//===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifdef HAVE_CLANG_CONFIG_H
# include "clang/Config/config.h"
#endif
#include "clang/Driver/Driver.h"
#include "clang/Driver/Action.h"
#include "clang/Driver/Arg.h"
#include "clang/Driver/ArgList.h"
#include "clang/Driver/Compilation.h"
#include "clang/Driver/DriverDiagnostic.h"
#include "clang/Driver/HostInfo.h"
#include "clang/Driver/Job.h"
#include "clang/Driver/OptTable.h"
#include "clang/Driver/Option.h"
#include "clang/Driver/Options.h"
#include "clang/Driver/Tool.h"
#include "clang/Driver/ToolChain.h"
#include "clang/Driver/Types.h"
#include "clang/Basic/Version.h"
#include "llvm/Config/config.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Program.h"
#include "InputInfo.h"
#include <map>
using namespace clang::driver;
using namespace clang;
Driver::Driver(llvm::StringRef ClangExecutable,
llvm::StringRef DefaultHostTriple,
llvm::StringRef DefaultImageName,
bool IsProduction, bool CXXIsProduction,
Diagnostic &Diags)
: Opts(createDriverOptTable()), Diags(Diags),
ClangExecutable(ClangExecutable), UseStdLib(true),
DefaultHostTriple(DefaultHostTriple), DefaultImageName(DefaultImageName),
DriverTitle("clang \"gcc-compatible\" driver"),
Host(0),
CCPrintOptionsFilename(0), CCPrintHeadersFilename(0),
CCLogDiagnosticsFilename(0), CCCIsCXX(false),
CCCIsCPP(false),CCCEcho(false), CCCPrintBindings(false),
CCPrintOptions(false), CCPrintHeaders(false), CCLogDiagnostics(false),
CCCGenericGCCName(""), CheckInputsExist(true), CCCUseClang(true),
CCCUseClangCXX(true), CCCUseClangCPP(true), CCCUsePCH(true),
SuppressMissingInputWarning(false) {
if (IsProduction) {
// In a "production" build, only use clang on architectures we expect to
// work, and don't use clang C++.
//
// During development its more convenient to always have the driver use
// clang, but we don't want users to be confused when things don't work, or
// to file bugs for things we don't support.
CCCClangArchs.insert(llvm::Triple::x86);
CCCClangArchs.insert(llvm::Triple::x86_64);
CCCClangArchs.insert(llvm::Triple::arm);
if (!CXXIsProduction)
CCCUseClangCXX = false;
}
Name = llvm::sys::path::stem(ClangExecutable);
Dir = llvm::sys::path::parent_path(ClangExecutable);
// Compute the path to the resource directory.
llvm::StringRef ClangResourceDir(CLANG_RESOURCE_DIR);
llvm::SmallString<128> P(Dir);
if (ClangResourceDir != "")
llvm::sys::path::append(P, ClangResourceDir);
else
llvm::sys::path::append(P, "..", "lib", "clang", CLANG_VERSION_STRING);
ResourceDir = P.str();
}
Driver::~Driver() {
delete Opts;
delete Host;
}
InputArgList *Driver::ParseArgStrings(llvm::ArrayRef<const char *> ArgList) {
llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
unsigned MissingArgIndex, MissingArgCount;
InputArgList *Args = getOpts().ParseArgs(ArgList.begin(), ArgList.end(),
MissingArgIndex, MissingArgCount);
// Check for missing argument error.
if (MissingArgCount)
Diag(clang::diag::err_drv_missing_argument)
<< Args->getArgString(MissingArgIndex) << MissingArgCount;
// Check for unsupported options.
for (ArgList::const_iterator it = Args->begin(), ie = Args->end();
it != ie; ++it) {
Arg *A = *it;
if (A->getOption().isUnsupported()) {
Diag(clang::diag::err_drv_unsupported_opt) << A->getAsString(*Args);
continue;
}
}
return Args;
}
DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
DerivedArgList *DAL = new DerivedArgList(Args);
bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
for (ArgList::const_iterator it = Args.begin(),
ie = Args.end(); it != ie; ++it) {
const Arg *A = *it;
// Unfortunately, we have to parse some forwarding options (-Xassembler,
// -Xlinker, -Xpreprocessor) because we either integrate their functionality
// (assembler and preprocessor), or bypass a previous driver ('collect2').
// Rewrite linker options, to replace --no-demangle with a custom internal
// option.
if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
A->getOption().matches(options::OPT_Xlinker)) &&
A->containsValue("--no-demangle")) {
// Add the rewritten no-demangle argument.
DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_Xlinker__no_demangle));
// Add the remaining values as Xlinker arguments.
for (unsigned i = 0, e = A->getNumValues(); i != e; ++i)
if (llvm::StringRef(A->getValue(Args, i)) != "--no-demangle")
DAL->AddSeparateArg(A, Opts->getOption(options::OPT_Xlinker),
A->getValue(Args, i));
continue;
}
// Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
// some build systems. We don't try to be complete here because we don't
// care to encourage this usage model.
if (A->getOption().matches(options::OPT_Wp_COMMA) &&
A->getNumValues() == 2 &&
(A->getValue(Args, 0) == llvm::StringRef("-MD") ||
A->getValue(Args, 0) == llvm::StringRef("-MMD"))) {
// Rewrite to -MD/-MMD along with -MF.
if (A->getValue(Args, 0) == llvm::StringRef("-MD"))
DAL->AddFlagArg(A, Opts->getOption(options::OPT_MD));
else
DAL->AddFlagArg(A, Opts->getOption(options::OPT_MMD));
DAL->AddSeparateArg(A, Opts->getOption(options::OPT_MF),
A->getValue(Args, 1));
continue;
}
// Rewrite reserved library names.
if (A->getOption().matches(options::OPT_l)) {
llvm::StringRef Value = A->getValue(Args);
// Rewrite unless -nostdlib is present.
if (!HasNostdlib && Value == "stdc++") {
DAL->AddFlagArg(A, Opts->getOption(
options::OPT_Z_reserved_lib_stdcxx));
continue;
}
// Rewrite unconditionally.
if (Value == "cc_kext") {
DAL->AddFlagArg(A, Opts->getOption(
options::OPT_Z_reserved_lib_cckext));
continue;
}
}
DAL->append(*it);
}
// Add a default value of -mlinker-version=, if one was given and the user
// didn't specify one.
