/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <string.h>
#include "main/core.h" /* for MAX2 */
#include "ir.h"
#include "ir_visitor.h"
#include "glsl_types.h"
ir_rvalue::ir_rvalue()
{
this->type = glsl_type::error_type;
}
bool ir_rvalue::is_zero() const
{
return false;
}
bool ir_rvalue::is_one() const
{
return false;
}
bool ir_rvalue::is_negative_one() const
{
return false;
}
/**
* Modify the swizzle make to move one component to another
*
* \param m IR swizzle to be modified
* \param from Component in the RHS that is to be swizzled
* \param to Desired swizzle location of \c from
*/
static void
update_rhs_swizzle(ir_swizzle_mask &m, unsigned from, unsigned to)
{
switch (to) {
case 0: m.x = from; break;
case 1: m.y = from; break;
case 2: m.z = from; break;
case 3: m.w = from; break;
default: assert(!"Should not get here.");
}
m.num_components = MAX2(m.num_components, (to + 1));
}
void
ir_assignment::set_lhs(ir_rvalue *lhs)
{
void *mem_ctx = this;
bool swizzled = false;
while (lhs != NULL) {
ir_swizzle *swiz = lhs->as_swizzle();
if (swiz == NULL)
break;
unsigned write_mask = 0;
ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
for (unsigned i = 0; i < swiz->mask.num_components; i++) {
unsigned c = 0;
switch (i) {
case 0: c = swiz->mask.x; break;
case 1: c = swiz->mask.y; break;
case 2: c = swiz->mask.z; break;
case 3: c = swiz->mask.w; break;
default: assert(!"Should not get here.");
}
write_mask |= (((this->write_mask >> i) & 1) << c);
update_rhs_swizzle(rhs_swiz, i, c);
}
this->write_mask = write_mask;
lhs = swiz->val;
this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
swizzled = true;
}
if (swizzled) {
/* Now, RHS channels line up with the LHS writemask. Collapse it
* to just the channels that will be written.
*/
ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
int rhs_chan = 0;
for (int i = 0; i < 4; i++) {
if (write_mask & (1 << i))
update_rhs_swizzle(rhs_swiz, i, rhs_chan++);
}
this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
}
assert((lhs == NULL) || lhs->as_dereference());
this->lhs = (ir_dereference *) lhs;
}
ir_variable *
ir_assignment::whole_variable_written()
{
ir_variable *v = this->lhs->whole_variable_referenced();
if (v == NULL)
return NULL;
if (v->type->is_scalar())
return v;
if (v->type->is_vector()) {
const unsigned mask = (1U << v->type->vector_elements) - 1;
if (mask != this->write_mask)
return NULL;
}
/* Either all the vector components are assigned or the variable is some
* composite type (and the whole thing is assigned.
*/
return v;
}
ir_assignment::ir_assignment(ir_dereference *lhs, ir_rvalue *rhs,
ir_rvalue *condition, unsigned write_mask)
{
this->ir_type = ir_type_assignment;
this->condition = condition;
this->rhs = rhs;
this->lhs = lhs;
this->write_mask = write_mask;
if (lhs->type->is_scalar() || lhs->type->is_vector()) {
int lhs_components = 0;
for (int i = 0; i < 4; i++) {
if (write_mask & (1 << i))
lhs_components++;
}
assert(lhs_components == this->rhs->type->vector_elements);
}
}
ir_assignment::ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs,
ir_rvalue *condition)
{
this->ir_type = ir_type_assignment;
this->condition = condition;
this->rhs = rhs;
/* If the RHS is a vector type, assume that all components of the vector
* type are being written to the LHS. The write mask comes from the RHS
* because we can have a case where the LHS is a vec4 and the RHS is a
* vec3. In that case, the assignment is:
*
* (assign (...) (xyz) (var_ref lhs) (var_ref rhs))
*/
if (rhs->type->is_vector())
this->write_mask = (1U << rhs->type->vector_elements) - 1;
else if (rhs->type->is_scalar())
this->write_mask = 1;
else // TODO: write masking for matrix
this->write_mask = 0;
this->set_lhs(lhs);
}
ir_expression::ir_expression(int op, const struct glsl_type *type,
ir_rvalue *op0)
{
assert(get_num_operands(ir_expression_operation(op)) == 1);
this->ir_type = ir_type_expression;
this->type = type;
this->operation = ir_expression_operation(op);
this->operands[0] = op0;
this->operands[1] = NULL;
this->operands[2] = NULL;
this->operands[3] = NULL;
}
ir_expression::ir_expression(int op, const struct glsl_type *type,
