//===-- CGCleanup.h - Classes for cleanups IR generation --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// These classes support the generation of LLVM IR for cleanups.
//
//===----------------------------------------------------------------------===//
#ifndef CLANG_CODEGEN_CGCLEANUP_H
#define CLANG_CODEGEN_CGCLEANUP_H
/// EHScopeStack is defined in CodeGenFunction.h, but its
/// implementation is in this file and in CGCleanup.cpp.
#include "CodeGenFunction.h"
namespace llvm {
class Value;
class BasicBlock;
}
namespace clang {
namespace CodeGen {
/// A protected scope for zero-cost EH handling.
class EHScope {
llvm::BasicBlock *CachedLandingPad;
unsigned K : 2;
protected:
enum { BitsRemaining = 30 };
public:
enum Kind { Cleanup, Catch, Terminate, Filter };
EHScope(Kind K) : CachedLandingPad(0), K(K) {}
Kind getKind() const { return static_cast<Kind>(K); }
llvm::BasicBlock *getCachedLandingPad() const {
return CachedLandingPad;
}
void setCachedLandingPad(llvm::BasicBlock *Block) {
CachedLandingPad = Block;
}
};
/// A scope which attempts to handle some, possibly all, types of
/// exceptions.
///
/// Objective C @finally blocks are represented using a cleanup scope
/// after the catch scope.
class EHCatchScope : public EHScope {
unsigned NumHandlers : BitsRemaining;
// In effect, we have a flexible array member
// Handler Handlers[0];
// But that's only standard in C99, not C++, so we have to do
// annoying pointer arithmetic instead.
public:
struct Handler {
/// A type info value, or null (C++ null, not an LLVM null pointer)
/// for a catch-all.
llvm::Value *Type;
/// The catch handler for this type.
llvm::BasicBlock *Block;
/// The unwind destination index for this handler.
unsigned Index;
};
private:
friend class EHScopeStack;
Handler *getHandlers() {
return reinterpret_cast<Handler*>(this+1);
}
const Handler *getHandlers() const {
return reinterpret_cast<const Handler*>(this+1);
}
public:
static size_t getSizeForNumHandlers(unsigned N) {
return sizeof(EHCatchScope) + N * sizeof(Handler);
}
EHCatchScope(unsigned NumHandlers)
: EHScope(Catch), NumHandlers(NumHandlers) {
}
unsigned getNumHandlers() const {
return NumHandlers;
}
void setCatchAllHandler(unsigned I, llvm::BasicBlock *Block) {
setHandler(I, /*catchall*/ 0, Block);
}
void setHandler(unsigned I, llvm::Value *Type, llvm::BasicBlock *Block) {
assert(I < getNumHandlers());
getHandlers()[I].Type = Type;
getHandlers()[I].Block = Block;
}
const Handler &getHandler(unsigned I) const {
assert(I < getNumHandlers());
return getHandlers()[I];
}
typedef const Handler *iterator;
iterator begin() const { return getHandlers(); }
iterator end() const { return getHandlers() + getNumHandlers(); }
static bool classof(const EHScope *Scope) {
return Scope->getKind() == Catch;
}
};
/// A cleanup scope which generates the cleanup blocks lazily.
class EHCleanupScope : public EHScope {
/// Whether this cleanup needs to be run along normal edges.
bool IsNormalCleanup : 1;
/// Whether this cleanup needs to be run along exception edges.
bool IsEHCleanup : 1;
/// Whether this cleanup is currently active.
bool IsActive : 1;
/// Whether the normal cleanup should test the activation flag.
bool TestFlagInNormalCleanup : 1;
/// Whether the EH cleanup should test the activation flag.
bool TestFlagInEHCleanup : 1;
/// The amount of extra storage needed by the Cleanup.
/// Always a multiple of the scope-stack alignment.
unsigned CleanupSize : 12;
/// The number of fixups required by enclosing scopes (not including
/// this one). If this is the top cleanup scope, all the fixups
/// from this index onwards belong to this scope.
unsigned FixupDepth : BitsRemaining - 17; // currently 13
/// The nearest normal cleanup scope enclosing this one.
EHScopeStack::stable_iterator EnclosingNormal;
/// The nearest EH cleanup scope enclosing this one.