#if defined(HOST_LINK_VERSION)
if (!Args.hasArg(options::OPT_mlinker_version_EQ)) {
DAL->AddJoinedArg(0, Opts->getOption(options::OPT_mlinker_version_EQ),
HOST_LINK_VERSION);
DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
}
#endif
return DAL;
}
Compilation *Driver::BuildCompilation(llvm::ArrayRef<const char *> ArgList) {
llvm::PrettyStackTraceString CrashInfo("Compilation construction");
// FIXME: Handle environment options which effect driver behavior, somewhere
// (client?). GCC_EXEC_PREFIX, COMPILER_PATH, LIBRARY_PATH, LPATH,
// CC_PRINT_OPTIONS.
// FIXME: What are we going to do with -V and -b?
// FIXME: This stuff needs to go into the Compilation, not the driver.
bool CCCPrintOptions = false, CCCPrintActions = false;
InputArgList *Args = ParseArgStrings(ArgList.slice(1));
// -no-canonical-prefixes is used very early in main.
Args->ClaimAllArgs(options::OPT_no_canonical_prefixes);
// Ignore -pipe.
Args->ClaimAllArgs(options::OPT_pipe);
// Extract -ccc args.
//
// FIXME: We need to figure out where this behavior should live. Most of it
// should be outside in the client; the parts that aren't should have proper
// options, either by introducing new ones or by overloading gcc ones like -V
// or -b.
CCCPrintOptions = Args->hasArg(options::OPT_ccc_print_options);
CCCPrintActions = Args->hasArg(options::OPT_ccc_print_phases);
CCCPrintBindings = Args->hasArg(options::OPT_ccc_print_bindings);
CCCIsCXX = Args->hasArg(options::OPT_ccc_cxx) || CCCIsCXX;
CCCEcho = Args->hasArg(options::OPT_ccc_echo);
if (const Arg *A = Args->getLastArg(options::OPT_ccc_gcc_name))
CCCGenericGCCName = A->getValue(*Args);
CCCUseClangCXX = Args->hasFlag(options::OPT_ccc_clang_cxx,
options::OPT_ccc_no_clang_cxx,
CCCUseClangCXX);
CCCUsePCH = Args->hasFlag(options::OPT_ccc_pch_is_pch,
options::OPT_ccc_pch_is_pth);
CCCUseClang = !Args->hasArg(options::OPT_ccc_no_clang);
CCCUseClangCPP = !Args->hasArg(options::OPT_ccc_no_clang_cpp);
if (const Arg *A = Args->getLastArg(options::OPT_ccc_clang_archs)) {
llvm::StringRef Cur = A->getValue(*Args);
CCCClangArchs.clear();
while (!Cur.empty()) {
std::pair<llvm::StringRef, llvm::StringRef> Split = Cur.split(',');
if (!Split.first.empty()) {
llvm::Triple::ArchType Arch =
llvm::Triple(Split.first, "", "").getArch();
if (Arch == llvm::Triple::UnknownArch)
Diag(clang::diag::err_drv_invalid_arch_name) << Split.first;
CCCClangArchs.insert(Arch);
}
Cur = Split.second;
}
}
// FIXME: We shouldn't overwrite the default host triple here, but we have
// nowhere else to put this currently.
if (const Arg *A = Args->getLastArg(options::OPT_ccc_host_triple))
DefaultHostTriple = A->getValue(*Args);
if (const Arg *A = Args->getLastArg(options::OPT_ccc_install_dir))
Dir = InstalledDir = A->getValue(*Args);
for (arg_iterator it = Args->filtered_begin(options::OPT_B),
ie = Args->filtered_end(); it != ie; ++it) {
const Arg *A = *it;
A->claim();
PrefixDirs.push_back(A->getValue(*Args, 0));
}
if (const Arg *A = Args->getLastArg(options::OPT__sysroot_EQ))
SysRoot = A->getValue(*Args);
if (Args->hasArg(options::OPT_nostdlib))
UseStdLib = false;
Host = GetHostInfo(DefaultHostTriple.c_str());
// Perform the default argument translations.
DerivedArgList *TranslatedArgs = TranslateInputArgs(*Args);
// The compilation takes ownership of Args.
Compilation *C = new Compilation(*this, *Host->CreateToolChain(*Args), Args,
TranslatedArgs);
// FIXME: This behavior shouldn't be here.
if (CCCPrintOptions) {
PrintOptions(C->getInputArgs());
return C;
}
if (!HandleImmediateArgs(*C))
return C;
// Construct the list of abstract actions to perform for this compilation.
if (Host->useDriverDriver())
BuildUniversalActions(C->getDefaultToolChain(), C->getArgs(),
C->getActions());
else
BuildActions(C->getDefaultToolChain(), C->getArgs(), C->getActions());
if (CCCPrintActions) {
PrintActions(*C);
return C;
}
BuildJobs(*C);
return C;
}
int Driver::ExecuteCompilation(const Compilation &C) const {
// Just print if -### was present.
if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
C.PrintJob(llvm::errs(), C.getJobs(), "\n", true);
return 0;
}
// If there were errors building the compilation, quit now.
if (getDiags().hasErrorOccurred())
return 1;
const Command *FailingCommand = 0;
int Res = C.ExecuteJob(C.getJobs(), FailingCommand);
// Remove temp files.
C.CleanupFileList(C.getTempFiles());
// If the command succeeded, we are done.
if (Res == 0)
return Res;
// Otherwise, remove result files as well.
if (!C.getArgs().hasArg(options::OPT_save_temps))
C.CleanupFileList(C.getResultFiles(), true);
// Print extra information about abnormal failures, if possible.
