeight, mip.fRowBytes);
dst->setPixels(mip.fPixels);
}
return level;
}
SkFixed SkBitmap::ComputeMipLevel(SkFixed sx, SkFixed sy) {
sx = SkAbs32(sx);
sy = SkAbs32(sy);
if (sx < sy) {
sx = sy;
}
if (sx < SK_Fixed1) {
return 0;
}
int clz = SkCLZ(sx);
SkASSERT(clz >= 1 && clz <= 15);
return SkIntToFixed(15 - clz) + ((unsigned)(sx << (clz + 1)) >> 16);
}
///////////////////////////////////////////////////////////////////////////////
static bool GetBitmapAlpha(const SkBitmap& src, uint8_t SK_RESTRICT alpha[],
int alphaRowBytes) {
SkASSERT(alpha != NULL);
SkASSERT(alphaRowBytes >= src.width());
SkBitmap::Config config = src.getConfig();
int w = src.width();
int h = src.height();
int rb = src.rowBytes();
SkAutoLockPixels alp(src);
if (!src.readyToDraw()) {
// zero out the alpha buffer and return
while (--h >= 0) {
memset(alpha, 0, w);
alpha += alphaRowBytes;
}
return false;
}
if (SkBitmap::kA8_Config == config && !src.isOpaque()) {
const uint8_t* s = src.getAddr8(0, 0);
while (--h >= 0) {
memcpy(alpha, s, w);
s += rb;
alpha += alphaRowBytes;
}
} else if (SkBitmap::kARGB_8888_Config == config && !src.isOpaque()) {
const SkPMColor* SK_RESTRICT s = src.getAddr32(0, 0);
while (--h >= 0) {
for (int x = 0; x < w; x++) {
alpha[x] = SkGetPackedA32(s[x]);
}
s = (const SkPMColor*)((const char*)s + rb);
alpha += alphaRowBytes;
}
} else if (SkBitmap::kARGB_4444_Config == config && !src.isOpaque()) {
const SkPMColor16* SK_RESTRICT s = src.getAddr16(0, 0);
while (--h >= 0) {
for (int x = 0; x < w; x++) {
alpha[x] = SkPacked4444ToA32(s[x]);
}
s = (const SkPMColor16*)((const char*)s + rb);
alpha += alphaRowBytes;
}
} else if (SkBitmap::kIndex8_Config == config && !src.isOpaque()) {
SkColorTable* ct = src.getColorTable();
if (ct) {
const SkPMColor* SK_RESTRICT table = ct->lockColors();
const uint8_t* SK_RESTRICT s = src.getAddr8(0, 0);
while (--h >= 0) {
for (int x = 0; x < w; x++) {
alpha[x] = SkGetPackedA32(table[s[x]]);
}
s += rb;
alpha += alphaRowBytes;
}
ct->unlockColors(false);
}
} else { // src is opaque, so just fill alpha[] with 0xFF
memset(alpha, 0xFF, h * alphaRowBytes);
}
return true;
}
#include "SkPaint.h"
#include "SkMaskFilter.h"
#include "SkMatrix.h"
bool SkBitmap::extractAlpha(SkBitmap* dst, const SkPaint* paint,
Allocator *allocator, SkIPoint* offset) const {
SkDEBUGCODE(this->validate();)
SkBitmap tmpBitmap;
SkMatrix identity;
SkMask srcM, dstM;
srcM.fBounds.set(0, 0, this->width(), this->height());
srcM.fRowBytes = SkAlign4(this->width());
srcM.fFormat = SkMask::kA8_Format;
SkMaskFilter* filter = paint ? paint->getMaskFilter() : NULL;
// compute our (larger?) dst bounds if we have a filter
if (NULL != filter) {
identity.reset();
srcM.fImage = NULL;
if (!filter->filterMask(&dstM, srcM, identity, NULL)) {
goto NO_FILTER_CASE;
}
dstM.fRowBytes = SkAlign4(dstM.fBounds.width());
} else {
NO_FILTER_CASE:
tmpBitmap.setConfig(SkBitmap::kA8_Config, this->width(), this->height(),
srcM.fRowBytes);
if (!tmpBitmap.allocPixels(allocator, NULL)) {
// Allocation of pixels for alpha bitmap failed.