ir_rvalue *op0, ir_rvalue *op1)
{
assert(((op1 == NULL) && (get_num_operands(ir_expression_operation(op)) == 1))
|| (get_num_operands(ir_expression_operation(op)) == 2));
this->ir_type = ir_type_expression;
this->type = type;
this->operation = ir_expression_operation(op);
this->operands[0] = op0;
this->operands[1] = op1;
this->operands[2] = NULL;
this->operands[3] = NULL;
}
ir_expression::ir_expression(int op, const struct glsl_type *type,
ir_rvalue *op0, ir_rvalue *op1,
ir_rvalue *op2, ir_rvalue *op3)
{
this->ir_type = ir_type_expression;
this->type = type;
this->operation = ir_expression_operation(op);
this->operands[0] = op0;
this->operands[1] = op1;
this->operands[2] = op2;
this->operands[3] = op3;
}
ir_expression::ir_expression(int op, ir_rvalue *op0)
{
this->ir_type = ir_type_expression;
this->operation = ir_expression_operation(op);
this->operands[0] = op0;
this->operands[1] = NULL;
this->operands[2] = NULL;
this->operands[3] = NULL;
assert(op <= ir_last_unop);
switch (this->operation) {
case ir_unop_bit_not:
case ir_unop_logic_not:
case ir_unop_neg:
case ir_unop_abs:
case ir_unop_sign:
case ir_unop_rcp:
case ir_unop_rsq:
case ir_unop_sqrt:
case ir_unop_exp:
case ir_unop_log:
case ir_unop_exp2:
case ir_unop_log2:
case ir_unop_trunc:
case ir_unop_ceil:
case ir_unop_floor:
case ir_unop_fract:
case ir_unop_round_even:
case ir_unop_cos:
case ir_unop_dFdx:
case ir_unop_dFdy:
this->type = op0->type;
break;
case ir_unop_any:
this->type = glsl_type::bool_type;
break;
default:
assert(!"not reached: missing automatic type setup for ir_expression");
this->type = op0->type;
break;
}
}
ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1)
{
this->ir_type = ir_type_expression;
this->operation = ir_expression_operation(op);
this->operands[0] = op0;
this->operands[1] = op1;
this->operands[2] = NULL;
this->operands[3] = NULL;
assert(op > ir_last_unop);
switch (this->operation) {
case ir_binop_all_equal:
case ir_binop_any_nequal:
this->type = glsl_type::bool_type;
break;
case ir_binop_add:
case ir_binop_sub:
case ir_binop_min:
case ir_binop_max:
case ir_binop_pow:
case ir_binop_mul:
if (op0->type->is_scalar()) {
this->type = op1->type;
} else if (op1->type->is_scalar()) {
this->type = op0->type;
} else {
/* FINISHME: matrix types */
assert(!op0->type->is_matrix() && !op1->type->is_matrix());
assert(op0->type == op1->type);
this->type = op0->type;
}
break;
case ir_binop_logic_and:
case ir_binop_logic_or:
if (op0->type->is_scalar()) {
this->type = op1->type;
} else if (op1->type->is_scalar()) {
this->type = op0->type;
}
break;
case ir_binop_dot:
this->type = glsl_type::float_type;
break;
default:
assert(!"not reached: missing automatic type setup for ir_expression");
this->type = glsl_type::float_type;
}
}
unsigned int
ir_expression::get_num_operands(ir_expression_operation op)
{
assert(op <= ir_last_opcode);
if (op <= ir_last_unop)
return 1;
if (op <= ir_last_binop)
return 2;
if (op == ir_quadop_vector)
return 4;
assert(false);
return 0;
}
static const char *const operator_strs[] = {
"~",
"!",
"neg",
"abs",
"sign",
"rcp",
"rsq",
"sqrt",
"exp",
"log",
"exp2",
"log2",
"f2i",
"i2f",
"f2b",
"b2f",
"i2b",
"b2i",
"u2f",
"any",
"trunc",
"ceil",
"floor",
"fract",
"round_even",
"sin",
"cos",
"sin_reduced",
"cos_reduced",
"dFdx",
"dFdy",
"noise",
"+",
"-",
"*",
"/",
"%",
"<",
">",
"<=",
">=",
"==",
"!=",
"all_equal",
"any_nequal",
"<<",
">>",
"&",
"^",
"|",
"&&",
"^^",
"||",
"dot",
"min",
"max",
"pow",
"vector",
};
const char *ir_expression::operator_string(ir_expression_operation op)
{
assert((unsigned int) op < Elements(operator_strs));
assert(Elements(operator_strs) == (ir_quadop_vector + 1));
return operator_strs[op];
}
const char *ir_expression::operator_string()
{
return operator_string(this->operation);
}
ir_expression_operation
ir_expression::get_operator(const char *str)
{
const int operator_count = sizeof(operator_strs) / sizeof(operator_strs[0]);
for (int op = 0; op < operator_count; op++) {
if (strcmp(str, operator_strs[op]) == 0)
return (ir_expression_operation) op;
}
return (ir_expression_operation) -1;
}
ir_constant::ir_constant()
{