//
// This is ad-hoc, but we don't want to be excessively noisy. If the result
// status was 1, assume the command failed normally. In particular, if it was
// the compiler then assume it gave a reasonable error code. Failures in other
// tools are less common, and they generally have worse diagnostics, so always
// print the diagnostic there.
const Tool &FailingTool = FailingCommand->getCreator();
if (!FailingCommand->getCreator().hasGoodDiagnostics() || Res != 1) {
// FIXME: See FIXME above regarding result code interpretation.
if (Res < 0)
Diag(clang::diag::err_drv_command_signalled)
<< FailingTool.getShortName() << -Res;
else
Diag(clang::diag::err_drv_command_failed)
<< FailingTool.getShortName() << Res;
}
return Res;
}
void Driver::PrintOptions(const ArgList &Args) const {
unsigned i = 0;
for (ArgList::const_iterator it = Args.begin(), ie = Args.end();
it != ie; ++it, ++i) {
Arg *A = *it;
llvm::errs() << "Option " << i << " - "
<< "Name: \"" << A->getOption().getName() << "\", "
<< "Values: {";
for (unsigned j = 0; j < A->getNumValues(); ++j) {
if (j)
llvm::errs() << ", ";
llvm::errs() << '"' << A->getValue(Args, j) << '"';
}
llvm::errs() << "}\n";
}
}
void Driver::PrintHelp(bool ShowHidden) const {
getOpts().PrintHelp(llvm::outs(), Name.c_str(), DriverTitle.c_str(),
ShowHidden);
}
void Driver::PrintVersion(const Compilation &C, llvm::raw_ostream &OS) const {
// FIXME: The following handlers should use a callback mechanism, we don't
// know what the client would like to do.
OS << getClangFullVersion() << '\n';
const ToolChain &TC = C.getDefaultToolChain();
OS << "Target: " << TC.getTripleString() << '\n';
// Print the threading model.
//
// FIXME: Implement correctly.
OS << "Thread model: " << "posix" << '\n';
}
/// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
/// option.
static void PrintDiagnosticCategories(llvm::raw_ostream &OS) {
// Skip the empty category.
for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories();
i != max; ++i)
OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
}
bool Driver::HandleImmediateArgs(const Compilation &C) {
// The order these options are handled in gcc is all over the place, but we
// don't expect inconsistencies w.r.t. that to matter in practice.
if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
return false;
}
if (C.getArgs().hasArg(options::OPT_dumpversion)) {
// Since -dumpversion is only implemented for pedantic GCC compatibility, we
// return an answer which matches our definition of __VERSION__.
//
// If we want to return a more correct answer some day, then we should
// introduce a non-pedantically GCC compatible mode to Clang in which we
// provide sensible definitions for -dumpversion, __VERSION__, etc.
llvm::outs() << "4.2.1\n";
return false;
}
if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
PrintDiagnosticCategories(llvm::outs());
return false;
}
if (C.getArgs().hasArg(options::OPT__help) ||
C.getArgs().hasArg(options::OPT__help_hidden)) {
PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
return false;
}
if (C.getArgs().hasArg(options::OPT__version)) {
// Follow gcc behavior and use stdout for --version and stderr for -v.
PrintVersion(C, llvm::outs());
return false;
}
if (C.getArgs().hasArg(options::OPT_v) ||
C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
PrintVersion(C, llvm::errs());
SuppressMissingInputWarning = true;
}
const ToolChain &TC = C.getDefaultToolChain();
if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
llvm::outs() << "programs: =";
for (ToolChain::path_list::const_iterator it = TC.getProgramPaths().begin(),
ie = TC.getProgramPaths().end(); it != ie; ++it) {
if (it != TC.getProgramPaths().begin())
llvm::outs() << ':';
llvm::outs() << *it;
}
llvm::outs() << "\n";
llvm::outs() << "libraries: =";
std::string sysroot;
if (Arg *A = C.getArgs().getLastArg(options::OPT__sysroot_EQ))
sysroot = A->getValue(C.getArgs());
for (ToolChain::path_list::const_iterator it = TC.getFilePaths().begin(),
ie = TC.getFilePaths().end(); it != ie; ++it) {
if (it != TC.getFilePaths().begin())
llvm::outs() << ':';
const char *path = it->c_str();
if (path[0] == '=')
llvm::outs() << sysroot << path + 1;
else
llvm::outs() << path;
}
llvm::outs() << "\n";
return false;
}
// FIXME: The following handlers should use a callback mechanism, we don't
// know what the client would like to do.
if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
llvm::outs() << GetFilePath(A->getValue(C.getArgs()), TC) << "\n";
return false;
}
if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
llvm::outs() << GetProgramPath(A->getValue(C.getArgs()), TC) << "\n";
return false;
}
if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
return false;
}
if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
// FIXME: We need tool chain support for this.
llvm::outs() << ".;\n";
switch (C.getDefaultToolChain().getTriple().getArch()) {
default:
break;
case llvm::Triple::x86_64:
llvm::outs() << "x86_64;@m64" << "\n";
break;
case llvm::Triple::ppc64:
llvm::outs() << "ppc64;@m64" << "\n";
break;
}
return false;
}
// FIXME: What is the difference between print-multi-directory and
// print-multi-os-directory?
if (C.getArgs().hasArg(options::OPT_print_multi_directory) ||
C.getArgs().hasArg(options::OPT_print_multi_os_directory)) {
switch (C.getDefaultToolChain().getTriple().getArch()) {
default:
case llvm::Triple::x86:
case llvm::Triple::ppc:
llvm::outs() << "." << "\n";
break;
case llvm::Triple::x86_64:
llvm::outs() << "x86_64" << "\n";
break;
case llvm::Triple::ppc64:
llvm::outs() << "ppc64" << "\n";
break;
}
return false;
}
return true;
}
static unsigned PrintActions1(const Compilation &C, Action *A,
std::map<Action*, unsigned> &Ids) {
if (Ids.count(A))
return Ids[A];
std::string str;
llvm::raw_string_ostream os(str);
os << Action::getClassName(A->getKind()) << ", ";
if (InputAction *IA = dyn_cast<InputAction>(A)) {
os << "\"" << IA->getInputArg().getValue(C.getArgs()) << "\"";
} else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
os << '"' << (BIA->getArchName() ? BIA->getArchName() :
C.getDefaultToolChain().getArchName()) << '"'
<< ", {" << PrintActions1(C, *BIA->begin(), Ids) << "}";
} else {
os << "{";
for (Action::iterator it = A->begin(), ie = A->end(); it != ie;) {
os << PrintActions1(C, *it, Ids);
++it;
if (it != ie)
os << ", ";
}
os << "}";
}
unsigned Id = Ids.size();
Ids[A] = Id;
llvm::errs() << Id << ": " << os.str() << ", "
<< types::getTypeName(A->getType()) << "\n";
return Id;
}
void Driver::PrintActions(const Compilation &C) const {
std::map<Action*, unsigned> Ids;
for (ActionList::const_iterator it = C.getActions().begin(),
ie = C.getActions().end(); it != ie; ++it)
PrintActions1(C, *it, Ids);
}
/// \brief Check whether the given input tree contains any compilation or
/// assembly actions.
