/**
* \file macros.h
* A collection of useful macros.
*/
/*
* Mesa 3-D graphics library
* Version: 6.5.2
*
* Copyright (C) 1999-2006 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef MACROS_H
#define MACROS_H
#include "imports.h"
/**
* \name Integer / float conversion for colors, normals, etc.
*/
/*@{*/
/** Convert GLubyte in [0,255] to GLfloat in [0.0,1.0] */
extern GLfloat _mesa_ubyte_to_float_color_tab[256];
#define UBYTE_TO_FLOAT(u) _mesa_ubyte_to_float_color_tab[(unsigned int)(u)]
/** Convert GLfloat in [0.0,1.0] to GLubyte in [0,255] */
#define FLOAT_TO_UBYTE(X) ((GLubyte) (GLint) ((X) * 255.0F))
/** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0] */
#define BYTE_TO_FLOAT(B) ((2.0F * (B) + 1.0F) * (1.0F/255.0F))
/** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127] */
#define FLOAT_TO_BYTE(X) ( (((GLint) (255.0F * (X))) - 1) / 2 )
/** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0], texture/fb data */
#define BYTE_TO_FLOAT_TEX(B) ((B) == -128 ? -1.0F : (B) * (1.0F/127.0F))
/** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127], texture/fb data */
#define FLOAT_TO_BYTE_TEX(X) ( (GLint) (127.0F * (X)) )
/** Convert GLushort in [0,65535] to GLfloat in [0.0,1.0] */
#define USHORT_TO_FLOAT(S) ((GLfloat) (S) * (1.0F / 65535.0F))
/** Convert GLfloat in [0.0,1.0] to GLushort in [0, 65535] */
#define FLOAT_TO_USHORT(X) ((GLuint) ((X) * 65535.0F))
/** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0] */
#define SHORT_TO_FLOAT(S) ((2.0F * (S) + 1.0F) * (1.0F/65535.0F))
/** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767] */
#define FLOAT_TO_SHORT(X) ( (((GLint) (65535.0F * (X))) - 1) / 2 )
/** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0], texture/fb data */
#define SHORT_TO_FLOAT_TEX(S) ((S) == -32768 ? -1.0F : (S) * (1.0F/32767.0F))
/** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767], texture/fb data */
#define FLOAT_TO_SHORT_TEX(X) ( (GLint) (32767.0F * (X)) )
/** Convert GLuint in [0,4294967295] to GLfloat in [0.0,1.0] */
#define UINT_TO_FLOAT(U) ((GLfloat) ((U) * (1.0F / 4294967295.0)))
/** Convert GLfloat in [0.0,1.0] to GLuint in [0,4294967295] */
#define FLOAT_TO_UINT(X) ((GLuint) ((X) * 4294967295.0))
/** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0] */
#define INT_TO_FLOAT(I) ((GLfloat) ((2.0F * (I) + 1.0F) * (1.0F/4294967294.0)))
/** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647] */
/* causes overflow:
#define FLOAT_TO_INT(X) ( (((GLint) (4294967294.0 * (X))) - 1) / 2 )
*/
/* a close approximation: */
#define FLOAT_TO_INT(X) ( (GLint) (2147483647.0 * (X)) )