EHScopeStack::stable_iterator EnclosingEH;
/// The dual entry/exit block along the normal edge. This is lazily
/// created if needed before the cleanup is popped.
llvm::BasicBlock *NormalBlock;
/// The dual entry/exit block along the EH edge. This is lazily
/// created if needed before the cleanup is popped.
llvm::BasicBlock *EHBlock;
/// An optional i1 variable indicating whether this cleanup has been
/// activated yet.
llvm::AllocaInst *ActiveFlag;
/// Extra information required for cleanups that have resolved
/// branches through them. This has to be allocated on the side
/// because everything on the cleanup stack has be trivially
/// movable.
struct ExtInfo {
/// The destinations of normal branch-afters and branch-throughs.
llvm::SmallPtrSet<llvm::BasicBlock*, 4> Branches;
/// Normal branch-afters.
llvm::SmallVector<std::pair<llvm::BasicBlock*,llvm::ConstantInt*>, 4>
BranchAfters;
/// The destinations of EH branch-afters and branch-throughs.
/// TODO: optimize for the extremely common case of a single
/// branch-through.
llvm::SmallPtrSet<llvm::BasicBlock*, 4> EHBranches;
/// EH branch-afters.
llvm::SmallVector<std::pair<llvm::BasicBlock*,llvm::ConstantInt*>, 4>
EHBranchAfters;
};
mutable struct ExtInfo *ExtInfo;
struct ExtInfo &getExtInfo() {
if (!ExtInfo) ExtInfo = new struct ExtInfo();
return *ExtInfo;
}
const struct ExtInfo &getExtInfo() const {
if (!ExtInfo) ExtInfo = new struct ExtInfo();
return *ExtInfo;
}
public:
/// Gets the size required for a lazy cleanup scope with the given
/// cleanup-data requirements.
static size_t getSizeForCleanupSize(size_t Size) {
return sizeof(EHCleanupScope) + Size;
}
size_t getAllocatedSize() const {
return sizeof(EHCleanupScope) + CleanupSize;
}
EHCleanupScope(bool IsNormal, bool IsEH, bool IsActive,
unsigned CleanupSize, unsigned FixupDepth,
EHScopeStack::stable_iterator EnclosingNormal,
EHScopeStack::stable_iterator EnclosingEH)
: EHScope(EHScope::Cleanup),
IsNormalCleanup(IsNormal), IsEHCleanup(IsEH), IsActive(IsActive),
TestFlagInNormalCleanup(false), TestFlagInEHCleanup(false),
CleanupSize(CleanupSize), FixupDepth(FixupDepth),
EnclosingNormal(EnclosingNormal), EnclosingEH(EnclosingEH),
NormalBlock(0), EHBlock(0), ActiveFlag(0), ExtInfo(0)
{
assert(this->CleanupSize == CleanupSize && "cleanup size overflow");
}
~EHCleanupScope() {
delete ExtInfo;
}
bool isNormalCleanup() const { return IsNormalCleanup; }
llvm::BasicBlock *getNormalBlock() const { return NormalBlock; }
void setNormalBlock(llvm::BasicBlock *BB) { NormalBlock = BB; }
bool isEHCleanup() const { return IsEHCleanup; }
llvm::BasicBlock *getEHBlock() const { return EHBlock; }
void setEHBlock(llvm::BasicBlock *BB) { EHBlock = BB; }
bool isActive() const { return IsActive; }
void setActive(bool A) { IsActive = A; }
llvm::AllocaInst *getActiveFlag() const { return ActiveFlag; }
void setActiveFlag(llvm::AllocaInst *Var) { ActiveFlag = Var; }
void setTestFlagInNormalCleanup() { TestFlagInNormalCleanup = true; }
bool shouldTestFlagInNormalCleanup() const { return TestFlagInNormalCleanup; }
void setTestFlagInEHCleanup() { TestFlagInEHCleanup = true; }
bool shouldTestFlagInEHCleanup() const { return TestFlagInEHCleanup; }
unsigned getFixupDepth() const { return FixupDepth; }
EHScopeStack::stable_iterator getEnclosingNormalCleanup() const {
return EnclosingNormal;
}
EHScopeStack::stable_iterator getEnclosingEHCleanup() const {
return EnclosingEH;
}
size_t getCleanupSize() const { return CleanupSize; }
void *getCleanupBuffer() { return this + 1; }
EHScopeStack::Cleanup *getCleanup() {
return reinterpret_cast<EHScopeStack::Cleanup*>(getCleanupBuffer());
}
/// True if this cleanup scope has any branch-afters or branch-throughs.
bool hasBranches() const { return ExtInfo && !ExtInfo->Branches.empty(); }
/// Add a branch-after to this cleanup scope. A branch-after is a
/// branch from a point protected by this (normal) cleanup to a
/// point in the normal cleanup scope immediately containing it.