static bool ContainsCompileOrAssembleAction(const Action *A) {
if (isa<CompileJobAction>(A) || isa<AssembleJobAction>(A))
return true;
for (Action::const_iterator it = A->begin(), ie = A->end(); it != ie; ++it)
if (ContainsCompileOrAssembleAction(*it))
return true;
return false;
}
void Driver::BuildUniversalActions(const ToolChain &TC,
const DerivedArgList &Args,
ActionList &Actions) const {
llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
// Collect the list of architectures. Duplicates are allowed, but should only
// be handled once (in the order seen).
llvm::StringSet<> ArchNames;
llvm::SmallVector<const char *, 4> Archs;
for (ArgList::const_iterator it = Args.begin(), ie = Args.end();
it != ie; ++it) {
Arg *A = *it;
if (A->getOption().matches(options::OPT_arch)) {
// Validate the option here; we don't save the type here because its
// particular spelling may participate in other driver choices.
llvm::Triple::ArchType Arch =
llvm::Triple::getArchTypeForDarwinArchName(A->getValue(Args));
if (Arch == llvm::Triple::UnknownArch) {
Diag(clang::diag::err_drv_invalid_arch_name)
<< A->getAsString(Args);
continue;
}
A->claim();
if (ArchNames.insert(A->getValue(Args)))
Archs.push_back(A->getValue(Args));
}
}
// When there is no explicit arch for this platform, make sure we still bind
// the architecture (to the default) so that -Xarch_ is handled correctly.
if (!Archs.size())
Archs.push_back(0);
// FIXME: We killed off some others but these aren't yet detected in a
// functional manner. If we added information to jobs about which "auxiliary"
// files they wrote then we could detect the conflict these cause downstream.
if (Archs.size() > 1) {
// No recovery needed, the point of this is just to prevent
// overwriting the same files.
if (const Arg *A = Args.getLastArg(options::OPT_save_temps))
Diag(clang::diag::err_drv_invalid_opt_with_multiple_archs)
<< A->getAsString(Args);
}
ActionList SingleActions;
BuildActions(TC, Args, SingleActions);
// Add in arch bindings for every top level action, as well as lipo and
// dsymutil steps if needed.
for (unsigned i = 0, e = SingleActions.size(); i != e; ++i) {
Action *Act = SingleActions[i];
// Make sure we can lipo this kind of output. If not (and it is an actual
// output) then we disallow, since we can't create an output file with the
// right name without overwriting it. We could remove this oddity by just
// changing the output names to include the arch, which would also fix
// -save-temps. Compatibility wins for now.
if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
<< types::getTypeName(Act->getType());
ActionList Inputs;
for (unsigned i = 0, e = Archs.size(); i != e; ++i) {
Inputs.push_back(new BindArchAction(Act, Archs[i]));
if (i != 0)
Inputs.back()->setOwnsInputs(false);
}
// Lipo if necessary, we do it this way because we need to set the arch flag
// so that -Xarch_ gets overwritten.
if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
Actions.append(Inputs.begin(), Inputs.end());
else
Actions.push_back(new LipoJobAction(Inputs, Act->getType()));
// Add a 'dsymutil' step if necessary, when debug info is enabled and we
// have a compile input. We need to run 'dsymutil' ourselves in such cases
// because the debug info will refer to a temporary object file which is
// will be removed at the end of the compilation process.
if (Act->getType() == types::TY_Image) {
Arg *A = Args.getLastArg(options::OPT_g_Group);
if (A && !A->getOption().matches(options::OPT_g0) &&
!A->getOption().matches(options::OPT_gstabs) &&
ContainsCompileOrAssembleAction(Actions.back())) {
ActionList Inputs;
Inputs.push_back(Actions.back());
Actions.pop_back();
Actions.push_back(new DsymutilJobAction(Inputs, types::TY_dSYM));
}
}
}
}
void Driver::BuildActions(const ToolChain &TC, const DerivedArgList &Args,
ActionList &Actions) const {
llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
// Start by constructing the list of inputs and their types.
// Track the current user specified (-x) input. We also explicitly track the
// argument used to set the type; we only want to claim the type when we
// actually use it, so we warn about unused -x arguments.
types::ID InputType = types::TY_Nothing;
Arg *InputTypeArg = 0;
llvm::SmallVector<std::pair<types::ID, const Arg*>, 16> Inputs;
for (ArgList::const_iterator it = Args.begin(), ie = Args.end();
it != ie; ++it) {
Arg *A = *it;
if (isa<InputOption>(A->getOption())) {
const char *Value = A->getValue(Args);
types::ID Ty = types::TY_INVALID;
// Infer the input type if necessary.
if (InputType == types::TY_Nothing) {
// If there was an explicit arg for this, claim it.
if (InputTypeArg)
InputTypeArg->claim();
// stdin must be handled specially.
if (memcmp(Value, "-", 2) == 0) {
// If running with -E, treat as a C input (this changes the builtin
// macros, for example). This may be overridden by -ObjC below.
//
// Otherwise emit an error but still use a valid type to avoid
// spurious errors (e.g., no inputs).
if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP)
Diag(clang::diag::err_drv_unknown_stdin_type);
Ty = types::TY_C;
} else {
// Otherwise lookup by extension.
// Fallback is C if invoked as C preprocessor or Object otherwise.
// We use a host hook here because Darwin at least has its own
// idea of what .s is.
if (const char *Ext = strrchr(Value, '.'))
Ty = TC.LookupTypeForExtension(Ext + 1);
if (Ty == types::TY_INVALID) {
if (CCCIsCPP)
Ty = types::TY_C;
else
Ty = types::TY_Object;
}
// If the driver is invoked as C++ compiler (like clang++ or c++) it
// should autodetect some input files as C++ for g++ compatibility.
if (CCCIsCXX) {
types::ID OldTy = Ty;
Ty = types::lookupCXXTypeForCType(Ty);
if (Ty != OldTy)
Diag(clang::diag::warn_drv_treating_input_as_cxx)
<< getTypeName(OldTy) << getTypeName(Ty);
}
}
// -ObjC and -ObjC++ override the default language, but only for "source
// files". We just treat everything that isn't a linker input as a
// source file.
