// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/socket/transport_client_socket_pool.h"
#include "base/callback.h"
#include "base/compiler_specific.h"
#include "base/logging.h"
#include "base/message_loop.h"
#include "base/threading/platform_thread.h"
#include "net/base/ip_endpoint.h"
#include "net/base/mock_host_resolver.h"
#include "net/base/net_errors.h"
#include "net/base/net_util.h"
#include "net/base/sys_addrinfo.h"
#include "net/base/test_completion_callback.h"
#include "net/socket/client_socket.h"
#include "net/socket/client_socket_factory.h"
#include "net/socket/client_socket_handle.h"
#include "net/socket/client_socket_pool_histograms.h"
#include "net/socket/socket_test_util.h"
#include "net/socket/ssl_host_info.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace net {
using internal::ClientSocketPoolBaseHelper;
namespace {
const int kMaxSockets = 32;
const int kMaxSocketsPerGroup = 6;
const net::RequestPriority kDefaultPriority = LOW;
void SetIPv4Address(IPEndPoint* address) {
IPAddressNumber number;
CHECK(ParseIPLiteralToNumber("1.1.1.1", &number));
*address = IPEndPoint(number, 80);
}
void SetIPv6Address(IPEndPoint* address) {
IPAddressNumber number;
CHECK(ParseIPLiteralToNumber("1:abcd::3:4:ff", &number));
*address = IPEndPoint(number, 80);
}
class MockClientSocket : public ClientSocket {
public:
MockClientSocket(const AddressList& addrlist)
: connected_(false),
addrlist_(addrlist) {}
// ClientSocket methods:
virtual int Connect(CompletionCallback* callback) {
connected_ = true;
return OK;
}
virtual void Disconnect() {
connected_ = false;
}
virtual bool IsConnected() const {
return connected_;
}
virtual bool IsConnectedAndIdle() const {
return connected_;
}
virtual int GetPeerAddress(AddressList* address) const {
return ERR_UNEXPECTED;
}
virtual int GetLocalAddress(IPEndPoint* address) const {
if (!connected_)
return ERR_SOCKET_NOT_CONNECTED;
if (addrlist_.head()->ai_family == AF_INET)
SetIPv4Address(address);
else
SetIPv6Address(address);
return OK;
}
virtual const BoundNetLog& NetLog() const {
return net_log_;
}
virtual void SetSubresourceSpeculation() {}
virtual void SetOmniboxSpeculation() {}
virtual bool WasEverUsed() const { return false; }
virtual bool UsingTCPFastOpen() const { return false; }
// Socket methods:
virtual int Read(IOBuffer* buf, int buf_len,
CompletionCallback* callback) {
return ERR_FAILED;
}
virtual int Write(IOBuffer* buf, int buf_len,
CompletionCallback* callback) {
return ERR_FAILED;
}
virtual bool SetReceiveBufferSize(int32 size) { return true; }
virtual bool SetSendBufferSize(int32 size) { return true; }
private:
bool connected_;
const AddressList addrlist_;
BoundNetLog net_log_;
};
class MockFailingClientSocket : public ClientSocket {
public:
MockFailingClientSocket(const AddressList& addrlist) : addrlist_(addrlist) {}
// ClientSocket methods:
virtual int Connect(CompletionCallback* callback) {
return ERR_CONNECTION_FAILED;
}
virtual void Disconnect() {}
virtual bool IsConnected() const {
return false;
}
virtual bool IsConnectedAndIdle() const {
return false;
}
virtual int GetPeerAddress(AddressList* address) const {
return ERR_UNEXPECTED;
}
virtual int GetLocalAddress(IPEndPoint* address) const {
return ERR_UNEXPECTED;
}
virtual const BoundNetLog& NetLog() const {
return net_log_;
}
virtual void SetSubresourceSpeculation() {}
virtual void SetOmniboxSpeculation() {}
virtual bool WasEverUsed() const { return false; }
virtual bool UsingTCPFastOpen() const { return false; }
// Socket methods:
virtual int Read(IOBuffer* buf, int buf_len,
CompletionCallback* callback) {
return ERR_FAILED;
}
virtual int Write(IOBuffer* buf, int buf_len,
CompletionCallback* callback) {
return ERR_FAILED;
}
virtual bool SetReceiveBufferSize(int32 size) { return true; }
virtual bool SetSendBufferSize(int32 size) { return true; }
private:
const AddressList addrlist_;
BoundNetLog net_log_;
};
class MockPendingClientSocket : public ClientSocket {
public:
// |should_connect| indicates whether the socket should successfully complete
// or fail.
// |should_stall| indicates that this socket should never connect.
// |delay_ms| is the delay, in milliseconds, before simulating a connect.