/// For example,
/// for (;;) { A a; break; }
/// contains a branch-after.
///
/// Branch-afters each have their own destination out of the
/// cleanup, guaranteed distinct from anything else threaded through
/// it. Therefore branch-afters usually force a switch after the
/// cleanup.
void addBranchAfter(llvm::ConstantInt *Index,
llvm::BasicBlock *Block) {
struct ExtInfo &ExtInfo = getExtInfo();
if (ExtInfo.Branches.insert(Block))
ExtInfo.BranchAfters.push_back(std::make_pair(Block, Index));
}
/// Return the number of unique branch-afters on this scope.
unsigned getNumBranchAfters() const {
return ExtInfo ? ExtInfo->BranchAfters.size() : 0;
}
llvm::BasicBlock *getBranchAfterBlock(unsigned I) const {
assert(I < getNumBranchAfters());
return ExtInfo->BranchAfters[I].first;
}
llvm::ConstantInt *getBranchAfterIndex(unsigned I) const {
assert(I < getNumBranchAfters());
return ExtInfo->BranchAfters[I].second;
}
/// Add a branch-through to this cleanup scope. A branch-through is
/// a branch from a scope protected by this (normal) cleanup to an
/// enclosing scope other than the immediately-enclosing normal
/// cleanup scope.
///
/// In the following example, the branch through B's scope is a
/// branch-through, while the branch through A's scope is a
/// branch-after:
/// for (;;) { A a; B b; break; }
///
/// All branch-throughs have a common destination out of the
/// cleanup, one possibly shared with the fall-through. Therefore
/// branch-throughs usually don't force a switch after the cleanup.
///
/// \return true if the branch-through was new to this scope
bool addBranchThrough(llvm::BasicBlock *Block) {
return getExtInfo().Branches.insert(Block);
}
/// Determines if this cleanup scope has any branch throughs.
bool hasBranchThroughs() const {
if (!ExtInfo) return false;
return (ExtInfo->BranchAfters.size() != ExtInfo->Branches.size());
}
// Same stuff, only for EH branches instead of normal branches.
// It's quite possible that we could find a better representation
// for this.
bool hasEHBranches() const { return ExtInfo && !ExtInfo->EHBranches.empty(); }
void addEHBranchAfter(llvm::ConstantInt *Index,
llvm::BasicBlock *Block) {
struct ExtInfo &ExtInfo = getExtInfo();
if (ExtInfo.EHBranches.insert(Block))
ExtInfo.EHBranchAfters.push_back(std::make_pair(Block, Index));
}
unsigned getNumEHBranchAfters() const {
return ExtInfo ? ExtInfo->EHBranchAfters.size() : 0;
}
llvm::BasicBlock *getEHBranchAfterBlock(unsigned I) const {
assert(I < getNumEHBranchAfters());
return ExtInfo->EHBranchAfters[I].first;
}
llvm::ConstantInt *getEHBranchAfterIndex(unsigned I) const {
assert(I < getNumEHBranchAfters());
return ExtInfo->EHBranchAfters[I].second;
}
bool addEHBranchThrough(llvm::BasicBlock *Block) {
return getExtInfo().EHBranches.insert(Block);
}
bool hasEHBranchThroughs() const {
if (!ExtInfo) return false;
return (ExtInfo->EHBranchAfters.size() != ExtInfo->EHBranches.size());
}
static bool classof(const EHScope *Scope) {
return (Scope->getKind() == Cleanup);
}
};
/// An exceptions scope which filters exceptions thrown through it.
/// Only exceptions matching the filter types will be permitted to be
/// thrown.
///
/// This is used to implement C++ exception specifications.
class EHFilterScope : public EHScope {
unsigned NumFilters : BitsRemaining;
// Essentially ends in a flexible array member:
// llvm::Value *FilterTypes[0];
llvm::Value **getFilters() {
return reinterpret_cast<llvm::Value**>(this+1);
}
llvm::Value * const *getFilters() const {
return reinterpret_cast<llvm::Value* const *>(this+1);
}
public:
EHFilterScope(unsigned NumFilters) :
EHScope(Filter), NumFilters(NumFilters) {}
static size_t getSizeForNumFilters(unsigned NumFilters) {
return sizeof(EHFilterScope) + NumFilters * sizeof(llvm::Value*);
}
unsigned getNumFilters() const { return NumFilters; }
void setFilter(unsigned I, llvm::Value *FilterValue) {
assert(I < getNumFilters());
getFilters()[I] = FilterValue;
}
llvm::Value *getFilter(unsigned I) const {
assert(I < getNumFilters());
return getFilters()[I];
}
static bool classof(const EHScope *Scope) {
return Scope->getKind() == Filter;
}
};
/// An exceptions scope which calls std::terminate if any exception
/// reaches it.