//
// FIXME: Clean this up if we move the phase sequence into the type.
if (Ty != types::TY_Object) {
if (Args.hasArg(options::OPT_ObjC))
Ty = types::TY_ObjC;
else if (Args.hasArg(options::OPT_ObjCXX))
Ty = types::TY_ObjCXX;
}
} else {
assert(InputTypeArg && "InputType set w/o InputTypeArg");
InputTypeArg->claim();
Ty = InputType;
}
// Check that the file exists, if enabled.
if (CheckInputsExist && memcmp(Value, "-", 2) != 0) {
llvm::SmallString<64> Path(Value);
if (Arg *WorkDir = Args.getLastArg(options::OPT_working_directory))
if (llvm::sys::path::is_absolute(Path.str())) {
Path = WorkDir->getValue(Args);
llvm::sys::path::append(Path, Value);
}
bool exists = false;
if (/*error_code ec =*/llvm::sys::fs::exists(Value, exists) || !exists)
Diag(clang::diag::err_drv_no_such_file) << Path.str();
else
Inputs.push_back(std::make_pair(Ty, A));
} else
Inputs.push_back(std::make_pair(Ty, A));
} else if (A->getOption().isLinkerInput()) {
// Just treat as object type, we could make a special type for this if
// necessary.
Inputs.push_back(std::make_pair(types::TY_Object, A));
} else if (A->getOption().matches(options::OPT_x)) {
InputTypeArg = A;
InputType = types::lookupTypeForTypeSpecifier(A->getValue(Args));
// Follow gcc behavior and treat as linker input for invalid -x
// options. Its not clear why we shouldn't just revert to unknown; but
// this isn't very important, we might as well be bug compatible.
if (!InputType) {
Diag(clang::diag::err_drv_unknown_language) << A->getValue(Args);
InputType = types::TY_Object;
}
}
}
if (CCCIsCPP && Inputs.empty()) {
// If called as standalone preprocessor, stdin is processed
// if no other input is present.
unsigned Index = Args.getBaseArgs().MakeIndex("-");
Arg *A = Opts->ParseOneArg(Args, Index);
A->claim();
Inputs.push_back(std::make_pair(types::TY_C, A));
}
if (!SuppressMissingInputWarning && Inputs.empty()) {
Diag(clang::diag::err_drv_no_input_files);
return;
}
// Determine which compilation mode we are in. We look for options which
// affect the phase, starting with the earliest phases, and record which
// option we used to determine the final phase.
Arg *FinalPhaseArg = 0;
phases::ID FinalPhase;
// -{E,M,MM} only run the preprocessor.
if (CCCIsCPP ||
(FinalPhaseArg = Args.getLastArg(options::OPT_E)) ||
(FinalPhaseArg = Args.getLastArg(options::OPT_M, options::OPT_MM))) {
FinalPhase = phases::Preprocess;
// -{fsyntax-only,-analyze,emit-ast,S} only run up to the compiler.
} else if ((FinalPhaseArg = Args.getLastArg(options::OPT_fsyntax_only)) ||
(FinalPhaseArg = Args.getLastArg(options::OPT_rewrite_objc)) ||
(FinalPhaseArg = Args.getLastArg(options::OPT__analyze,
options::OPT__analyze_auto)) ||
(FinalPhaseArg = Args.getLastArg(options::OPT_emit_ast)) ||
(FinalPhaseArg = Args.getLastArg(options::OPT_S))) {
FinalPhase = phases::Compile;
// -c only runs up to the assembler.
} else if ((FinalPhaseArg = Args.getLastArg(options::OPT_c))) {
FinalPhase = phases::Assemble;
// Otherwise do everything.
} else
FinalPhase = phases::Link;
// Reject -Z* at the top level, these options should never have been exposed
// by gcc.
if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
// Construct the actions to perform.
ActionList LinkerInputs;
for (unsigned i = 0, e = Inputs.size(); i != e; ++i) {
types::ID InputType = Inputs[i].first;
const Arg *InputArg = Inputs[i].second;
unsigned NumSteps = types::getNumCompilationPhases(InputType);
assert(NumSteps && "Invalid number of steps!");
// If the first step comes after the final phase we are doing as part of
// this compilation, warn the user about it.
phases::ID InitialPhase = types::getCompilationPhase(InputType, 0);
if (InitialPhase > FinalPhase) {
// Claim here to avoid the more general unused warning.
InputArg->claim();
// Suppress all unused style warnings with -Qunused-arguments
if (Args.hasArg(options::OPT_Qunused_arguments))
continue;
// Special case '-E' warning on a previously preprocessed file to make
// more sense.
if (InitialPhase == phases::Compile && FinalPhase == phases::Preprocess &&
getPreprocessedType(InputType) == types::TY_INVALID)
Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
<< InputArg->getAsString(Args)
<< FinalPhaseArg->getOption().getName();
else
Diag(clang::diag::warn_drv_input_file_unused)
<< InputArg->getAsString(Args)
<< getPhaseName(InitialPhase)
<< FinalPhaseArg->getOption().getName();
continue;
}
// Build the pipeline for this file.
llvm::OwningPtr<Action> Current(new InputAction(*InputArg, InputType));
for (unsigned i = 0; i != NumSteps; ++i) {
phases::ID Phase = types::getCompilationPhase(InputType, i);
// We are done if this step is past what the user requested.
if (Phase > FinalPhase)
break;
// Queue linker inputs.
if (Phase == phases::Link) {
assert(i + 1 == NumSteps && "linking must be final compilation step.");
LinkerInputs.push_back(Current.take());
break;
}
// Some types skip the assembler phase (e.g., llvm-bc), but we can't
// encode this in the steps because the intermediate type depends on
// arguments. Just special case here.
if (Phase == phases::Assemble && Current->getType() != types::TY_PP_Asm)
continue;
// Otherwise construct the appropriate action.