MockPendingClientSocket(
const AddressList& addrlist,
bool should_connect,
bool should_stall,
int delay_ms)
: method_factory_(ALLOW_THIS_IN_INITIALIZER_LIST(this)),
should_connect_(should_connect),
should_stall_(should_stall),
delay_ms_(delay_ms),
is_connected_(false),
addrlist_(addrlist) {}
// ClientSocket methods:
virtual int Connect(CompletionCallback* callback) {
MessageLoop::current()->PostDelayedTask(
FROM_HERE,
method_factory_.NewRunnableMethod(
&MockPendingClientSocket::DoCallback, callback), delay_ms_);
return ERR_IO_PENDING;
}
virtual void Disconnect() {}
virtual bool IsConnected() const {
return is_connected_;
}
virtual bool IsConnectedAndIdle() const {
return is_connected_;
}
virtual int GetPeerAddress(AddressList* address) const {
return ERR_UNEXPECTED;
}
virtual int GetLocalAddress(IPEndPoint* address) const {
if (!is_connected_)
return ERR_SOCKET_NOT_CONNECTED;
if (addrlist_.head()->ai_family == AF_INET)
SetIPv4Address(address);
else
SetIPv6Address(address);
return OK;
}
virtual const BoundNetLog& NetLog() const {
return net_log_;
}
virtual void SetSubresourceSpeculation() {}
virtual void SetOmniboxSpeculation() {}
virtual bool WasEverUsed() const { return false; }
virtual bool UsingTCPFastOpen() const { return false; }
// Socket methods:
virtual int Read(IOBuffer* buf, int buf_len,
CompletionCallback* callback) {
return ERR_FAILED;
}
virtual int Write(IOBuffer* buf, int buf_len,
CompletionCallback* callback) {
return ERR_FAILED;
}
virtual bool SetReceiveBufferSize(int32 size) { return true; }
virtual bool SetSendBufferSize(int32 size) { return true; }
private:
void DoCallback(CompletionCallback* callback) {
if (should_stall_)
return;
if (should_connect_) {
is_connected_ = true;
callback->Run(OK);
} else {
is_connected_ = false;
callback->Run(ERR_CONNECTION_FAILED);
}
}
ScopedRunnableMethodFactory<MockPendingClientSocket> method_factory_;
bool should_connect_;
bool should_stall_;
int delay_ms_;
bool is_connected_;
const AddressList addrlist_;
BoundNetLog net_log_;
};
class MockClientSocketFactory : public ClientSocketFactory {
public:
enum ClientSocketType {
MOCK_CLIENT_SOCKET,
MOCK_FAILING_CLIENT_SOCKET,
MOCK_PENDING_CLIENT_SOCKET,
MOCK_PENDING_FAILING_CLIENT_SOCKET,
// A delayed socket will pause before connecting through the message loop.
MOCK_DELAYED_CLIENT_SOCKET,
// A stalled socket that never connects at all.
MOCK_STALLED_CLIENT_SOCKET,
};
MockClientSocketFactory()
: allocation_count_(0), client_socket_type_(MOCK_CLIENT_SOCKET),
client_socket_types_(NULL), client_socket_index_(0),
client_socket_index_max_(0),
delay_ms_(ClientSocketPool::kMaxConnectRetryIntervalMs) {}
virtual ClientSocket* CreateTransportClientSocket(
const AddressList& addresses,
NetLog* /* net_log */,
const NetLog::Source& /* source */) {
allocation_count_++;
ClientSocketType type = client_socket_type_;
if (client_socket_types_ &&
client_socket_index_ < client_socket_index_max_) {
type = client_socket_types_[client_socket_index_++];
}
switch (type) {
case MOCK_CLIENT_SOCKET:
return new MockClientSocket(addresses);
case MOCK_FAILING_CLIENT_SOCKET:
return new MockFailingClientSocket(addresses);
case MOCK_PENDING_CLIENT_SOCKET:
return new MockPendingClientSocket(addresses, true, false, 0);
case MOCK_PENDING_FAILING_CLIENT_SOCKET:
return new MockPendingClientSocket(addresses, false, false, 0);
case MOCK_DELAYED_CLIENT_SOCKET:
return new MockPendingClientSocket(addresses, true, false, delay_ms_);
case MOCK_STALLED_CLIENT_SOCKET:
return new MockPendingClientSocket(addresses, true, true, 0);
default:
NOTREACHED();
return new MockClientSocket(addresses);
}
}
virtual SSLClientSocket* CreateSSLClientSocket(
ClientSocketHandle* transport_socket,
const HostPortPair& host_and_port,
const SSLConfig& ssl_config,
SSLHostInfo* ssl_host_info,
CertVerifier* cert_verifier,
DnsCertProvenanceChecker* dns_cert_checker) {
NOTIMPLEMENTED();
delete ssl_host_info;
return NULL;
}
virtual void ClearSSLSessionCache() {
NOTIMPLEMENTED();
}
int allocation_count() const { return allocation_count_; }
// Set the default ClientSocketType.
void set_client_socket_type(ClientSocketType type) {
client_socket_type_ = type;
}
// Set a list of ClientSocketTypes to be used.
void set_client_socket_types(ClientSocketType* type_list, int num_types) {
DCHECK_GT(num_types, 0);
client_socket_types_ = type_list;
client_socket_index_ = 0;
client_socket_index_max_ = num_types;
}
void set_delay_ms(int delay_ms) { delay_ms_ = delay_ms; }
private:
int allocation_count_;
ClientSocketType client_socket_type_;
ClientSocketType* client_socket_types_;
int client_socket_index_;
int client_socket_index_max_;
int delay_ms_;
};
class TransportClientSocketPoolTest : public testing::Test {
protected:
TransportClientSocketPoolTest()
: connect_backup_jobs_enabled_(
ClientSocketPoolBaseHelper::set_connect_backup_jobs_enabled(true)),
params_(
new TransportSocketParams(HostPortPair("www.google.com", 80),
kDefaultPriority, GURL(), false, false)),
low_params_(
new TransportSocketParams(HostPortPair("www.google.com", 80),
LOW, GURL(), false, false)),
histograms_(new ClientSocketPoolHistograms("TCPUnitTest")),
host_resolver_(new MockHostResolver),
pool_(kMaxSockets,
kMaxSocketsPerGroup,
histograms_.get(),
host_resolver_.get(),
&client_socket_factory_,
NULL) {
}
~TransportClientSocketPoolTest() {
internal::ClientSocketPoolBaseHelper::set_connect_backup_jobs_enabled(
connect_backup_jobs_enabled_);
}
int StartRequest(const std::string& group_name, RequestPriority priority) {
scoped_refptr<TransportSocketParams> params(new TransportSocketParams(
HostPortPair("www.google.com", 80), MEDIUM, GURL(), false, false));
return test_base_.StartRequestUsingPool(
&pool_, group_name, priority, params);
}
int GetOrderOfRequest(size_t index) {
return test_base_.GetOrderOfRequest(index);
}
bool ReleaseOneConnection(ClientSocketPoolTest::KeepAlive keep_alive) {
return test_base_.ReleaseOneConnection(keep_alive);
}
void ReleaseAllConnections(ClientSocketPoolTest::KeepAlive keep_alive) {
test_base_.ReleaseAllConnections(keep_alive);
}
ScopedVector<TestSocketRequest>* requests() { return test_base_.requests(); }
size_t completion_count() const { return test_base_.completion_count(); }
bool connect_backup_jobs_enabled_;
scoped_refptr<TransportSocketParams> params_;
scoped_refptr<TransportSocketParams> low_params_;
scoped_ptr<ClientSocketPoolHistograms> histograms_;
scoped_ptr<MockHostResolver> host_resolver_;
MockClientSocketFactory client_socket_factory_;
TransportClientSocketPool pool_;
ClientSocketPoolTest test_base_;
};
TEST(TransportConnectJobTest, MakeAddrListStartWithIPv4) {
IPAddressNumber ip_number;
ASSERT_TRUE(ParseIPLiteralToNumber("192.168.1.1", &ip_number));
AddressList addrlist_v4_1(ip_number, 80, false);
ASSERT_TRUE(ParseIPLiteralToNumber("192.168.1.2", &ip_number));
AddressList addrlist_v4_2(ip_number, 80, false);
ASSERT_TRUE(ParseIPLiteralToNumber("2001:4860:b006::64", &ip_number));
AddressList addrlist_v6_1(ip_number, 80, false);
ASSERT_TRUE(ParseIPLiteralToNumber("2001:4860:b006::66", &ip_number));
AddressList addrlist_v6_2(ip_number, 80, false);
AddressList addrlist;
const struct addrinfo* ai;
// Test 1: IPv4 only. Expect no change.