class EHTerminateScope : public EHScope {
unsigned DestIndex : BitsRemaining;
public:
EHTerminateScope(unsigned Index) : EHScope(Terminate), DestIndex(Index) {}
static size_t getSize() { return sizeof(EHTerminateScope); }
unsigned getDestIndex() const { return DestIndex; }
static bool classof(const EHScope *Scope) {
return Scope->getKind() == Terminate;
}
};
/// A non-stable pointer into the scope stack.
class EHScopeStack::iterator {
char *Ptr;
friend class EHScopeStack;
explicit iterator(char *Ptr) : Ptr(Ptr) {}
public:
iterator() : Ptr(0) {}
EHScope *get() const {
return reinterpret_cast<EHScope*>(Ptr);
}
EHScope *operator->() const { return get(); }
EHScope &operator*() const { return *get(); }
iterator &operator++() {
switch (get()->getKind()) {
case EHScope::Catch:
Ptr += EHCatchScope::getSizeForNumHandlers(
static_cast<const EHCatchScope*>(get())->getNumHandlers());
break;
case EHScope::Filter:
Ptr += EHFilterScope::getSizeForNumFilters(
static_cast<const EHFilterScope*>(get())->getNumFilters());
break;
case EHScope::Cleanup:
Ptr += static_cast<const EHCleanupScope*>(get())
->getAllocatedSize();
break;
case EHScope::Terminate:
Ptr += EHTerminateScope::getSize();
break;
}
return *this;
}
iterator next() {
iterator copy = *this;
++copy;
return copy;
}
iterator operator++(int) {
iterator copy = *this;
operator++();
return copy;
}
bool encloses(iterator other) const { return Ptr >= other.Ptr; }
bool strictlyEncloses(iterator other) const { return Ptr > other.Ptr; }
bool operator==(iterator other) const { return Ptr == other.Ptr; }
bool operator!=(iterator other) const { return Ptr != other.Ptr; }
};
inline EHScopeStack::iterator EHScopeStack::begin() const {
return iterator(StartOfData);
}
inline EHScopeStack::iterator EHScopeStack::end() const {
return iterator(EndOfBuffer);
}
inline void EHScopeStack::popCatch() {
assert(!empty() && "popping exception stack when not empty");
assert(isa<EHCatchScope>(*begin()));
StartOfData += EHCatchScope::getSizeForNumHandlers(
cast<EHCatchScope>(*begin()).getNumHandlers());
if (empty()) NextEHDestIndex = FirstEHDestIndex;
assert(CatchDepth > 0 && "mismatched catch/terminate push/pop");
CatchDepth--;
}
inline void EHScopeStack::popTerminate() {
assert(!empty() && "popping exception stack when not empty");
assert(isa<EHTerminateScope>(*begin()));
StartOfData += EHTerminateScope::getSize();
if (empty()) NextEHDestIndex = FirstEHDestIndex;
assert(CatchDepth > 0 && "mismatched catch/terminate push/pop");
CatchDepth--;
}
inline EHScopeStack::iterator EHScopeStack::find(stable_iterator sp) const {
assert(sp.isValid() && "finding invalid savepoint");
assert(sp.Size <= stable_begin().Size && "finding savepoint after pop");
return iterator(EndOfBuffer - sp.Size);
}
inline EHScopeStack::stable_iterator
EHScopeStack::stabilize(iterator ir) const {
assert(StartOfData <= ir.Ptr && ir.Ptr <= EndOfBuffer);
return stable_iterator(EndOfBuffer - ir.Ptr);
}
inline EHScopeStack::stable_iterator
EHScopeStack::getInnermostActiveNormalCleanup() const {
for (EHScopeStack::stable_iterator
I = getInnermostNormalCleanup(), E = stable_end(); I != E; ) {
EHCleanupScope &S = cast<EHCleanupScope>(*find(I));
if (S.isActive()) return I;
I = S.getEnclosingNormalCleanup();
}
return stable_end();
}
inline EHScopeStack::stable_iterator
EHScopeStack::getInnermostActiveEHCleanup() const {
for (EHScopeStack::stable_iterator
I = getInnermostEHCleanup(), E = stable_end(); I != E; ) {
EHCleanupScope &S = cast<EHCleanupScope>(*find(I));
if (S.isActive()) return I;
I = S.getEnclosingEHCleanup();
}
return stable_end();
}
}
}
#endif