SkDebugf("extractAlpha failed to allocate (%d,%d) alpha bitmap\n",
tmpBitmap.width(), tmpBitmap.height());
return false;
}
GetBitmapAlpha(*this, tmpBitmap.getAddr8(0, 0), srcM.fRowBytes);
if (offset) {
offset->set(0, 0);
}
tmpBitmap.swap(*dst);
return true;
}
SkAutoMaskImage srcCleanup(&srcM, true);
GetBitmapAlpha(*this, srcM.fImage, srcM.fRowBytes);
if (!filter->filterMask(&dstM, srcM, identity, NULL)) {
goto NO_FILTER_CASE;
}
SkAutoMaskImage dstCleanup(&dstM, false);
tmpBitmap.setConfig(SkBitmap::kA8_Config, dstM.fBounds.width(),
dstM.fBounds.height(), dstM.fRowBytes);
if (!tmpBitmap.allocPixels(allocator, NULL)) {
// Allocation of pixels for alpha bitmap failed.
SkDebugf("extractAlpha failed to allocate (%d,%d) alpha bitmap\n",
tmpBitmap.width(), tmpBitmap.height());
return false;
}
memcpy(tmpBitmap.getPixels(), dstM.fImage, dstM.computeImageSize());
if (offset) {
offset->set(dstM.fBounds.fLeft, dstM.fBounds.fTop);
}
SkDEBUGCODE(tmpBitmap.validate();)
tmpBitmap.swap(*dst);
return true;
}
///////////////////////////////////////////////////////////////////////////////
enum {
SERIALIZE_PIXELTYPE_NONE,
SERIALIZE_PIXELTYPE_RAW_WITH_CTABLE,
SERIALIZE_PIXELTYPE_RAW_NO_CTABLE,
SERIALIZE_PIXELTYPE_REF_DATA,
SERIALIZE_PIXELTYPE_REF_PTR,
};
static void writeString(SkFlattenableWriteBuffer& buffer, const char str[]) {
size_t len = strlen(str);
buffer.write32(len);
buffer.writePad(str, len);
}
static SkPixelRef::Factory deserialize_factory(SkFlattenableReadBuffer& buffer) {
size_t len = buffer.readInt();
SkAutoSMalloc<256> storage(len + 1);
char* str = (char*)storage.get();
buffer.read(str, len);
str[len] = 0;
return SkPixelRef::NameToFactory(str);
}
/*
It is tricky to know how much to flatten. If we don't have a pixelref (i.e.
we just have pixels, then we can only flatten the pixels, or write out an
empty bitmap.
With a pixelref, we still have the question of recognizing when two sitings
of the same pixelref are the same, and when they are different. Perhaps we
should look at the generationID and keep a record of that in some dictionary
associated with the buffer. SkGLTextureCache does this sort of thing to know
when to create a new texture.
*/
void SkBitmap::flatten(SkFlattenableWriteBuffer& buffer) const {
buffer.write32(fWidth);
buffer.write32(fHeight);
buffer.write32(fRowBytes);
buffer.write8(fConfig);
buffer.writeBool(this->isOpaque());
/* If we are called in this mode, then it is up to the caller to manage
the owner-counts on the pixelref, as we just record the ptr itself.
*/
if (!buffer.persistBitmapPixels()) {
if (fPixelRef) {
buffer.write8(SERIALIZE_PIXELTYPE_REF_PTR);
buffer.write32(fPixelRefOffset);
buffer.writeRefCnt(fPixelRef);
return;
} else {
// we ignore the non-persist request, since we don't have a ref
// ... or we could just write an empty bitmap...