addrlist.Copy(addrlist_v4_1.head(), true);
addrlist.Append(addrlist_v4_2.head());
TransportConnectJob::MakeAddrListStartWithIPv4(&addrlist);
ai = addrlist.head();
EXPECT_EQ(AF_INET, ai->ai_family);
ai = ai->ai_next;
EXPECT_EQ(AF_INET, ai->ai_family);
EXPECT_TRUE(ai->ai_next == NULL);
// Test 2: IPv6 only. Expect no change.
addrlist.Copy(addrlist_v6_1.head(), true);
addrlist.Append(addrlist_v6_2.head());
TransportConnectJob::MakeAddrListStartWithIPv4(&addrlist);
ai = addrlist.head();
EXPECT_EQ(AF_INET6, ai->ai_family);
ai = ai->ai_next;
EXPECT_EQ(AF_INET6, ai->ai_family);
EXPECT_TRUE(ai->ai_next == NULL);
// Test 3: IPv4 then IPv6. Expect no change.
addrlist.Copy(addrlist_v4_1.head(), true);
addrlist.Append(addrlist_v4_2.head());
addrlist.Append(addrlist_v6_1.head());
addrlist.Append(addrlist_v6_2.head());
TransportConnectJob::MakeAddrListStartWithIPv4(&addrlist);
ai = addrlist.head();
EXPECT_EQ(AF_INET, ai->ai_family);
ai = ai->ai_next;
EXPECT_EQ(AF_INET, ai->ai_family);
ai = ai->ai_next;
EXPECT_EQ(AF_INET6, ai->ai_family);
ai = ai->ai_next;
EXPECT_EQ(AF_INET6, ai->ai_family);
EXPECT_TRUE(ai->ai_next == NULL);
// Test 4: IPv6, IPv4, IPv6, IPv4. Expect first IPv6 moved to the end.
addrlist.Copy(addrlist_v6_1.head(), true);
addrlist.Append(addrlist_v4_1.head());
addrlist.Append(addrlist_v6_2.head());
addrlist.Append(addrlist_v4_2.head());
TransportConnectJob::MakeAddrListStartWithIPv4(&addrlist);
ai = addrlist.head();
EXPECT_EQ(AF_INET, ai->ai_family);
ai = ai->ai_next;
EXPECT_EQ(AF_INET6, ai->ai_family);
ai = ai->ai_next;
EXPECT_EQ(AF_INET, ai->ai_family);
ai = ai->ai_next;
EXPECT_EQ(AF_INET6, ai->ai_family);
EXPECT_TRUE(ai->ai_next == NULL);
// Test 5: IPv6, IPv6, IPv4, IPv4. Expect first two IPv6's moved to the end.
addrlist.Copy(addrlist_v6_1.head(), true);
addrlist.Append(addrlist_v6_2.head());
addrlist.Append(addrlist_v4_1.head());
addrlist.Append(addrlist_v4_2.head());
TransportConnectJob::MakeAddrListStartWithIPv4(&addrlist);
ai = addrlist.head();
EXPECT_EQ(AF_INET, ai->ai_family);
ai = ai->ai_next;
EXPECT_EQ(AF_INET, ai->ai_family);
ai = ai->ai_next;
EXPECT_EQ(AF_INET6, ai->ai_family);
ai = ai->ai_next;
EXPECT_EQ(AF_INET6, ai->ai_family);
EXPECT_TRUE(ai->ai_next == NULL);
}
TEST_F(TransportClientSocketPoolTest, Basic) {
TestCompletionCallback callback;
ClientSocketHandle handle;
int rv = handle.Init("a", low_params_, LOW, &callback, &pool_, BoundNetLog());
EXPECT_EQ(ERR_IO_PENDING, rv);
EXPECT_FALSE(handle.is_initialized());
EXPECT_FALSE(handle.socket());
EXPECT_EQ(OK, callback.WaitForResult());
EXPECT_TRUE(handle.is_initialized());
EXPECT_TRUE(handle.socket());
handle.Reset();
}
TEST_F(TransportClientSocketPoolTest, InitHostResolutionFailure) {
host_resolver_->rules()->AddSimulatedFailure("unresolvable.host.name");
TestCompletionCallback callback;
ClientSocketHandle handle;
HostPortPair host_port_pair("unresolvable.host.name", 80);
scoped_refptr<TransportSocketParams> dest(new TransportSocketParams(
host_port_pair, kDefaultPriority, GURL(), false, false));
EXPECT_EQ(ERR_IO_PENDING,
handle.Init("a", dest, kDefaultPriority, &callback, &pool_,
BoundNetLog()));
EXPECT_EQ(ERR_NAME_NOT_RESOLVED, callback.WaitForResult());
}
TEST_F(TransportClientSocketPoolTest, InitConnectionFailure) {
client_socket_factory_.set_client_socket_type(
MockClientSocketFactory::MOCK_FAILING_CLIENT_SOCKET);
TestCompletionCallback callback;
ClientSocketHandle handle;
EXPECT_EQ(ERR_IO_PENDING, handle.Init("a", params_, kDefaultPriority,
&callback, &pool_, BoundNetLog()));
EXPECT_EQ(ERR_CONNECTION_FAILED, callback.WaitForResult());
// Make the host resolutions complete synchronously this time.