this->ir_type = ir_type_constant;
}
ir_constant::ir_constant(const struct glsl_type *type,
const ir_constant_data *data)
{
assert((type->base_type >= GLSL_TYPE_UINT)
&& (type->base_type <= GLSL_TYPE_BOOL));
this->ir_type = ir_type_constant;
this->type = type;
memcpy(& this->value, data, sizeof(this->value));
}
ir_constant::ir_constant(float f)
{
this->ir_type = ir_type_constant;
this->type = glsl_type::float_type;
this->value.f[0] = f;
for (int i = 1; i < 16; i++) {
this->value.f[i] = 0;
}
}
ir_constant::ir_constant(unsigned int u)
{
this->ir_type = ir_type_constant;
this->type = glsl_type::uint_type;
this->value.u[0] = u;
for (int i = 1; i < 16; i++) {
this->value.u[i] = 0;
}
}
ir_constant::ir_constant(int i)
{
this->ir_type = ir_type_constant;
this->type = glsl_type::int_type;
this->value.i[0] = i;
for (int i = 1; i < 16; i++) {
this->value.i[i] = 0;
}
}
ir_constant::ir_constant(bool b)
{
this->ir_type = ir_type_constant;
this->type = glsl_type::bool_type;
this->value.b[0] = b;
for (int i = 1; i < 16; i++) {
this->value.b[i] = false;
}
}
ir_constant::ir_constant(const ir_constant *c, unsigned i)
{
this->ir_type = ir_type_constant;
this->type = c->type->get_base_type();
switch (this->type->base_type) {
case GLSL_TYPE_UINT: this->value.u[0] = c->value.u[i]; break;
case GLSL_TYPE_INT: this->value.i[0] = c->value.i[i]; break;
case GLSL_TYPE_FLOAT: this->value.f[0] = c->value.f[i]; break;
case GLSL_TYPE_BOOL: this->value.b[0] = c->value.b[i]; break;
default: assert(!"Should not get here."); break;
}
}
ir_constant::ir_constant(const struct glsl_type *type, exec_list *value_list)
{
this->ir_type = ir_type_constant;
this->type = type;
assert(type->is_scalar() || type->is_vector() || type->is_matrix()
|| type->is_record() || type->is_array());
if (type->is_array()) {
this->array_elements = hieralloc_array(this, ir_constant *, type->length);
unsigned i = 0;
foreach_list(node, value_list) {
ir_constant *value = (ir_constant *) node;
assert(value->as_constant() != NULL);
this->array_elements[i++] = value;
}
return;
}
/* If the constant is a record, the types of each of the entries in
* value_list must be a 1-for-1 match with the structure components. Each
* entry must also be a constant. Just move the nodes from the value_list
* to the list in the ir_constant.
*/
/* FINISHME: Should there be some type checking and / or assertions here? */
/* FINISHME: Should the new constant take ownership of the nodes from
* FINISHME: value_list, or should it make copies?
*/
if (type->is_record()) {
value_list->move_nodes_to(& this->components);
return;
}
for (unsigned i = 0; i < 16; i++) {
this->value.u[i] = 0;
}
ir_constant *value = (ir_constant *) (value_list->head);
/* Constructors with exactly one scalar argument are special for vectors
* and matrices. For vectors, the scalar value is replicated to fill all
* the components. For matrices, the scalar fills the components of the
* diagonal while the rest is filled with 0.
*/
if (value->type->is_scalar() && value->next->is_tail_sentinel()) {
if (type->is_matrix()) {
/* Matrix - fill diagonal (rest is already set to 0) */
assert(type->base_type == GLSL_TYPE_FLOAT);
for (unsigned i = 0; i < type->matrix_columns; i++)
this->value.f[i * type->vector_elements + i] = value->value.f[0];
} else {
/* Vector or scalar - fill all components */
switch (type->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
for (unsigned i = 0; i < type->components(); i++)
this->value.u[i] = value->value.u[0];
break;
case GLSL_TYPE_FLOAT:
for (unsigned i = 0; i < type->components(); i++)
this->value.f[i] = value->value.f[0];
break;
case GLSL_TYPE_BOOL:
for (unsigned i = 0; i < type->components(); i++)
this->value.b[i] = value->value.b[0];
break;
default:
assert(!"Should not get here.");
break;
}
}
return;
}
if (type->is_matrix() && value->type->is_matrix()) {
assert(value->next->is_tail_sentinel());
/* From section 5.4.2 of the GLSL 1.20 spec:
* "If a matrix is constructed from a matrix, then each component
* (column i, row j) in the result that has a corresponding component
* (column i, row j) in the argument will be initialized from there."