Current.reset(ConstructPhaseAction(Args, Phase, Current.take()));
if (Current->getType() == types::TY_Nothing)
break;
}
// If we ended with something, add to the output list.
if (Current)
Actions.push_back(Current.take());
}
// Add a link action if necessary.
if (!LinkerInputs.empty())
Actions.push_back(new LinkJobAction(LinkerInputs, types::TY_Image));
// If we are linking, claim any options which are obviously only used for
// compilation.
if (FinalPhase == phases::Link)
Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
}
Action *Driver::ConstructPhaseAction(const ArgList &Args, phases::ID Phase,
Action *Input) const {
llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
// Build the appropriate action.
switch (Phase) {
case phases::Link: assert(0 && "link action invalid here.");
case phases::Preprocess: {
types::ID OutputTy;
// -{M, MM} alter the output type.
if (Args.hasArg(options::OPT_M, options::OPT_MM)) {
OutputTy = types::TY_Dependencies;
} else {
OutputTy = types::getPreprocessedType(Input->getType());
assert(OutputTy != types::TY_INVALID &&
"Cannot preprocess this input type!");
}
return new PreprocessJobAction(Input, OutputTy);
}
case phases::Precompile:
return new PrecompileJobAction(Input, types::TY_PCH);
case phases::Compile: {
if (Args.hasArg(options::OPT_fsyntax_only)) {
return new CompileJobAction(Input, types::TY_Nothing);
} else if (Args.hasArg(options::OPT_rewrite_objc)) {
return new CompileJobAction(Input, types::TY_RewrittenObjC);
} else if (Args.hasArg(options::OPT__analyze, options::OPT__analyze_auto)) {
return new AnalyzeJobAction(Input, types::TY_Plist);
} else if (Args.hasArg(options::OPT_emit_ast)) {
return new CompileJobAction(Input, types::TY_AST);
} else if (IsUsingLTO(Args)) {
types::ID Output =
Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
return new CompileJobAction(Input, Output);
} else {
return new CompileJobAction(Input, types::TY_PP_Asm);
}
}
case phases::Assemble:
return new AssembleJobAction(Input, types::TY_Object);
}
assert(0 && "invalid phase in ConstructPhaseAction");
return 0;
}
bool Driver::IsUsingLTO(const ArgList &Args) const {
// Check for -emit-llvm or -flto.
if (Args.hasArg(options::OPT_emit_llvm) ||
Args.hasFlag(options::OPT_flto, options::OPT_fno_lto, false))
return true;
// Check for -O4.
if (const Arg *A = Args.getLastArg(options::OPT_O_Group))
return A->getOption().matches(options::OPT_O4);
return false;
}
void Driver::BuildJobs(Compilation &C) const {
llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
// It is an error to provide a -o option if we are making multiple output
// files.
if (FinalOutput) {
unsigned NumOutputs = 0;
for (ActionList::const_iterator it = C.getActions().begin(),
ie = C.getActions().end(); it != ie; ++it)
if ((*it)->getType() != types::TY_Nothing)
++NumOutputs;
if (NumOutputs > 1) {
Diag(clang::diag::err_drv_output_argument_with_multiple_files);
FinalOutput = 0;
}
}
for (ActionList::const_iterator it = C.getActions().begin(),
ie = C.getActions().end(); it != ie; ++it) {
Action *A = *it;
// If we are linking an image for multiple archs then the linker wants
// -arch_multiple and -final_output <final image name>. Unfortunately, this
// doesn't fit in cleanly because we have to pass this information down.
//
// FIXME: This is a hack; find a cleaner way to integrate this into the
// process.
const char *LinkingOutput = 0;
if (isa<LipoJobAction>(A)) {
if (FinalOutput)
LinkingOutput = FinalOutput->getValue(C.getArgs());
else
LinkingOutput = DefaultImageName.c_str();
}
InputInfo II;
BuildJobsForAction(C, A, &C.getDefaultToolChain(),
/*BoundArch*/0,
/*AtTopLevel*/ true,
/*LinkingOutput*/ LinkingOutput,
II);
}
// If the user passed -Qunused-arguments or there were errors, don't warn
// about any unused arguments.
if (Diags.hasErrorOccurred() ||
C.getArgs().hasArg(options::OPT_Qunused_arguments))
return;
// Claim -### here.
(void) C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
for (ArgList::const_iterator it = C.getArgs().begin(), ie = C.getArgs().end();
it != ie; ++it) {
Arg *A = *it;
// FIXME: It would be nice to be able to send the argument to the
// Diagnostic, so that extra values, position, and so on could be printed.
if (!A->isClaimed()) {
if (A->getOption().hasNoArgumentUnused())
continue;
// Suppress the warning automatically if this is just a flag, and it is an
// instance of an argument we already claimed.
const Option &Opt = A->getOption();
if (isa<FlagOption>(Opt)) {
bool DuplicateClaimed = false;
for (arg_iterator it = C.getArgs().filtered_begin(&Opt),
ie = C.getArgs().filtered_end(); it != ie; ++it) {
if ((*it)->isClaimed()) {
DuplicateClaimed = true;
break;
}
}
if (DuplicateClaimed)
continue;
}
Diag(clang::diag::warn_drv_unused_argument)
<< A->getAsString(C.getArgs());
}
}
}
static const Tool &SelectToolForJob(Compilation &C, const ToolChain *TC,
const JobAction *JA,
const ActionList *&Inputs) {
const Tool *ToolForJob = 0;
// See if we should look for a compiler with an integrated assembler. We match
// bottom up, so what we are actually looking for is an assembler job with a
// compiler input.
// FIXME: This doesn't belong here, but ideally we will support static soon
// anyway.
bool HasStatic = (C.getArgs().hasArg(options::OPT_mkernel) ||
C.getArgs().hasArg(options::OPT_static) ||
C.getArgs().hasArg(options::OPT_fapple_kext));
bool IsDarwin = TC->getTriple().getOS() == llvm::Triple::Darwin;
bool IsIADefault = TC->IsIntegratedAssemblerDefault() &&
!(HasStatic && IsDarwin);
if (C.getArgs().hasFlag(options::OPT_integrated_as,
options::OPT_no_integrated_as,
IsIADefault) &&
!C.getArgs().hasArg(options::OPT_save_temps) &&
isa<AssembleJobAction>(JA) &&
Inputs->size() == 1 && isa<CompileJobAction>(*Inputs->begin())) {
const Tool &Compiler = TC->SelectTool(
C, cast<JobAction>(**Inputs->begin()), (*Inputs)[0]->getInputs());
if (Compiler.hasIntegratedAssembler()) {
Inputs = &(*Inputs)[0]->getInputs();
ToolForJob = &Compiler;
}
}
// Otherwise use the tool for the current job.
if (!ToolForJob)
ToolForJob = &TC->SelectTool(C, *JA, *Inputs);
// See if we should use an integrated preprocessor. We do so when we have
// exactly one input, since this is the only use case we care about
// (irrelevant since we don't support combine yet).