/** Convert GLfloat in [-1.0,1.0] to GLint64 in [-(1<<63),(1 << 63) -1] */
#define FLOAT_TO_INT64(X) ( (GLint64) (9223372036854775807.0 * (double)(X)) )
/** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0], texture/fb data */
#define INT_TO_FLOAT_TEX(I) ((I) == -2147483648 ? -1.0F : (I) * (1.0F/2147483647.0))
/** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647], texture/fb data */
#define FLOAT_TO_INT_TEX(X) ( (GLint) (2147483647.0 * (X)) )
#define BYTE_TO_UBYTE(b) ((GLubyte) ((b) < 0 ? 0 : (GLubyte) (b)))
#define SHORT_TO_UBYTE(s) ((GLubyte) ((s) < 0 ? 0 : (GLubyte) ((s) >> 7)))
#define USHORT_TO_UBYTE(s) ((GLubyte) ((s) >> 8))
#define INT_TO_UBYTE(i) ((GLubyte) ((i) < 0 ? 0 : (GLubyte) ((i) >> 23)))
#define UINT_TO_UBYTE(i) ((GLubyte) ((i) >> 24))
#define BYTE_TO_USHORT(b) ((b) < 0 ? 0 : ((GLushort) (((b) * 65535) / 255)))
#define UBYTE_TO_USHORT(b) (((GLushort) (b) << 8) | (GLushort) (b))
#define SHORT_TO_USHORT(s) ((s) < 0 ? 0 : ((GLushort) (((s) * 65535 / 32767))))
#define INT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 15)))
#define UINT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 16)))
#define UNCLAMPED_FLOAT_TO_USHORT(us, f) \
us = ( (GLushort) IROUND( CLAMP((f), 0.0F, 1.0F) * 65535.0F) )
#define CLAMPED_FLOAT_TO_USHORT(us, f) \
us = ( (GLushort) IROUND( (f) * 65535.0F) )
#define UNCLAMPED_FLOAT_TO_SHORT(s, f) \
s = ( (GLshort) IROUND( CLAMP((f), -1.0F, 1.0F) * 32767.0F) )
/***
*** UNCLAMPED_FLOAT_TO_UBYTE: clamp float to [0,1] and map to ubyte in [0,255]
*** CLAMPED_FLOAT_TO_UBYTE: map float known to be in [0,1] to ubyte in [0,255]
***/
#if defined(USE_IEEE) && !defined(DEBUG)
#define IEEE_0996 0x3f7f0000 /* 0.996 or so */
/* This function/macro is sensitive to precision. Test very carefully
* if you change it!
*/
#define UNCLAMPED_FLOAT_TO_UBYTE(UB, F) \
do { \
fi_type __tmp; \
__tmp.f = (F); \
if (__tmp.i < 0) \
UB = (GLubyte) 0; \
else if (__tmp.i >= IEEE_0996) \
UB = (GLubyte) 255; \
else { \
__tmp.f = __tmp.f * (255.0F/256.0F) + 32768.0F; \
UB = (GLubyte) __tmp.i; \
} \
} while (0)
#define CLAMPED_FLOAT_TO_UBYTE(UB, F) \
do { \
fi_type __tmp; \
__tmp.f = (F) * (255.0F/256.0F) + 32768.0F; \
UB = (GLubyte) __tmp.i; \
} while (0)
#else
#define UNCLAMPED_FLOAT_TO_UBYTE(ub, f) \
ub = ((GLubyte) IROUND(CLAMP((f), 0.0F, 1.0F) * 255.0F))
#define CLAMPED_FLOAT_TO_UBYTE(ub, f) \
ub = ((GLubyte) IROUND((f) * 255.0F))
#endif
/*@}*/
/** Stepping a GLfloat pointer by a byte stride */
#define STRIDE_F(p, i) (p = (GLfloat *)((GLubyte *)p + i))
/** Stepping a GLuint pointer by a byte stride */
#define STRIDE_UI(p, i) (p = (GLuint *)((GLubyte *)p + i))