*/
unsigned cols = MIN2(type->matrix_columns, value->type->matrix_columns);
unsigned rows = MIN2(type->vector_elements, value->type->vector_elements);
for (unsigned i = 0; i < cols; i++) {
for (unsigned j = 0; j < rows; j++) {
const unsigned src = i * value->type->vector_elements + j;
const unsigned dst = i * type->vector_elements + j;
this->value.f[dst] = value->value.f[src];
}
}
/* "All other components will be initialized to the identity matrix." */
for (unsigned i = cols; i < type->matrix_columns; i++)
this->value.f[i * type->vector_elements + i] = 1.0;
return;
}
/* Use each component from each entry in the value_list to initialize one
* component of the constant being constructed.
*/
for (unsigned i = 0; i < type->components(); /* empty */) {
assert(value->as_constant() != NULL);
assert(!value->is_tail_sentinel());
for (unsigned j = 0; j < value->type->components(); j++) {
switch (type->base_type) {
case GLSL_TYPE_UINT:
this->value.u[i] = value->get_uint_component(j);
break;
case GLSL_TYPE_INT:
this->value.i[i] = value->get_int_component(j);
break;
case GLSL_TYPE_FLOAT:
this->value.f[i] = value->get_float_component(j);
break;
case GLSL_TYPE_BOOL:
this->value.b[i] = value->get_bool_component(j);
break;
default:
/* FINISHME: What to do? Exceptions are not the answer.
*/
break;
}
i++;
if (i >= type->components())
break;
}
value = (ir_constant *) value->next;
}
}
ir_constant *
ir_constant::zero(void *mem_ctx, const glsl_type *type)
{
assert(type->is_numeric() || type->is_boolean());
ir_constant *c = new(mem_ctx) ir_constant;
c->type = type;
memset(&c->value, 0, sizeof(c->value));
return c;
}
bool
ir_constant::get_bool_component(unsigned i) const
{
switch (this->type->base_type) {
case GLSL_TYPE_UINT: return this->value.u[i] != 0;
case GLSL_TYPE_INT: return this->value.i[i] != 0;
case GLSL_TYPE_FLOAT: return ((int)this->value.f[i]) != 0;
case GLSL_TYPE_BOOL: return this->value.b[i];
default: assert(!"Should not get here."); break;
}
/* Must return something to make the compiler happy. This is clearly an
* error case.
*/
return false;
}
float
ir_constant::get_float_component(unsigned i) const
{
switch (this->type->base_type) {
case GLSL_TYPE_UINT: return (float) this->value.u[i];
case GLSL_TYPE_INT: return (float) this->value.i[i];
case GLSL_TYPE_FLOAT: return this->value.f[i];
case GLSL_TYPE_BOOL: return this->value.b[i] ? 1.0 : 0.0;
default: assert(!"Should not get here."); break;
}
/* Must return something to make the compiler happy. This is clearly an
* error case.
*/
return 0.0;
}
int
ir_constant::get_int_component(unsigned i) const
{
switch (this->type->base_type) {
case GLSL_TYPE_UINT: return this->value.u[i];
case GLSL_TYPE_INT: return this->value.i[i];
case GLSL_TYPE_FLOAT: return (int) this->value.f[i];
case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
default: assert(!"Should not get here."); break;
}
/* Must return something to make the compiler happy. This is clearly an
* error case.
*/
return 0;
}
unsigned
ir_constant::get_uint_component(unsigned i) const
{
switch (this->type->base_type) {
case GLSL_TYPE_UINT: return this->value.u[i];
case GLSL_TYPE_INT: return this->value.i[i];
case GLSL_TYPE_FLOAT: return (unsigned) this->value.f[i];
case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
default: assert(!"Should not get here."); break;
}
/* Must return something to make the compiler happy. This is clearly an
* error case.
*/
return 0;
}
ir_constant *
ir_constant::get_array_element(unsigned i) const
{
assert(this->type->is_array());
/* From page 35 (page 41 of the PDF) of the GLSL 1.20 spec:
*
* "Behavior is undefined if a shader subscripts an array with an index
* less than 0 or greater than or equal to the size the array was
* declared with."
*
* Most out-of-bounds accesses are removed before things could get this far.
* There are cases where non-constant array index values can get constant
* folded.