if (Inputs->size() == 1 && isa<PreprocessJobAction>(*Inputs->begin()) &&
!C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
!C.getArgs().hasArg(options::OPT_traditional_cpp) &&
!C.getArgs().hasArg(options::OPT_save_temps) &&
ToolForJob->hasIntegratedCPP())
Inputs = &(*Inputs)[0]->getInputs();
return *ToolForJob;
}
void Driver::BuildJobsForAction(Compilation &C,
const Action *A,
const ToolChain *TC,
const char *BoundArch,
bool AtTopLevel,
const char *LinkingOutput,
InputInfo &Result) const {
llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
if (const InputAction *IA = dyn_cast<InputAction>(A)) {
// FIXME: It would be nice to not claim this here; maybe the old scheme of
// just using Args was better?
const Arg &Input = IA->getInputArg();
Input.claim();
if (Input.getOption().matches(options::OPT_INPUT)) {
const char *Name = Input.getValue(C.getArgs());
Result = InputInfo(Name, A->getType(), Name);
} else
Result = InputInfo(&Input, A->getType(), "");
return;
}
if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
const ToolChain *TC = &C.getDefaultToolChain();
std::string Arch;
if (BAA->getArchName())
TC = Host->CreateToolChain(C.getArgs(), BAA->getArchName());
BuildJobsForAction(C, *BAA->begin(), TC, BAA->getArchName(),
AtTopLevel, LinkingOutput, Result);
return;
}
const ActionList *Inputs = &A->getInputs();
const JobAction *JA = cast<JobAction>(A);
const Tool &T = SelectToolForJob(C, TC, JA, Inputs);
// Only use pipes when there is exactly one input.
InputInfoList InputInfos;
for (ActionList::const_iterator it = Inputs->begin(), ie = Inputs->end();
it != ie; ++it) {
// Treat dsymutil sub-jobs as being at the top-level too, they shouldn't get
// temporary output names.
//
// FIXME: Clean this up.
bool SubJobAtTopLevel = false;
if (AtTopLevel && isa<DsymutilJobAction>(A))
SubJobAtTopLevel = true;
InputInfo II;
BuildJobsForAction(C, *it, TC, BoundArch,
SubJobAtTopLevel, LinkingOutput, II);
InputInfos.push_back(II);
}
// Always use the first input as the base input.
const char *BaseInput = InputInfos[0].getBaseInput();
// ... except dsymutil actions, which use their actual input as the base
// input.
if (JA->getType() == types::TY_dSYM)
BaseInput = InputInfos[0].getFilename();
// Determine the place to write output to, if any.
if (JA->getType() == types::TY_Nothing) {
Result = InputInfo(A->getType(), BaseInput);
} else {
Result = InputInfo(GetNamedOutputPath(C, *JA, BaseInput, AtTopLevel),
A->getType(), BaseInput);
}
if (CCCPrintBindings) {
llvm::errs() << "# \"" << T.getToolChain().getTripleString() << '"'
<< " - \"" << T.getName() << "\", inputs: [";
for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
llvm::errs() << InputInfos[i].getAsString();
if (i + 1 != e)
llvm::errs() << ", ";
}
llvm::errs() << "], output: " << Result.getAsString() << "\n";
} else {
T.ConstructJob(C, *JA, Result, InputInfos,
C.getArgsForToolChain(TC, BoundArch), LinkingOutput);
}
}
const char *Driver::GetNamedOutputPath(Compilation &C,
const JobAction &JA,
const char *BaseInput,
bool AtTopLevel) const {
llvm::PrettyStackTraceString CrashInfo("Computing output path");
// Output to a user requested destination?
if (AtTopLevel && !isa<DsymutilJobAction>(JA)) {
if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
return C.addResultFile(FinalOutput->getValue(C.getArgs()));
}
// Default to writing to stdout?
if (AtTopLevel && isa<PreprocessJobAction>(JA))
return "-";
// Output to a temporary file?
if (!AtTopLevel && !C.getArgs().hasArg(options::OPT_save_temps)) {
std::string TmpName =
GetTemporaryPath(types::getTypeTempSuffix(JA.getType()));
return C.addTempFile(C.getArgs().MakeArgString(TmpName.c_str()));
}
llvm::SmallString<128> BasePath(BaseInput);
llvm::StringRef BaseName;
// Dsymutil actions should use the full path.
if (isa<DsymutilJobAction>(JA))
BaseName = BasePath;
else
BaseName = llvm::sys::path::filename(BasePath);
// Determine what the derived output name should be.
const char *NamedOutput;
if (JA.getType() == types::TY_Image) {
NamedOutput = DefaultImageName.c_str();
} else {
const char *Suffix = types::getTypeTempSuffix(JA.getType());
assert(Suffix && "All types used for output should have a suffix.");
std::string::size_type End = std::string::npos;
if (!types::appendSuffixForType(JA.getType()))
End = BaseName.rfind('.');
std::string Suffixed(BaseName.substr(0, End));
Suffixed += '.';
Suffixed += Suffix;
NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
}
// If we're saving temps and the temp filename conflicts with the input
// filename, then avoid overwriting input file.
if (!AtTopLevel && C.getArgs().hasArg(options::OPT_save_temps) &&
NamedOutput == BaseName) {
std::string TmpName =
GetTemporaryPath(types::getTypeTempSuffix(JA.getType()));
return C.addTempFile(C.getArgs().MakeArgString(TmpName.c_str()));
}
// As an annoying special case, PCH generation doesn't strip the pathname.
if (JA.getType() == types::TY_PCH) {
llvm::sys::path::remove_filename(BasePath);
if (BasePath.empty())
BasePath = NamedOutput;
else
llvm::sys::path::append(BasePath, NamedOutput);
return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()));
} else {
return C.addResultFile(NamedOutput);
}
}
std::string Driver::GetFilePath(const char *Name, const ToolChain &TC) const {
// Respect a limited subset of the '-Bprefix' functionality in GCC by
// attempting to use this prefix when lokup up program paths.