/** Stepping a GLubyte[4] pointer by a byte stride */
#define STRIDE_4UB(p, i) (p = (GLubyte (*)[4])((GLubyte *)p + i))
/** Stepping a GLfloat[4] pointer by a byte stride */
#define STRIDE_4F(p, i) (p = (GLfloat (*)[4])((GLubyte *)p + i))
/** Stepping a GLchan[4] pointer by a byte stride */
#define STRIDE_4CHAN(p, i) (p = (GLchan (*)[4])((GLubyte *)p + i))
/** Stepping a GLchan pointer by a byte stride */
#define STRIDE_CHAN(p, i) (p = (GLchan *)((GLubyte *)p + i))
/** Stepping a \p t pointer by a byte stride */
#define STRIDE_T(p, t, i) (p = (t)((GLubyte *)p + i))
/**********************************************************************/
/** \name 4-element vector operations */
/*@{*/
/** Zero */
#define ZERO_4V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = (DST)[3] = 0
/** Test for equality */
#define TEST_EQ_4V(a,b) ((a)[0] == (b)[0] && \
(a)[1] == (b)[1] && \
(a)[2] == (b)[2] && \
(a)[3] == (b)[3])
/** Test for equality (unsigned bytes) */
#if defined(__i386__)
#define TEST_EQ_4UBV(DST, SRC) *((GLuint*)(DST)) == *((GLuint*)(SRC))
#else
#define TEST_EQ_4UBV(DST, SRC) TEST_EQ_4V(DST, SRC)
#endif
/** Copy a 4-element vector */
#define COPY_4V( DST, SRC ) \
do { \
(DST)[0] = (SRC)[0]; \
(DST)[1] = (SRC)[1]; \
(DST)[2] = (SRC)[2]; \
(DST)[3] = (SRC)[3]; \
} while (0)
/** Copy a 4-element vector with cast */
#define COPY_4V_CAST( DST, SRC, CAST ) \
do { \
(DST)[0] = (CAST)(SRC)[0]; \
(DST)[1] = (CAST)(SRC)[1]; \
(DST)[2] = (CAST)(SRC)[2]; \
(DST)[3] = (CAST)(SRC)[3]; \
} while (0)
/** Copy a 4-element unsigned byte vector */
#if defined(__i386__)
#define COPY_4UBV(DST, SRC) \
do { \
*((GLuint*)(DST)) = *((GLuint*)(SRC)); \
} while (0)
#else
/* The GLuint cast might fail if DST or SRC are not dword-aligned (RISC) */
#define COPY_4UBV(DST, SRC) \
do { \
(DST)[0] = (SRC)[0]; \
(DST)[1] = (SRC)[1]; \
(DST)[2] = (SRC)[2]; \
(DST)[3] = (SRC)[3]; \
} while (0)
#endif
/**
* Copy a 4-element float vector
* memcpy seems to be most efficient
*/
#define COPY_4FV( DST, SRC ) \
do { \
memcpy(DST, SRC, sizeof(GLfloat) * 4); \
} while (0)
/** Copy \p SZ elements into a 4-element vector */
#define COPY_SZ_4V(DST, SZ, SRC) \
do { \
switch (SZ) { \
case 4: (DST)[3] = (SRC)[3]; \
case 3: (DST)[2] = (SRC)[2]; \
case 2: (DST)[1] = (SRC)[1]; \
case 1: (DST)[0] = (SRC)[0]; \
} \
} while(0)
/** Copy \p SZ elements into a homegeneous (4-element) vector, giving
* default values to the remaining */
#define COPY_CLEAN_4V(DST, SZ, SRC) \
do { \
ASSIGN_4V( DST, 0, 0, 0, 1 ); \
COPY_SZ_4V( DST, SZ, SRC ); \
} while (0)
/** Subtraction */
#define SUB_4V( DST, SRCA, SRCB ) \
do { \
(DST)[0] = (SRCA)[0] - (SRCB)[0]; \