*/
if (int(i) < 0)
i = 0;
else if (i >= this->type->length)
i = this->type->length - 1;
return array_elements[i];
}
ir_constant *
ir_constant::get_record_field(const char *name)
{
int idx = this->type->field_index(name);
if (idx < 0)
return NULL;
if (this->components.is_empty())
return NULL;
exec_node *node = this->components.head;
for (int i = 0; i < idx; i++) {
node = node->next;
/* If the end of the list is encountered before the element matching the
* requested field is found, return NULL.
*/
if (node->is_tail_sentinel())
return NULL;
}
return (ir_constant *) node;
}
bool
ir_constant::has_value(const ir_constant *c) const
{
if (this->type != c->type)
return false;
if (this->type->is_array()) {
for (unsigned i = 0; i < this->type->length; i++) {
if (!this->array_elements[i]->has_value(c->array_elements[i]))
return false;
}
return true;
}
if (this->type->base_type == GLSL_TYPE_STRUCT) {
const exec_node *a_node = this->components.head;
const exec_node *b_node = c->components.head;
while (!a_node->is_tail_sentinel()) {
assert(!b_node->is_tail_sentinel());
const ir_constant *const a_field = (ir_constant *) a_node;
const ir_constant *const b_field = (ir_constant *) b_node;
if (!a_field->has_value(b_field))
return false;
a_node = a_node->next;
b_node = b_node->next;
}
return true;
}
for (unsigned i = 0; i < this->type->components(); i++) {
switch (this->type->base_type) {
case GLSL_TYPE_UINT:
if (this->value.u[i] != c->value.u[i])
return false;
break;
case GLSL_TYPE_INT:
if (this->value.i[i] != c->value.i[i])
return false;
break;
case GLSL_TYPE_FLOAT:
if (this->value.f[i] != c->value.f[i])
return false;
break;
case GLSL_TYPE_BOOL:
if (this->value.b[i] != c->value.b[i])
return false;
break;
default:
assert(!"Should not get here.");
return false;
}
}
return true;
}
bool
ir_constant::is_zero() const
{
if (!this->type->is_scalar() && !this->type->is_vector())
return false;
for (unsigned c = 0; c < this->type->vector_elements; c++) {
switch (this->type->base_type) {
case GLSL_TYPE_FLOAT:
if (this->value.f[c] != 0.0)
return false;
break;
case GLSL_TYPE_INT:
if (this->value.i[c] != 0)
return false;
break;
case GLSL_TYPE_UINT:
if (this->value.u[c] != 0)
return false;
break;
case GLSL_TYPE_BOOL:
if (this->value.b[c] != false)
return false;
break;
default:
/* The only other base types are structures, arrays, and samplers.
* Samplers cannot be constants, and the others should have been
* filtered out above.
*/
assert(!"Should not get here.");
return false;
}
}
return true;
}
bool
ir_constant::is_one() const
{
if (!this->type->is_scalar() && !this->type->is_vector())
return false;
for (unsigned c = 0; c < this->type->vector_elements; c++) {
switch (this->type->base_type) {
case GLSL_TYPE_FLOAT:
if (this->value.f[c] != 1.0)
return false;
break;
case GLSL_TYPE_INT:
if (this->value.i[c] != 1)
return false;
break;
case GLSL_TYPE_UINT:
if (this->value.u[c] != 1)
return false;
break;
case GLSL_TYPE_BOOL:
if (this->value.b[c] != true)
return false;
break;
default:
/* The only other base types are structures, arrays, and samplers.
* Samplers cannot be constants, and the others should have been
* filtered out above.
*/
assert(!"Should not get here.");
return false;
}
}
return true;
}
bool
ir_constant::is_negative_one() const
{
if (!this->type->is_scalar() && !this->type->is_vector())
return false;
if (this->type->is_boolean())
return false;
for (unsigned c = 0; c < this->type->vector_elements; c++) {
switch (this->type->base_type) {
case GLSL_TYPE_FLOAT:
if (this->value.f[c] != -1.0)
return false;
break;
case GLSL_TYPE_INT:
if (this->value.i[c] != -1)
return false;
break;
case GLSL_TYPE_UINT:
if (int(this->value.u[c]) != -1)
return false;
break;
default:
/* The only other base types are structures, arrays, samplers, and
* booleans. Samplers cannot be constants, and the others should
* have been filtered out above.