for (Driver::prefix_list::const_iterator it = PrefixDirs.begin(),
ie = PrefixDirs.end(); it != ie; ++it) {
std::string Dir(*it);
if (Dir.empty())
continue;
if (Dir[0] == '=')
Dir = SysRoot + Dir.substr(1);
llvm::sys::Path P(Dir);
P.appendComponent(Name);
bool Exists;
if (!llvm::sys::fs::exists(P.str(), Exists) && Exists)
return P.str();
}
const ToolChain::path_list &List = TC.getFilePaths();
for (ToolChain::path_list::const_iterator
it = List.begin(), ie = List.end(); it != ie; ++it) {
std::string Dir(*it);
if (Dir.empty())
continue;
if (Dir[0] == '=')
Dir = SysRoot + Dir.substr(1);
llvm::sys::Path P(Dir);
P.appendComponent(Name);
bool Exists;
if (!llvm::sys::fs::exists(P.str(), Exists) && Exists)
return P.str();
}
return Name;
}
std::string Driver::GetProgramPath(const char *Name, const ToolChain &TC,
bool WantFile) const {
// Respect a limited subset of the '-Bprefix' functionality in GCC by
// attempting to use this prefix when lokup up program paths.
for (Driver::prefix_list::const_iterator it = PrefixDirs.begin(),
ie = PrefixDirs.end(); it != ie; ++it) {
llvm::sys::Path P(*it);
P.appendComponent(Name);
bool Exists;
if (WantFile ? !llvm::sys::fs::exists(P.str(), Exists) && Exists
: P.canExecute())
return P.str();
}
const ToolChain::path_list &List = TC.getProgramPaths();
for (ToolChain::path_list::const_iterator
it = List.begin(), ie = List.end(); it != ie; ++it) {
llvm::sys::Path P(*it);
P.appendComponent(Name);
bool Exists;
if (WantFile ? !llvm::sys::fs::exists(P.str(), Exists) && Exists
: P.canExecute())
return P.str();
}
// If all else failed, search the path.
llvm::sys::Path P(llvm::sys::Program::FindProgramByName(Name));
if (!P.empty())
return P.str();
return Name;
}
std::string Driver::GetTemporaryPath(const char *Suffix) const {
// FIXME: This is lame; sys::Path should provide this function (in particular,
// it should know how to find the temporary files dir).
std::string Error;
const char *TmpDir = ::getenv("TMPDIR");
if (!TmpDir)
TmpDir = ::getenv("TEMP");
if (!TmpDir)
TmpDir = ::getenv("TMP");
if (!TmpDir)
TmpDir = "/tmp";
llvm::sys::Path P(TmpDir);
P.appendComponent("cc");
if (P.makeUnique(false, &Error)) {
Diag(clang::diag::err_drv_unable_to_make_temp) << Error;
return "";
}
// FIXME: Grumble, makeUnique sometimes leaves the file around!? PR3837.
P.eraseFromDisk(false, 0);
P.appendSuffix(Suffix);
return P.str();
}
const HostInfo *Driver::GetHostInfo(const char *TripleStr) const {
llvm::PrettyStackTraceString CrashInfo("Constructing host");
llvm::Triple Triple(llvm::Triple::normalize(TripleStr).c_str());
// TCE is an osless target
if (Triple.getArchName() == "tce")
return createTCEHostInfo(*this, Triple);
switch (Triple.getOS()) {
case llvm::Triple::AuroraUX:
return createAuroraUXHostInfo(*this, Triple);
case llvm::Triple::Darwin:
return createDarwinHostInfo(*this, Triple);
case llvm::Triple::DragonFly:
return createDragonFlyHostInfo(*this, Triple);
case llvm::Triple::OpenBSD:
return createOpenBSDHostInfo(*this, Triple);
case llvm::Triple::NetBSD:
return createNetBSDHostInfo(*this, Triple);
case llvm::Triple::FreeBSD:
return createFreeBSDHostInfo(*this, Triple);
case llvm::Triple::Minix:
return createMinixHostInfo(*this, Triple);
case llvm::Triple::Linux:
return createLinuxHostInfo(*this, Triple);
case llvm::Triple::Win32:
return createWindowsHostInfo(*this, Triple);
case llvm::Triple::MinGW32:
return createMinGWHostInfo(*this, Triple);
default:
return createUnknownHostInfo(*this, Triple);
}
}
bool Driver::ShouldUseClangCompiler(const Compilation &C, const JobAction &JA,
const llvm::Triple &Triple) const {
// Check if user requested no clang, or clang doesn't understand this type (we
// only handle single inputs for now).
if (!CCCUseClang || JA.size() != 1 ||
!types::isAcceptedByClang((*JA.begin())->getType()))
return false;
// Otherwise make sure this is an action clang understands.
if (isa<PreprocessJobAction>(JA)) {
if (!CCCUseClangCPP) {
Diag(clang::diag::warn_drv_not_using_clang_cpp);
return false;
}
} else if (!isa<PrecompileJobAction>(JA) && !isa<CompileJobAction>(JA))
return false;
// Use clang for C++?
if (!CCCUseClangCXX && types::isCXX((*JA.begin())->getType())) {
Diag(clang::diag::warn_drv_not_using_clang_cxx);
return false;
}
// Always use clang for precompiling, AST generation, and rewriting,
// regardless of archs.
if (isa<PrecompileJobAction>(JA) ||
types::isOnlyAcceptedByClang(JA.getType()))
return true;
// Finally, don't use clang if this isn't one of the user specified archs to
// build.
if (!CCCClangArchs.empty() && !CCCClangArchs.count(Triple.getArch())) {
Diag(clang::diag::warn_drv_not_using_clang_arch) << Triple.getArchName();
return false;
}
return true;
}
/// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
/// grouped values as integers. Numbers which are not provided are set to 0.
///
/// \return True if the entire string was parsed (9.2), or all groups were
/// parsed (10.3.5extrastuff).
bool Driver::GetReleaseVersion(const char *Str, unsigned &Major,
unsigned &Minor, unsigned &Micro,
bool &HadExtra) {
HadExtra = false;
Major = Minor = Micro = 0;
if (*Str == '\0')
return true;
char *End;
Major = (unsigned) strtol(Str, &End, 10);
if (*Str != '\0' && *End == '\0')
return true;
if (*End != '.')
return false;
Str = End+1;
Minor = (unsigned) strtol(Str, &End, 10);
if (*Str != '\0' && *End == '\0')
return true;
if (*End != '.')
return false;
Str = End+1;
Micro = (unsigned) strtol(Str, &End, 10);
if (*Str != '\0' && *End == '\0')
return true;
if (Str == End)
return false;
HadExtra = true;
return true;
}