(DST)[1] = (SRCA)[1] - (SRCB)[1]; \
(DST)[2] = (SRCA)[2] - (SRCB)[2]; \
(DST)[3] = (SRCA)[3] - (SRCB)[3]; \
} while (0)
/** Addition */
#define ADD_4V( DST, SRCA, SRCB ) \
do { \
(DST)[0] = (SRCA)[0] + (SRCB)[0]; \
(DST)[1] = (SRCA)[1] + (SRCB)[1]; \
(DST)[2] = (SRCA)[2] + (SRCB)[2]; \
(DST)[3] = (SRCA)[3] + (SRCB)[3]; \
} while (0)
/** Element-wise multiplication */
#define SCALE_4V( DST, SRCA, SRCB ) \
do { \
(DST)[0] = (SRCA)[0] * (SRCB)[0]; \
(DST)[1] = (SRCA)[1] * (SRCB)[1]; \
(DST)[2] = (SRCA)[2] * (SRCB)[2]; \
(DST)[3] = (SRCA)[3] * (SRCB)[3]; \
} while (0)
/** In-place addition */
#define ACC_4V( DST, SRC ) \
do { \
(DST)[0] += (SRC)[0]; \
(DST)[1] += (SRC)[1]; \
(DST)[2] += (SRC)[2]; \
(DST)[3] += (SRC)[3]; \
} while (0)
/** Element-wise multiplication and addition */
#define ACC_SCALE_4V( DST, SRCA, SRCB ) \
do { \
(DST)[0] += (SRCA)[0] * (SRCB)[0]; \
(DST)[1] += (SRCA)[1] * (SRCB)[1]; \
(DST)[2] += (SRCA)[2] * (SRCB)[2]; \
(DST)[3] += (SRCA)[3] * (SRCB)[3]; \
} while (0)
/** In-place scalar multiplication and addition */
#define ACC_SCALE_SCALAR_4V( DST, S, SRCB ) \
do { \
(DST)[0] += S * (SRCB)[0]; \
(DST)[1] += S * (SRCB)[1]; \
(DST)[2] += S * (SRCB)[2]; \
(DST)[3] += S * (SRCB)[3]; \
} while (0)
/** Scalar multiplication */
#define SCALE_SCALAR_4V( DST, S, SRCB ) \
do { \
(DST)[0] = S * (SRCB)[0]; \
(DST)[1] = S * (SRCB)[1]; \
(DST)[2] = S * (SRCB)[2]; \
(DST)[3] = S * (SRCB)[3]; \
} while (0)
/** In-place scalar multiplication */
#define SELF_SCALE_SCALAR_4V( DST, S ) \
do { \
(DST)[0] *= S; \
(DST)[1] *= S; \
(DST)[2] *= S; \
(DST)[3] *= S; \
} while (0)
/** Assignment */
#define ASSIGN_4V( V, V0, V1, V2, V3 ) \
do { \
V[0] = V0; \
V[1] = V1; \
V[2] = V2; \
V[3] = V3; \
} while(0)
/*@}*/
/**********************************************************************/
/** \name 3-element vector operations*/
/*@{*/
/** Zero */
#define ZERO_3V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = 0
/** Test for equality */
#define TEST_EQ_3V(a,b) \
((a)[0] == (b)[0] && \
(a)[1] == (b)[1] && \
(a)[2] == (b)[2])
/** Copy a 3-element vector */
#define COPY_3V( DST, SRC ) \
do { \
(DST)[0] = (SRC)[0]; \
(DST)[1] = (SRC)[1]; \
(DST)[2] = (SRC)[2]; \
} while (0)
/** Copy a 3-element vector with cast */
#define COPY_3V_CAST( DST, SRC, CAST ) \
do { \
(DST)[0] = (CAST)(SRC)[0]; \
(DST)[1] = (CAST)(SRC)[1]; \
(DST)[2] = (CAST)(SRC)[2]; \
} while (0)
/** Copy a 3-element float vector */
#define COPY_3FV( DST, SRC ) \
do { \
const GLfloat *_tmp = (SRC); \
(DST)[0] = _tmp[0]; \
(DST)[1] = _tmp[1]; \
(DST)[2] = _tmp[2]; \
} while (0)
/** Subtraction */
#define SUB_3V( DST, SRCA, SRCB ) \
do { \