host_resolver_->set_synchronous_mode(true);
EXPECT_EQ(ERR_CONNECTION_FAILED, handle.Init("a", params_,
kDefaultPriority, &callback,
&pool_, BoundNetLog()));
}
TEST_F(TransportClientSocketPoolTest, PendingRequests) {
// First request finishes asynchronously.
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority));
EXPECT_EQ(OK, (*requests())[0]->WaitForResult());
// Make all subsequent host resolutions complete synchronously.
host_resolver_->set_synchronous_mode(true);
// Rest of them finish synchronously, until we reach the per-group limit.
EXPECT_EQ(OK, StartRequest("a", kDefaultPriority));
EXPECT_EQ(OK, StartRequest("a", kDefaultPriority));
EXPECT_EQ(OK, StartRequest("a", kDefaultPriority));
EXPECT_EQ(OK, StartRequest("a", kDefaultPriority));
EXPECT_EQ(OK, StartRequest("a", kDefaultPriority));
// The rest are pending since we've used all active sockets.
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", HIGHEST));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOWEST));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOWEST));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", MEDIUM));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOW));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", HIGHEST));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOWEST));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", MEDIUM));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", MEDIUM));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", HIGHEST));
ReleaseAllConnections(ClientSocketPoolTest::KEEP_ALIVE);
EXPECT_EQ(kMaxSocketsPerGroup, client_socket_factory_.allocation_count());
// One initial asynchronous request and then 10 pending requests.
EXPECT_EQ(11U, completion_count());
// First part of requests, all with the same priority, finishes in FIFO order.
EXPECT_EQ(1, GetOrderOfRequest(1));
EXPECT_EQ(2, GetOrderOfRequest(2));
EXPECT_EQ(3, GetOrderOfRequest(3));
EXPECT_EQ(4, GetOrderOfRequest(4));
EXPECT_EQ(5, GetOrderOfRequest(5));
EXPECT_EQ(6, GetOrderOfRequest(6));
// Make sure that rest of the requests complete in the order of priority.
EXPECT_EQ(7, GetOrderOfRequest(7));
EXPECT_EQ(14, GetOrderOfRequest(8));
EXPECT_EQ(15, GetOrderOfRequest(9));
EXPECT_EQ(10, GetOrderOfRequest(10));
EXPECT_EQ(13, GetOrderOfRequest(11));
EXPECT_EQ(8, GetOrderOfRequest(12));
EXPECT_EQ(16, GetOrderOfRequest(13));
EXPECT_EQ(11, GetOrderOfRequest(14));
EXPECT_EQ(12, GetOrderOfRequest(15));
EXPECT_EQ(9, GetOrderOfRequest(16));
// Make sure we test order of all requests made.
EXPECT_EQ(ClientSocketPoolTest::kIndexOutOfBounds, GetOrderOfRequest(17));
}
TEST_F(TransportClientSocketPoolTest, PendingRequests_NoKeepAlive) {
// First request finishes asynchronously.
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority));
EXPECT_EQ(OK, (*requests())[0]->WaitForResult());
// Make all subsequent host resolutions complete synchronously.
host_resolver_->set_synchronous_mode(true);
// Rest of them finish synchronously, until we reach the per-group limit.
EXPECT_EQ(OK, StartRequest("a", kDefaultPriority));
EXPECT_EQ(OK, StartRequest("a", kDefaultPriority));
EXPECT_EQ(OK, StartRequest("a", kDefaultPriority));
EXPECT_EQ(OK, StartRequest("a", kDefaultPriority));
EXPECT_EQ(OK, StartRequest("a", kDefaultPriority));
// The rest are pending since we've used all active sockets.
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority));
ReleaseAllConnections(ClientSocketPoolTest::NO_KEEP_ALIVE);
// The pending requests should finish successfully.
EXPECT_EQ(OK, (*requests())[6]->WaitForResult());
EXPECT_EQ(OK, (*requests())[7]->WaitForResult());
EXPECT_EQ(OK, (*requests())[8]->WaitForResult());
EXPECT_EQ(OK, (*requests())[9]->WaitForResult());
EXPECT_EQ(OK, (*requests())[10]->WaitForResult());
EXPECT_EQ(static_cast<int>(requests()->size()),
client_socket_factory_.allocation_count());
// First asynchronous request, and then last 5 pending requests.
EXPECT_EQ(6U, completion_count());
}
// This test will start up a RequestSocket() and then immediately Cancel() it.
// The pending host resolution will eventually complete, and destroy the
// ClientSocketPool which will crash if the group was not cleared properly.