*/
assert(!"Should not get here.");
return false;
}
}
return true;
}
ir_loop::ir_loop()
{
this->ir_type = ir_type_loop;
this->cmp = ir_unop_neg;
this->from = NULL;
this->to = NULL;
this->increment = NULL;
this->counter = NULL;
}
ir_dereference_variable::ir_dereference_variable(ir_variable *var)
{
this->ir_type = ir_type_dereference_variable;
this->var = var;
this->type = (var != NULL) ? var->type : glsl_type::error_type;
}
ir_dereference_array::ir_dereference_array(ir_rvalue *value,
ir_rvalue *array_index)
{
this->ir_type = ir_type_dereference_array;
this->array_index = array_index;
this->set_array(value);
}
ir_dereference_array::ir_dereference_array(ir_variable *var,
ir_rvalue *array_index)
{
void *ctx = hieralloc_parent(var);
this->ir_type = ir_type_dereference_array;
this->array_index = array_index;
this->set_array(new(ctx) ir_dereference_variable(var));
}
void
ir_dereference_array::set_array(ir_rvalue *value)
{
this->array = value;
this->type = glsl_type::error_type;
if (this->array != NULL) {
const glsl_type *const vt = this->array->type;
if (vt->is_array()) {
type = vt->element_type();
} else if (vt->is_matrix()) {
type = vt->column_type();
} else if (vt->is_vector()) {
type = vt->get_base_type();
}
}
}
ir_dereference_record::ir_dereference_record(ir_rvalue *value,
const char *field)
{
this->ir_type = ir_type_dereference_record;
this->record = value;
this->field = hieralloc_strdup(this, field);
this->type = (this->record != NULL)
? this->record->type->field_type(field) : glsl_type::error_type;
}
ir_dereference_record::ir_dereference_record(ir_variable *var,
const char *field)
{
void *ctx = hieralloc_parent(var);
this->ir_type = ir_type_dereference_record;
this->record = new(ctx) ir_dereference_variable(var);
this->field = hieralloc_strdup(this, field);
this->type = (this->record != NULL)
? this->record->type->field_type(field) : glsl_type::error_type;
}
bool type_contains_sampler(const glsl_type *type)
{
if (type->is_array()) {
return type_contains_sampler(type->fields.array);
} else if (type->is_record()) {
for (unsigned int i = 0; i < type->length; i++) {
if (type_contains_sampler(type->fields.structure[i].type))
return true;
}
return false;
} else {
return type->is_sampler();
}
}
bool
ir_dereference::is_lvalue()
{
ir_variable *var = this->variable_referenced();
/* Every l-value derference chain eventually ends in a variable.
*/
if ((var == NULL) || var->read_only)
return false;
if (this->type->is_array() && !var->array_lvalue)
return false;
/* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
*
* "Samplers cannot be treated as l-values; hence cannot be used
* as out or inout function parameters, nor can they be
* assigned into."
*/
if (type_contains_sampler(this->type))
return false;
return true;
}
const char *tex_opcode_strs[] = { "tex", "txb", "txl", "txd", "txf" };
const char *ir_texture::opcode_string()
{
assert((unsigned int) op <=
sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0]));
return tex_opcode_strs[op];
}
ir_texture_opcode
ir_texture::get_opcode(const char *str)
{
const int count = sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0]);
for (int op = 0; op < count; op++) {
if (strcmp(str, tex_opcode_strs[op]) == 0)
return (ir_texture_opcode) op;
}
return (ir_texture_opcode) -1;
}
void
ir_texture::set_sampler(ir_dereference *sampler)
{
assert(sampler != NULL);
this->sampler = sampler;
switch (sampler->type->sampler_type) {
case GLSL_TYPE_FLOAT:
this->type = glsl_type::vec4_type;
break;
case GLSL_TYPE_INT:
this->type = glsl_type::ivec4_type;
break;
case GLSL_TYPE_UINT:
this->type = glsl_type::uvec4_type;
break;
}
}
void
ir_swizzle::init_mask(const unsigned *comp, unsigned count)
{
assert((count >= 1) && (count <= 4));
memset(&this->mask, 0, sizeof(this->mask));
this->mask.num_components = count;
unsigned dup_mask = 0;
switch (count) {
case 4:
assert(comp[3] <= 3);
dup_mask |= (1U << comp[3])
& ((1U << comp[0]) | (1U << comp[1]) | (1U << comp[2]));
this->mask.w = comp[3];
case 3:
assert(comp[2] <= 3);
dup_mask |= (1U << comp[2])
& ((1U << comp[0]) | (1U << comp[1]));
this->mask.z = comp[2];
case 2:
assert(comp[1] <= 3);
dup_mask |= (1U << comp[1])
& ((1U << comp[0]));
this->mask.y = comp[1];
case 1:
assert(comp[0] <= 3);
this->mask.x = comp[0];
}
this->mask.has_duplicates = dup_mask != 0;
/* Based on the number of elements in the swizzle and the base type
* (i.e., float, int, unsigned, or bool) of the vector being swizzled,
* generate the type of the resulting value.