(DST)[0] = (SRCA)[0] - (SRCB)[0]; \
(DST)[1] = (SRCA)[1] - (SRCB)[1]; \
(DST)[2] = (SRCA)[2] - (SRCB)[2]; \
} while (0)
/** Addition */
#define ADD_3V( DST, SRCA, SRCB ) \
do { \
(DST)[0] = (SRCA)[0] + (SRCB)[0]; \
(DST)[1] = (SRCA)[1] + (SRCB)[1]; \
(DST)[2] = (SRCA)[2] + (SRCB)[2]; \
} while (0)
/** In-place scalar multiplication */
#define SCALE_3V( DST, SRCA, SRCB ) \
do { \
(DST)[0] = (SRCA)[0] * (SRCB)[0]; \
(DST)[1] = (SRCA)[1] * (SRCB)[1]; \
(DST)[2] = (SRCA)[2] * (SRCB)[2]; \
} while (0)
/** In-place element-wise multiplication */
#define SELF_SCALE_3V( DST, SRC ) \
do { \
(DST)[0] *= (SRC)[0]; \
(DST)[1] *= (SRC)[1]; \
(DST)[2] *= (SRC)[2]; \
} while (0)
/** In-place addition */
#define ACC_3V( DST, SRC ) \
do { \
(DST)[0] += (SRC)[0]; \
(DST)[1] += (SRC)[1]; \
(DST)[2] += (SRC)[2]; \
} while (0)
/** Element-wise multiplication and addition */
#define ACC_SCALE_3V( DST, SRCA, SRCB ) \
do { \
(DST)[0] += (SRCA)[0] * (SRCB)[0]; \
(DST)[1] += (SRCA)[1] * (SRCB)[1]; \
(DST)[2] += (SRCA)[2] * (SRCB)[2]; \
} while (0)
/** Scalar multiplication */
#define SCALE_SCALAR_3V( DST, S, SRCB ) \
do { \
(DST)[0] = S * (SRCB)[0]; \
(DST)[1] = S * (SRCB)[1]; \
(DST)[2] = S * (SRCB)[2]; \
} while (0)
/** In-place scalar multiplication and addition */
#define ACC_SCALE_SCALAR_3V( DST, S, SRCB ) \
do { \
(DST)[0] += S * (SRCB)[0]; \
(DST)[1] += S * (SRCB)[1]; \
(DST)[2] += S * (SRCB)[2]; \
} while (0)
/** In-place scalar multiplication */
#define SELF_SCALE_SCALAR_3V( DST, S ) \
do { \
(DST)[0] *= S; \
(DST)[1] *= S; \
(DST)[2] *= S; \
} while (0)
/** In-place scalar addition */
#define ACC_SCALAR_3V( DST, S ) \
do { \
(DST)[0] += S; \
(DST)[1] += S; \
(DST)[2] += S; \
} while (0)
/** Assignment */
#define ASSIGN_3V( V, V0, V1, V2 ) \
do { \
V[0] = V0; \
V[1] = V1; \
V[2] = V2; \
} while(0)
/*@}*/
/**********************************************************************/
/** \name 2-element vector operations*/
/*@{*/
/** Zero */
#define ZERO_2V( DST ) (DST)[0] = (DST)[1] = 0
/** Copy a 2-element vector */
#define COPY_2V( DST, SRC ) \
do { \
(DST)[0] = (SRC)[0]; \
(DST)[1] = (SRC)[1]; \
} while (0)
/** Copy a 2-element vector with cast */
#define COPY_2V_CAST( DST, SRC, CAST ) \
do { \
(DST)[0] = (CAST)(SRC)[0]; \
(DST)[1] = (CAST)(SRC)[1]; \
} while (0)
/** Copy a 2-element float vector */
#define COPY_2FV( DST, SRC ) \
do { \
const GLfloat *_tmp = (SRC); \
(DST)[0] = _tmp[0]; \
(DST)[1] = _tmp[1]; \
} while (0)
/** Subtraction */
#define SUB_2V( DST, SRCA, SRCB ) \
do { \
(DST)[0] = (SRCA)[0] - (SRCB)[0]; \
(DST)[1] = (SRCA)[1] - (SRCB)[1]; \
} while (0)
/** Addition */