TEST_F(TransportClientSocketPoolTest, CancelRequestClearGroup) {
TestCompletionCallback callback;
ClientSocketHandle handle;
EXPECT_EQ(ERR_IO_PENDING, handle.Init("a", params_, kDefaultPriority,
&callback, &pool_, BoundNetLog()));
handle.Reset();
}
TEST_F(TransportClientSocketPoolTest, TwoRequestsCancelOne) {
ClientSocketHandle handle;
TestCompletionCallback callback;
ClientSocketHandle handle2;
TestCompletionCallback callback2;
EXPECT_EQ(ERR_IO_PENDING, handle.Init("a", params_, kDefaultPriority,
&callback, &pool_, BoundNetLog()));
EXPECT_EQ(ERR_IO_PENDING, handle2.Init("a", params_, kDefaultPriority,
&callback2, &pool_, BoundNetLog()));
handle.Reset();
EXPECT_EQ(OK, callback2.WaitForResult());
handle2.Reset();
}
TEST_F(TransportClientSocketPoolTest, ConnectCancelConnect) {
client_socket_factory_.set_client_socket_type(
MockClientSocketFactory::MOCK_PENDING_CLIENT_SOCKET);
ClientSocketHandle handle;
TestCompletionCallback callback;
EXPECT_EQ(ERR_IO_PENDING, handle.Init("a", params_, kDefaultPriority,
&callback, &pool_, BoundNetLog()));
handle.Reset();
TestCompletionCallback callback2;
EXPECT_EQ(ERR_IO_PENDING, handle.Init("a", params_, kDefaultPriority,
&callback2, &pool_, BoundNetLog()));
host_resolver_->set_synchronous_mode(true);
// At this point, handle has two ConnectingSockets out for it. Due to the
// setting the mock resolver into synchronous mode, the host resolution for
// both will return in the same loop of the MessageLoop. The client socket
// is a pending socket, so the Connect() will asynchronously complete on the
// next loop of the MessageLoop. That means that the first
// ConnectingSocket will enter OnIOComplete, and then the second one will.
// If the first one is not cancelled, it will advance the load state, and
// then the second one will crash.
EXPECT_EQ(OK, callback2.WaitForResult());
EXPECT_FALSE(callback.have_result());
handle.Reset();
}
TEST_F(TransportClientSocketPoolTest, CancelRequest) {
// First request finishes asynchronously.
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority));
EXPECT_EQ(OK, (*requests())[0]->WaitForResult());
// Make all subsequent host resolutions complete synchronously.
host_resolver_->set_synchronous_mode(true);
EXPECT_EQ(OK, StartRequest("a", kDefaultPriority));
EXPECT_EQ(OK, StartRequest("a", kDefaultPriority));
EXPECT_EQ(OK, StartRequest("a", kDefaultPriority));
EXPECT_EQ(OK, StartRequest("a", kDefaultPriority));
EXPECT_EQ(OK, StartRequest("a", kDefaultPriority));
// Reached per-group limit, queue up requests.
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOWEST));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", HIGHEST));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", HIGHEST));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", MEDIUM));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", MEDIUM));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOW));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", HIGHEST));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOW));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOW));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", LOWEST));
// Cancel a request.
size_t index_to_cancel = kMaxSocketsPerGroup + 2;
EXPECT_FALSE((*requests())[index_to_cancel]->handle()->is_initialized());
(*requests())[index_to_cancel]->handle()->Reset();
ReleaseAllConnections(ClientSocketPoolTest::KEEP_ALIVE);
EXPECT_EQ(kMaxSocketsPerGroup,
client_socket_factory_.allocation_count());
EXPECT_EQ(requests()->size() - kMaxSocketsPerGroup, completion_count());
EXPECT_EQ(1, GetOrderOfRequest(1));
EXPECT_EQ(2, GetOrderOfRequest(2));
EXPECT_EQ(3, GetOrderOfRequest(3));
EXPECT_EQ(4, GetOrderOfRequest(4));
EXPECT_EQ(5, GetOrderOfRequest(5));
EXPECT_EQ(6, GetOrderOfRequest(6));
EXPECT_EQ(14, GetOrderOfRequest(7));
EXPECT_EQ(7, GetOrderOfRequest(8));
EXPECT_EQ(ClientSocketPoolTest::kRequestNotFound,
GetOrderOfRequest(9)); // Canceled request.
EXPECT_EQ(9, GetOrderOfRequest(10));
EXPECT_EQ(10, GetOrderOfRequest(11));
EXPECT_EQ(11, GetOrderOfRequest(12));
EXPECT_EQ(8, GetOrderOfRequest(13));
EXPECT_EQ(12, GetOrderOfRequest(14));
EXPECT_EQ(13, GetOrderOfRequest(15));
EXPECT_EQ(15, GetOrderOfRequest(16));
// Make sure we test order of all requests made.
EXPECT_EQ(ClientSocketPoolTest::kIndexOutOfBounds, GetOrderOfRequest(17));
}
class RequestSocketCallback : public CallbackRunner< Tuple1<int> > {
public:
RequestSocketCallback(ClientSocketHandle* handle,
TransportClientSocketPool* pool)
: handle_(handle),
pool_(pool),
within_callback_(false) {}
virtual void RunWithParams(const Tuple1<int>& params) {
callback_.RunWithParams(params);
ASSERT_EQ(OK, params.a);
if (!within_callback_) {
// Don't allow reuse of the socket. Disconnect it and then release it and
// run through the MessageLoop once to get it completely released.