// (true) will write an empty bitmap, (false) will flatten the pix
if (true) {
buffer.write8(SERIALIZE_PIXELTYPE_NONE);
return;
}
}
}
if (fPixelRef) {
SkPixelRef::Factory fact = fPixelRef->getFactory();
if (fact) {
const char* name = SkPixelRef::FactoryToName(fact);
if (name && *name) {
buffer.write8(SERIALIZE_PIXELTYPE_REF_DATA);
buffer.write32(fPixelRefOffset);
writeString(buffer, name);
fPixelRef->flatten(buffer);
return;
}
}
// if we get here, we can't record the pixels
buffer.write8(SERIALIZE_PIXELTYPE_NONE);
} else if (fPixels) {
if (fColorTable) {
buffer.write8(SERIALIZE_PIXELTYPE_RAW_WITH_CTABLE);
fColorTable->flatten(buffer);
} else {
buffer.write8(SERIALIZE_PIXELTYPE_RAW_NO_CTABLE);
}
buffer.writePad(fPixels, this->getSafeSize());
// There is no writeZeroPad() fcn, so write individual bytes.
if (this->getSize() > this->getSafeSize()) {
size_t deltaSize = this->getSize() - this->getSafeSize();
// Need aligned pointer to write into due to internal implementa-
// tion of SkWriter32.
memset(buffer.reserve(SkAlign4(deltaSize)), 0, deltaSize);
}
} else {
buffer.write8(SERIALIZE_PIXELTYPE_NONE);
}
}
void SkBitmap::unflatten(SkFlattenableReadBuffer& buffer) {
this->reset();
int width = buffer.readInt();
int height = buffer.readInt();
int rowBytes = buffer.readInt();
int config = buffer.readU8();
this->setConfig((Config)config, width, height, rowBytes);
this->setIsOpaque(buffer.readBool());
int reftype = buffer.readU8();
switch (reftype) {
case SERIALIZE_PIXELTYPE_REF_PTR: {
size_t offset = buffer.readU32();
SkPixelRef* pr = (SkPixelRef*)buffer.readRefCnt();
this->setPixelRef(pr, offset);
break;
}
case SERIALIZE_PIXELTYPE_REF_DATA: {
size_t offset = buffer.readU32();
SkPixelRef::Factory fact = deserialize_factory(buffer);
SkPixelRef* pr = fact(buffer);
SkSafeUnref(this->setPixelRef(pr, offset));
break;
}
case SERIALIZE_PIXELTYPE_RAW_WITH_CTABLE:
case SERIALIZE_PIXELTYPE_RAW_NO_CTABLE: {
SkColorTable* ctable = NULL;
if (SERIALIZE_PIXELTYPE_RAW_WITH_CTABLE == reftype) {
ctable = SkNEW_ARGS(SkColorTable, (buffer));
}
size_t size = this->getSize();
if (this->allocPixels(ctable)) {
this->lockPixels();
// Just read what we need.
buffer.read(this->getPixels(), this->getSafeSize());
// Keep aligned for subsequent reads.
buffer.skip(size - this->getSafeSize());
this->unlockPixels();
} else {
buffer.skip(size); // Still skip the full-sized buffer though.
}
SkSafeUnref(ctable);
break;
}
case SERIALIZE_PIXELTYPE_NONE:
break;
default:
SkASSERT(!"unrecognized pixeltype in serialized data");
sk_throw();
}
}
///////////////////////////////////////////////////////////////////////////////
SkBitmap::RLEPixels::RLEPixels(int width, int height) {
fHeight = height;
fYPtrs = (uint8_t**)sk_malloc_throw(height * sizeof(uint8_t*));
sk_bzero(fYPtrs, height * sizeof(uint8_t*));
}
SkBitmap::RLEPixels::~RLEPixels() {
sk_free(fYPtrs);
}
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
void SkBitmap::validate() const {
SkASSERT(fConfig < kConfigCount);
SkASSERT(fRowBytes >= (unsigned)ComputeRowBytes((Config)fConfig, fWidth));
SkASSERT(fFlags <= kImageIsOpaque_Flag);
SkASSERT(fPixelLockCount >= 0);
SkASSERT(NULL == fColorTable || (unsigned)fColorTable->getRefCnt() < 10000);
SkASSERT((uint8_t)ComputeBytesPerPixel((Config)fConfig) == fBytesPerPixel);
#if 0 // these asserts are not thread-correct, so disable for now
if (fPixelRef) {
if (fPixelLockCount > 0) {
SkASSERT(fPixelRef->getLockCount() > 0);
} else {
SkASSERT(NULL == fPixels);
SkASSERT(NULL == fColorTable);
}
}
#endif
}
#endif