#define ADD_2V( DST, SRCA, SRCB ) \
do { \
(DST)[0] = (SRCA)[0] + (SRCB)[0]; \
(DST)[1] = (SRCA)[1] + (SRCB)[1]; \
} while (0)
/** In-place scalar multiplication */
#define SCALE_2V( DST, SRCA, SRCB ) \
do { \
(DST)[0] = (SRCA)[0] * (SRCB)[0]; \
(DST)[1] = (SRCA)[1] * (SRCB)[1]; \
} while (0)
/** In-place addition */
#define ACC_2V( DST, SRC ) \
do { \
(DST)[0] += (SRC)[0]; \
(DST)[1] += (SRC)[1]; \
} while (0)
/** Element-wise multiplication and addition */
#define ACC_SCALE_2V( DST, SRCA, SRCB ) \
do { \
(DST)[0] += (SRCA)[0] * (SRCB)[0]; \
(DST)[1] += (SRCA)[1] * (SRCB)[1]; \
} while (0)
/** Scalar multiplication */
#define SCALE_SCALAR_2V( DST, S, SRCB ) \
do { \
(DST)[0] = S * (SRCB)[0]; \
(DST)[1] = S * (SRCB)[1]; \
} while (0)
/** In-place scalar multiplication and addition */
#define ACC_SCALE_SCALAR_2V( DST, S, SRCB ) \
do { \
(DST)[0] += S * (SRCB)[0]; \
(DST)[1] += S * (SRCB)[1]; \
} while (0)
/** In-place scalar multiplication */
#define SELF_SCALE_SCALAR_2V( DST, S ) \
do { \
(DST)[0] *= S; \
(DST)[1] *= S; \
} while (0)
/** In-place scalar addition */
#define ACC_SCALAR_2V( DST, S ) \
do { \
(DST)[0] += S; \
(DST)[1] += S; \
} while (0)
/** Assign scalers to short vectors */
#define ASSIGN_2V( V, V0, V1 ) \
do { \
V[0] = V0; \
V[1] = V1; \
} while(0)
/*@}*/
/** \name Linear interpolation macros */
/*@{*/
/**
* Linear interpolation
*
* \note \p OUT argument is evaluated twice!
* \note Be wary of using *coord++ as an argument to any of these macros!
*/
#define LINTERP(T, OUT, IN) ((OUT) + (T) * ((IN) - (OUT)))
/* Can do better with integer math
*/
#define INTERP_UB( t, dstub, outub, inub ) \
do { \
GLfloat inf = UBYTE_TO_FLOAT( inub ); \
GLfloat outf = UBYTE_TO_FLOAT( outub ); \
GLfloat dstf = LINTERP( t, outf, inf ); \
UNCLAMPED_FLOAT_TO_UBYTE( dstub, dstf ); \
} while (0)
#define INTERP_CHAN( t, dstc, outc, inc ) \
do { \
GLfloat inf = CHAN_TO_FLOAT( inc ); \
GLfloat outf = CHAN_TO_FLOAT( outc ); \
GLfloat dstf = LINTERP( t, outf, inf ); \
UNCLAMPED_FLOAT_TO_CHAN( dstc, dstf ); \
} while (0)
#define INTERP_UI( t, dstui, outui, inui ) \
dstui = (GLuint) (GLint) LINTERP( (t), (GLfloat) (outui), (GLfloat) (inui) )
#define INTERP_F( t, dstf, outf, inf ) \
dstf = LINTERP( t, outf, inf )
#define INTERP_4F( t, dst, out, in ) \
do { \
dst[0] = LINTERP( (t), (out)[0], (in)[0] ); \
dst[1] = LINTERP( (t), (out)[1], (in)[1] ); \
dst[2] = LINTERP( (t), (out)[2], (in)[2] ); \
dst[3] = LINTERP( (t), (out)[3], (in)[3] ); \
} while (0)
#define INTERP_3F( t, dst, out, in ) \
do { \
dst[0] = LINTERP( (t), (out)[0], (in)[0] ); \
dst[1] = LINTERP( (t), (out)[1], (in)[1] ); \