*/
type = glsl_type::get_instance(val->type->base_type, mask.num_components, 1);
}
ir_swizzle::ir_swizzle(ir_rvalue *val, unsigned x, unsigned y, unsigned z,
unsigned w, unsigned count)
: val(val)
{
const unsigned components[4] = { x, y, z, w };
this->ir_type = ir_type_swizzle;
this->init_mask(components, count);
}
ir_swizzle::ir_swizzle(ir_rvalue *val, const unsigned *comp,
unsigned count)
: val(val)
{
this->ir_type = ir_type_swizzle;
this->init_mask(comp, count);
}
ir_swizzle::ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask)
{
this->ir_type = ir_type_swizzle;
this->val = val;
this->mask = mask;
this->type = glsl_type::get_instance(val->type->base_type,
mask.num_components, 1);
}
#define X 1
#define R 5
#define S 9
#define I 13
ir_swizzle *
ir_swizzle::create(ir_rvalue *val, const char *str, unsigned vector_length)
{
void *ctx = hieralloc_parent(val);
/* For each possible swizzle character, this table encodes the value in
* \c idx_map that represents the 0th element of the vector. For invalid
* swizzle characters (e.g., 'k'), a special value is used that will allow
* detection of errors.
*/
static const unsigned char base_idx[26] = {
/* a b c d e f g h i j k l m */
R, R, I, I, I, I, R, I, I, I, I, I, I,
/* n o p q r s t u v w x y z */
I, I, S, S, R, S, S, I, I, X, X, X, X
};
/* Each valid swizzle character has an entry in the previous table. This
* table encodes the base index encoded in the previous table plus the actual
* index of the swizzle character. When processing swizzles, the first
* character in the string is indexed in the previous table. Each character
* in the string is indexed in this table, and the value found there has the
* value form the first table subtracted. The result must be on the range
* [0,3].
*
* For example, the string "wzyx" will get X from the first table. Each of
* the charcaters will get X+3, X+2, X+1, and X+0 from this table. After
* subtraction, the swizzle values are { 3, 2, 1, 0 }.
*
* The string "wzrg" will get X from the first table. Each of the characters
* will get X+3, X+2, R+0, and R+1 from this table. After subtraction, the
* swizzle values are { 3, 2, 4, 5 }. Since 4 and 5 are outside the range
* [0,3], the error is detected.
*/
static const unsigned char idx_map[26] = {
/* a b c d e f g h i j k l m */
R+3, R+2, 0, 0, 0, 0, R+1, 0, 0, 0, 0, 0, 0,
/* n o p q r s t u v w x y z */
0, 0, S+2, S+3, R+0, S+0, S+1, 0, 0, X+3, X+0, X+1, X+2
};
int swiz_idx[4] = { 0, 0, 0, 0 };
unsigned i;
/* Validate the first character in the swizzle string and look up the base
* index value as described above.
*/
if ((str[0] < 'a') || (str[0] > 'z'))
return NULL;
const unsigned base = base_idx[str[0] - 'a'];
for (i = 0; (i < 4) && (str[i] != '\0'); i++) {
/* Validate the next character, and, as described above, convert it to a
* swizzle index.