handle_->socket()->Disconnect();
handle_->Reset();
{
MessageLoop::ScopedNestableTaskAllower nestable(
MessageLoop::current());
MessageLoop::current()->RunAllPending();
}
within_callback_ = true;
scoped_refptr<TransportSocketParams> dest(new TransportSocketParams(
HostPortPair("www.google.com", 80), LOWEST, GURL(), false, false));
int rv = handle_->Init("a", dest, LOWEST, this, pool_, BoundNetLog());
EXPECT_EQ(OK, rv);
}
}
int WaitForResult() {
return callback_.WaitForResult();
}
private:
ClientSocketHandle* const handle_;
TransportClientSocketPool* const pool_;
bool within_callback_;
TestCompletionCallback callback_;
};
TEST_F(TransportClientSocketPoolTest, RequestTwice) {
ClientSocketHandle handle;
RequestSocketCallback callback(&handle, &pool_);
scoped_refptr<TransportSocketParams> dest(new TransportSocketParams(
HostPortPair("www.google.com", 80), LOWEST, GURL(), false, false));
int rv = handle.Init("a", dest, LOWEST, &callback, &pool_,
BoundNetLog());
ASSERT_EQ(ERR_IO_PENDING, rv);
// The callback is going to request "www.google.com". We want it to complete
// synchronously this time.
host_resolver_->set_synchronous_mode(true);
EXPECT_EQ(OK, callback.WaitForResult());
handle.Reset();
}
// Make sure that pending requests get serviced after active requests get
// cancelled.
TEST_F(TransportClientSocketPoolTest, CancelActiveRequestWithPendingRequests) {
client_socket_factory_.set_client_socket_type(
MockClientSocketFactory::MOCK_PENDING_CLIENT_SOCKET);
// Queue up all the requests
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority));
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority));
// Now, kMaxSocketsPerGroup requests should be active. Let's cancel them.
ASSERT_LE(kMaxSocketsPerGroup, static_cast<int>(requests()->size()));
for (int i = 0; i < kMaxSocketsPerGroup; i++)
(*requests())[i]->handle()->Reset();
// Let's wait for the rest to complete now.
for (size_t i = kMaxSocketsPerGroup; i < requests()->size(); ++i) {
EXPECT_EQ(OK, (*requests())[i]->WaitForResult());
(*requests())[i]->handle()->Reset();
}
EXPECT_EQ(requests()->size() - kMaxSocketsPerGroup, completion_count());
}
// Make sure that pending requests get serviced after active requests fail.
TEST_F(TransportClientSocketPoolTest, FailingActiveRequestWithPendingRequests) {
client_socket_factory_.set_client_socket_type(
MockClientSocketFactory::MOCK_PENDING_FAILING_CLIENT_SOCKET);
const int kNumRequests = 2 * kMaxSocketsPerGroup + 1;
ASSERT_LE(kNumRequests, kMaxSockets); // Otherwise the test will hang.
// Queue up all the requests
for (int i = 0; i < kNumRequests; i++)
EXPECT_EQ(ERR_IO_PENDING, StartRequest("a", kDefaultPriority));
for (int i = 0; i < kNumRequests; i++)
EXPECT_EQ(ERR_CONNECTION_FAILED, (*requests())[i]->WaitForResult());
}
TEST_F(TransportClientSocketPoolTest, ResetIdleSocketsOnIPAddressChange) {
TestCompletionCallback callback;
ClientSocketHandle handle;
int rv = handle.Init("a", low_params_, LOW, &callback, &pool_, BoundNetLog());
EXPECT_EQ(ERR_IO_PENDING, rv);
EXPECT_FALSE(handle.is_initialized());
EXPECT_FALSE(handle.socket());
EXPECT_EQ(OK, callback.WaitForResult());
EXPECT_TRUE(handle.is_initialized());
EXPECT_TRUE(handle.socket());
handle.Reset();
// Need to run all pending to release the socket back to the pool.
MessageLoop::current()->RunAllPending();
// Now we should have 1 idle socket.
EXPECT_EQ(1, pool_.IdleSocketCount());
// After an IP address change, we should have 0 idle sockets.
NetworkChangeNotifier::NotifyObserversOfIPAddressChangeForTests();
MessageLoop::current()->RunAllPending(); // Notification happens async.
EXPECT_EQ(0, pool_.IdleSocketCount());
}
TEST_F(TransportClientSocketPoolTest, BackupSocketConnect) {
// Case 1 tests the first socket stalling, and the backup connecting.
MockClientSocketFactory::ClientSocketType case1_types[] = {
// The first socket will not connect.
MockClientSocketFactory::MOCK_STALLED_CLIENT_SOCKET,
// The second socket will connect more quickly.
MockClientSocketFactory::MOCK_CLIENT_SOCKET
};
// Case 2 tests the first socket being slow, so that we start the
// second connect, but the second connect stalls, and we still
// complete the first.
MockClientSocketFactory::ClientSocketType case2_types[] = {
// The first socket will connect, although delayed.
MockClientSocketFactory::MOCK_DELAYED_CLIENT_SOCKET,
// The second socket will not connect.
MockClientSocketFactory::MOCK_STALLED_CLIENT_SOCKET
};
MockClientSocketFactory::ClientSocketType* cases[2] = {
case1_types,
case2_types
};
for (size_t index = 0; index < arraysize(cases); ++index) {
client_socket_factory_.set_client_socket_types(cases[index], 2);
EXPECT_EQ(0, pool_.IdleSocketCount());
TestCompletionCallback callback;
ClientSocketHandle handle;
int rv = handle.Init("b", low_params_, LOW, &callback, &pool_,
BoundNetLog());
EXPECT_EQ(ERR_IO_PENDING, rv);
EXPECT_FALSE(handle.is_initialized());
EXPECT_FALSE(handle.socket());
// Create the first socket, set the timer.
MessageLoop::current()->RunAllPending();
// Wait for the backup socket timer to fire.
base::PlatformThread::Sleep(
ClientSocketPool::kMaxConnectRetryIntervalMs + 50);
// Let the appropriate socket connect.
MessageLoop::current()->RunAllPending();
EXPECT_EQ(OK, callback.WaitForResult());
EXPECT_TRUE(handle.is_initialized());
EXPECT_TRUE(handle.socket());
// One socket is stalled, the other is active.
EXPECT_EQ(0, pool_.IdleSocketCount());
handle.Reset();
// Close all pending connect jobs and existing sockets.
pool_.Flush();
}
}
// Test the case where a socket took long enough to start the creation
// of the backup socket, but then we cancelled the request after that.