dst[2] = LINTERP( (t), (out)[2], (in)[2] ); \
} while (0)
#define INTERP_4CHAN( t, dst, out, in ) \
do { \
INTERP_CHAN( (t), (dst)[0], (out)[0], (in)[0] ); \
INTERP_CHAN( (t), (dst)[1], (out)[1], (in)[1] ); \
INTERP_CHAN( (t), (dst)[2], (out)[2], (in)[2] ); \
INTERP_CHAN( (t), (dst)[3], (out)[3], (in)[3] ); \
} while (0)
#define INTERP_3CHAN( t, dst, out, in ) \
do { \
INTERP_CHAN( (t), (dst)[0], (out)[0], (in)[0] ); \
INTERP_CHAN( (t), (dst)[1], (out)[1], (in)[1] ); \
INTERP_CHAN( (t), (dst)[2], (out)[2], (in)[2] ); \
} while (0)
#define INTERP_SZ( t, vec, to, out, in, sz ) \
do { \
switch (sz) { \
case 4: vec[to][3] = LINTERP( (t), (vec)[out][3], (vec)[in][3] ); \
case 3: vec[to][2] = LINTERP( (t), (vec)[out][2], (vec)[in][2] ); \
case 2: vec[to][1] = LINTERP( (t), (vec)[out][1], (vec)[in][1] ); \
case 1: vec[to][0] = LINTERP( (t), (vec)[out][0], (vec)[in][0] ); \
} \
} while(0)
/*@}*/
/** Clamp X to [MIN,MAX] */
#define CLAMP( X, MIN, MAX ) ( (X)<(MIN) ? (MIN) : ((X)>(MAX) ? (MAX) : (X)) )
/** Minimum of two values: */
#define MIN2( A, B ) ( (A)<(B) ? (A) : (B) )
/** Maximum of two values: */
#define MAX2( A, B ) ( (A)>(B) ? (A) : (B) )
/** Dot product of two 2-element vectors */
#define DOT2( a, b ) ( (a)[0]*(b)[0] + (a)[1]*(b)[1] )
/** Dot product of two 3-element vectors */
#define DOT3( a, b ) ( (a)[0]*(b)[0] + (a)[1]*(b)[1] + (a)[2]*(b)[2] )
/** Dot product of two 4-element vectors */
#define DOT4( a, b ) ( (a)[0]*(b)[0] + (a)[1]*(b)[1] + \
(a)[2]*(b)[2] + (a)[3]*(b)[3] )
/** Dot product of two 4-element vectors */
#define DOT4V(v,a,b,c,d) (v[0]*(a) + v[1]*(b) + v[2]*(c) + v[3]*(d))
/** Cross product of two 3-element vectors */
#define CROSS3(n, u, v) \
do { \
(n)[0] = (u)[1]*(v)[2] - (u)[2]*(v)[1]; \
(n)[1] = (u)[2]*(v)[0] - (u)[0]*(v)[2]; \
(n)[2] = (u)[0]*(v)[1] - (u)[1]*(v)[0]; \
} while (0)
/* Normalize a 3-element vector to unit length. */
#define NORMALIZE_3FV( V ) \
do { \
GLfloat len = (GLfloat) LEN_SQUARED_3FV(V); \
if (len) { \
len = INV_SQRTF(len); \
(V)[0] = (GLfloat) ((V)[0] * len); \
(V)[1] = (GLfloat) ((V)[1] * len); \
(V)[2] = (GLfloat) ((V)[2] * len); \
} \
} while(0)
#define LEN_3FV( V ) (SQRTF((V)[0]*(V)[0]+(V)[1]*(V)[1]+(V)[2]*(V)[2]))
#define LEN_2FV( V ) (SQRTF((V)[0]*(V)[0]+(V)[1]*(V)[1]))
#define LEN_SQUARED_3FV( V ) ((V)[0]*(V)[0]+(V)[1]*(V)[1]+(V)[2]*(V)[2])
#define LEN_SQUARED_2FV( V ) ((V)[0]*(V)[0]+(V)[1]*(V)[1])
/** casts to silence warnings with some compilers */
#define ENUM_TO_INT(E) ((GLint)(E))
#define ENUM_TO_FLOAT(E) ((GLfloat)(GLint)(E))
#define ENUM_TO_DOUBLE(E) ((GLdouble)(GLint)(E))
#define ENUM_TO_BOOLEAN(E) ((E) ? GL_TRUE : GL_FALSE)
#endif