*/
if ((str[i] < 'a') || (str[i] > 'z'))
return NULL;
swiz_idx[i] = idx_map[str[i] - 'a'] - base;
if ((swiz_idx[i] < 0) || (swiz_idx[i] >= (int) vector_length))
return NULL;
}
if (str[i] != '\0')
return NULL;
return new(ctx) ir_swizzle(val, swiz_idx[0], swiz_idx[1], swiz_idx[2],
swiz_idx[3], i);
}
#undef X
#undef R
#undef S
#undef I
ir_variable *
ir_swizzle::variable_referenced()
{
return this->val->variable_referenced();
}
ir_variable::ir_variable(const struct glsl_type *type, const char *name,
ir_variable_mode mode)
: max_array_access(0), read_only(false), centroid(false), invariant(false),
mode(mode), interpolation(ir_var_smooth), array_lvalue(false)
{
this->ir_type = ir_type_variable;
this->type = type;
this->name = hieralloc_strdup(this, name);
this->explicit_location = false;
this->location = -1;
this->warn_extension = NULL;
this->constant_value = NULL;
this->origin_upper_left = false;
this->pixel_center_integer = false;
if (type && type->base_type == GLSL_TYPE_SAMPLER)
this->read_only = true;
}
const char *
ir_variable::interpolation_string() const
{
switch (this->interpolation) {
case ir_var_smooth: return "smooth";
case ir_var_flat: return "flat";
case ir_var_noperspective: return "noperspective";
}
assert(!"Should not get here.");
return "";
}
unsigned
ir_variable::component_slots() const
{
/* FINISHME: Sparsely accessed arrays require fewer slots. */
return this->type->component_slots();
}
ir_function_signature::ir_function_signature(const glsl_type *return_type)
: return_type(return_type), is_defined(false), _function(NULL)
{
this->ir_type = ir_type_function_signature;
this->is_builtin = false;
}
const char *
ir_function_signature::qualifiers_match(exec_list *params)
{
exec_list_iterator iter_a = parameters.iterator();
exec_list_iterator iter_b = params->iterator();
/* check that the qualifiers match. */
while (iter_a.has_next()) {
ir_variable *a = (ir_variable *)iter_a.get();
ir_variable *b = (ir_variable *)iter_b.get();
if (a->read_only != b->read_only ||
a->mode != b->mode ||
a->interpolation != b->interpolation ||
a->centroid != b->centroid) {
/* parameter a's qualifiers don't match */
return a->name;
}
iter_a.next();
iter_b.next();
}
return NULL;
}
void
ir_function_signature::replace_parameters(exec_list *new_params)
{
/* Destroy all of the previous parameter information. If the previous
* parameter information comes from the function prototype, it may either
* specify incorrect parameter names or not have names at all.
*/
foreach_iter(exec_list_iterator, iter, parameters) {
assert(((ir_instruction *) iter.get())->as_variable() != NULL);
iter.remove();
}
new_params->move_nodes_to(¶meters);
}
ir_function::ir_function(const char *name)
{
this->ir_type = ir_type_function;
this->name = hieralloc_strdup(this, name);
}
bool
ir_function::has_user_signature()
{
foreach_list(n, &this->signatures) {
ir_function_signature *const sig = (ir_function_signature *) n;
if (!sig->is_builtin)
return true;
}
return false;
}
ir_call *
ir_call::get_error_instruction(void *ctx)
{
ir_call *call = new(ctx) ir_call;
call->type = glsl_type::error_type;
return call;
}
void
ir_call::set_callee(ir_function_signature *sig)
{
assert((this->type == NULL) || (this->type == sig->return_type));
this->callee = sig;
}
void
visit_exec_list(exec_list *list, ir_visitor *visitor)
{
foreach_iter(exec_list_iterator, iter, *list) {
((ir_instruction *)iter.get())->accept(visitor);
}
}
static void
steal_memory(ir_instruction *ir, void *new_ctx)
{
ir_variable *var = ir->as_variable();
ir_constant *constant = ir->as_constant();
if (var != NULL && var->constant_value != NULL)
steal_memory(var->constant_value, ir);
/* The components of aggregate constants are not visited by the normal
* visitor, so steal their values by hand.
*/
if (constant != NULL) {
if (constant->type->is_record()) {
foreach_iter(exec_list_iterator, iter, constant->components) {
ir_constant *field = (ir_constant *)iter.get();
steal_memory(field, ir);
}
} else if (constant->type->is_array()) {
for (unsigned int i = 0; i < constant->type->length; i++) {
steal_memory(constant->array_elements[i], ir);
}
}
}
hieralloc_steal(new_ctx, ir);
}
void
reparent_ir(exec_list *list, void *mem_ctx)
{
foreach_list(node, list) {
visit_tree((ir_instruction *) node, steal_memory, mem_ctx);
}
}
static ir_rvalue *
try_min_one(ir_rvalue *ir)
{
ir_expression *expr = ir->as_expression();
if (!expr || expr->operation != ir_binop_min)
return NULL;
if (expr->operands[0]->is_one())
return expr->operands[1];
if (expr->operands[1]->is_one())
return expr->operands[0];
return NULL;
}
static ir_rvalue *
try_max_zero(ir_rvalue *ir)
{
ir_expression *expr = ir->as_expression();
if (!expr || expr->operation != ir_binop_max)
return NULL;
if (expr->operands[0]->is_zero())
return expr->operands[1];
if (expr->operands[1]->is_zero())
return expr->operands[0];
return NULL;
}
ir_rvalue *
ir_rvalue::as_rvalue_to_saturate()
{
ir_expression *expr = this->as_expression();
if (!expr)
return NULL;
ir_rvalue *max_zero = try_max_zero(expr);
if (max_zero) {
return try_min_one(max_zero);
} else {
ir_rvalue *min_one = try_min_one(expr);
if (min_one) {
return try_max_zero(min_one);
}
}
return NULL;
}