TEST_F(TransportClientSocketPoolTest, BackupSocketCancel) {
client_socket_factory_.set_client_socket_type(
MockClientSocketFactory::MOCK_STALLED_CLIENT_SOCKET);
enum { CANCEL_BEFORE_WAIT, CANCEL_AFTER_WAIT };
for (int index = CANCEL_BEFORE_WAIT; index < CANCEL_AFTER_WAIT; ++index) {
EXPECT_EQ(0, pool_.IdleSocketCount());
TestCompletionCallback callback;
ClientSocketHandle handle;
int rv = handle.Init("c", low_params_, LOW, &callback, &pool_,
BoundNetLog());
EXPECT_EQ(ERR_IO_PENDING, rv);
EXPECT_FALSE(handle.is_initialized());
EXPECT_FALSE(handle.socket());
// Create the first socket, set the timer.
MessageLoop::current()->RunAllPending();
if (index == CANCEL_AFTER_WAIT) {
// Wait for the backup socket timer to fire.
base::PlatformThread::Sleep(ClientSocketPool::kMaxConnectRetryIntervalMs);
}
// Let the appropriate socket connect.
MessageLoop::current()->RunAllPending();
handle.Reset();
EXPECT_FALSE(callback.have_result());
EXPECT_FALSE(handle.is_initialized());
EXPECT_FALSE(handle.socket());
// One socket is stalled, the other is active.
EXPECT_EQ(0, pool_.IdleSocketCount());
}
}
// Test the case where a socket took long enough to start the creation
// of the backup socket and never completes, and then the backup
// connection fails.
TEST_F(TransportClientSocketPoolTest, BackupSocketFailAfterStall) {
MockClientSocketFactory::ClientSocketType case_types[] = {
// The first socket will not connect.
MockClientSocketFactory::MOCK_STALLED_CLIENT_SOCKET,
// The second socket will fail immediately.
MockClientSocketFactory::MOCK_FAILING_CLIENT_SOCKET
};
client_socket_factory_.set_client_socket_types(case_types, 2);
EXPECT_EQ(0, pool_.IdleSocketCount());
TestCompletionCallback callback;
ClientSocketHandle handle;
int rv = handle.Init("b", low_params_, LOW, &callback, &pool_, BoundNetLog());
EXPECT_EQ(ERR_IO_PENDING, rv);
EXPECT_FALSE(handle.is_initialized());
EXPECT_FALSE(handle.socket());
// Create the first socket, set the timer.
MessageLoop::current()->RunAllPending();
// Wait for the backup socket timer to fire.
base::PlatformThread::Sleep(ClientSocketPool::kMaxConnectRetryIntervalMs);
// Let the second connect be synchronous. Otherwise, the emulated
// host resolution takes an extra trip through the message loop.
host_resolver_->set_synchronous_mode(true);
// Let the appropriate socket connect.
MessageLoop::current()->RunAllPending();
EXPECT_EQ(ERR_CONNECTION_FAILED, callback.WaitForResult());
EXPECT_FALSE(handle.is_initialized());
EXPECT_FALSE(handle.socket());
EXPECT_EQ(0, pool_.IdleSocketCount());
handle.Reset();
// Reset for the next case.
host_resolver_->set_synchronous_mode(false);
}
// Test the case where a socket took long enough to start the creation
// of the backup socket and eventually completes, but the backup socket
// fails.
TEST_F(TransportClientSocketPoolTest, BackupSocketFailAfterDelay) {
MockClientSocketFactory::ClientSocketType case_types[] = {
// The first socket will connect, although delayed.
MockClientSocketFactory::MOCK_DELAYED_CLIENT_SOCKET,
// The second socket will not connect.
MockClientSocketFactory::MOCK_FAILING_CLIENT_SOCKET
};
client_socket_factory_.set_client_socket_types(case_types, 2);
EXPECT_EQ(0, pool_.IdleSocketCount());
TestCompletionCallback callback;
ClientSocketHandle handle;
int rv = handle.Init("b", low_params_, LOW, &callback, &pool_, BoundNetLog());
EXPECT_EQ(ERR_IO_PENDING, rv);
EXPECT_FALSE(handle.is_initialized());
EXPECT_FALSE(handle.socket());
// Create the first socket, set the timer.
MessageLoop::current()->RunAllPending();
// Wait for the backup socket timer to fire.
base::PlatformThread::Sleep(ClientSocketPool::kMaxConnectRetryIntervalMs);
// Let the second connect be synchronous. Otherwise, the emulated
// host resolution takes an extra trip through the message loop.
host_resolver_->set_synchronous_mode(true);
// Let the appropriate socket connect.
MessageLoop::current()->RunAllPending();
EXPECT_EQ(ERR_CONNECTION_FAILED, callback.WaitForResult());
EXPECT_FALSE(handle.is_initialized());
EXPECT_FALSE(handle.socket());
handle.Reset();
// Reset for the next case.
host_resolver_->set_synchronous_mode(false);
}
// Test the case of the IPv6 address stalling, and falling back to the IPv4
// socket which finishes first.
TEST_F(TransportClientSocketPoolTest, IPv6FallbackSocketIPv4FinishesFirst) {
// Create a pool without backup jobs.
ClientSocketPoolBaseHelper::set_connect_backup_jobs_enabled(false);
TransportClientSocketPool pool(kMaxSockets,
kMaxSocketsPerGroup,
histograms_.get(),
host_resolver_.get(),
&client_socket_factory_,
NULL);
MockClientSocketFactory::ClientSocketType case_types[] = {
// This is the IPv6 socket.
MockClientSocketFactory::MOCK_STALLED_CLIENT_SOCKET,
// This is the IPv4 socket.
MockClientSocketFactory::MOCK_PENDING_CLIENT_SOCKET
};
client_socket_factory_.set_client_socket_types(case_types, 2);
// Resolve an AddressList with a IPv6 address first and then a IPv4 address.
host_resolver_->rules()->AddIPLiteralRule(
"*", "2:abcd::3:4:ff,2.2.2.2", "");
TestCompletionCallback callback;
ClientSocketHandle handle;
int rv = handle.Init("a", low_params_, LOW, &callback, &pool, BoundNetLog());
EXPECT_EQ(ERR_IO_PENDING, rv);
EXPECT_FALSE(handle.is_initialized());
EXPECT_FALSE(handle.socket());
EXPECT_EQ(OK, callback.WaitForResult());
EXPECT_TRUE(handle.is_initialized());
EXPECT_TRUE(handle.socket());
IPEndPoint endpoint;
handle.socket()->GetLocalAddress(&endpoint);
EXPECT_EQ(kIPv4AddressSize, endpoint.address().size());
EXPECT_EQ(2, client_socket_factory_.allocation_count());
}
// Test the case of the IPv6 address being slow, thus falling back to trying to
// connect to the IPv4 address, but having the connect to the IPv6 address
// finish first.
TEST_F(TransportClientSocketPoolTest, IPv6FallbackSocketIPv6FinishesFirst) {
// Create a pool without backup jobs.
ClientSocketPoolBaseHelper::set_connect_backup_jobs_enabled(false);
TransportClientSocketPool pool(kMaxSockets,
kMaxSocketsPerGroup,
histograms_.get(),
host_resolver_.get(),
&client_socket_factory_,
NULL);
MockClientSocketFactory::ClientSocketType case_types[] = {
// This is the IPv6 socket.
MockClientSocketFactory::MOCK_DELAYED_CLIENT_SOCKET,
// This is the IPv4 socket.
MockClientSocketFactory::MOCK_STALLED_CLIENT_SOCKET
};
client_socket_factory_.set_client_socket_types(case_types, 2);
client_socket_factory_.set_delay_ms(
TransportConnectJob::kIPv6FallbackTimerInMs + 50);
// Resolve an AddressList with a IPv6 address first and then a IPv4 address.
host_resolver_->rules()->AddIPLiteralRule(
"*", "2:abcd::3:4:ff,2.2.2.2", "");
TestCompletionCallback callback;
ClientSocketHandle handle;
int rv = handle.Init("a", low_params_, LOW, &callback, &pool, BoundNetLog());
EXPECT_EQ(ERR_IO_PENDING, rv);
EXPECT_FALSE(handle.is_initialized());
EXPECT_FALSE(handle.socket());
EXPECT_EQ(OK, callback.WaitForResult());
EXPECT_TRUE(handle.is_initialized());
EXPECT_TRUE(handle.socket());
IPEndPoint endpoint;
handle.socket()->GetLocalAddress(&endpoint);
EXPECT_EQ(kIPv6AddressSize, endpoint.address().size());
EXPECT_EQ(2, client_socket_factory_.allocation_count());
}
TEST_F(TransportClientSocketPoolTest, IPv6NoIPv4AddressesToFallbackTo) {
// Create a pool without backup jobs.
ClientSocketPoolBaseHelper::set_connect_backup_jobs_enabled(false);
TransportClientSocketPool pool(kMaxSockets,
kMaxSocketsPerGroup,
histograms_.get(),
host_resolver_.get(),
&client_socket_factory_,
NULL);
client_socket_factory_.set_client_socket_type(
MockClientSocketFactory::MOCK_DELAYED_CLIENT_SOCKET);
// Resolve an AddressList with only IPv6 addresses.
host_resolver_->rules()->AddIPLiteralRule(
"*", "2:abcd::3:4:ff,3:abcd::3:4:ff", "");
TestCompletionCallback callback;
ClientSocketHandle handle;
int rv = handle.Init("a", low_params_, LOW, &callback, &pool, BoundNetLog());
EXPECT_EQ(ERR_IO_PENDING, rv);
EXPECT_FALSE(handle.is_initialized());
EXPECT_FALSE(handle.socket());
EXPECT_EQ(OK, callback.WaitForResult());
EXPECT_TRUE(handle.is_initialized());
EXPECT_TRUE(handle.socket());
IPEndPoint endpoint;
handle.socket()->GetLocalAddress(&endpoint);
EXPECT_EQ(kIPv6AddressSize, endpoint.address().size());
EXPECT_EQ(1, client_socket_factory_.allocation_count());
}
TEST_F(TransportClientSocketPoolTest, IPv4HasNoFallback) {
// Create a pool without backup jobs.
ClientSocketPoolBaseHelper::set_connect_backup_jobs_enabled(false);
TransportClientSocketPool pool(kMaxSockets,
kMaxSocketsPerGroup,
histograms_.get(),
host_resolver_.get(),
&client_socket_factory_,
NULL);
client_socket_factory_.set_client_socket_type(
MockClientSocketFactory::MOCK_DELAYED_CLIENT_SOCKET);
// Resolve an AddressList with only IPv4 addresses.
host_resolver_->rules()->AddIPLiteralRule(
"*", "1.1.1.1", "");
TestCompletionCallback callback;
ClientSocketHandle handle;
int rv = handle.Init("a", low_params_, LOW, &callback, &pool, BoundNetLog());
EXPECT_EQ(ERR_IO_PENDING, rv);
EXPECT_FALSE(handle.is_initialized());
EXPECT_FALSE(handle.socket());
EXPECT_EQ(OK, callback.WaitForResult());
EXPECT_TRUE(handle.is_initialized());
EXPECT_TRUE(handle.socket());
IPEndPoint endpoint;
handle.socket()->GetLocalAddress(&endpoint);
EXPECT_EQ(kIPv4AddressSize, endpoint.address().size());
EXPECT_EQ(1, client_socket_factory_.allocation_count());
}
} // namespace
} // namespace net