// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/base/x509_certificate.h"
#include <openssl/asn1.h>
#include <openssl/crypto.h>
#include <openssl/obj_mac.h>
#include <openssl/pem.h>
#include <openssl/pkcs7.h>
#include <openssl/sha.h>
#include <openssl/ssl.h>
#include <openssl/x509v3.h>
#include "base/memory/singleton.h"
#include "base/pickle.h"
#include "base/sha1.h"
#include "base/string_number_conversions.h"
#include "crypto/openssl_util.h"
#include "net/base/asn1_util.h"
#include "net/base/cert_status_flags.h"
#include "net/base/cert_verify_result.h"
#include "net/base/net_errors.h"
#include "net/base/x509_openssl_util.h"
namespace net {
namespace nxou = net::x509_openssl_util;
namespace {
void CreateOSCertHandlesFromPKCS7Bytes(
const char* data, int length,
X509Certificate::OSCertHandles* handles) {
crypto::EnsureOpenSSLInit();
const unsigned char* der_data = reinterpret_cast<const unsigned char*>(data);
crypto::ScopedOpenSSL<PKCS7, PKCS7_free> pkcs7_cert(
d2i_PKCS7(NULL, &der_data, length));
if (!pkcs7_cert.get())
return;
STACK_OF(X509)* certs = NULL;
int nid = OBJ_obj2nid(pkcs7_cert.get()->type);
if (nid == NID_pkcs7_signed) {
certs = pkcs7_cert.get()->d.sign->cert;
} else if (nid == NID_pkcs7_signedAndEnveloped) {
certs = pkcs7_cert.get()->d.signed_and_enveloped->cert;
}
if (certs) {
for (int i = 0; i < sk_X509_num(certs); ++i) {
X509* x509_cert =
X509Certificate::DupOSCertHandle(sk_X509_value(certs, i));
handles->push_back(x509_cert);
}
}
}
void ParsePrincipalValues(X509_NAME* name,
int nid,
std::vector<std::string>* fields) {
for (int index = -1;
(index = X509_NAME_get_index_by_NID(name, nid, index)) != -1;) {
std::string field;
if (!nxou::ParsePrincipalValueByIndex(name, index, &field))
break;
fields->push_back(field);
}
}
void ParsePrincipal(X509Certificate::OSCertHandle cert,
X509_NAME* x509_name,
CertPrincipal* principal) {
if (!x509_name)
return;
ParsePrincipalValues(x509_name, NID_streetAddress,
&principal->street_addresses);
ParsePrincipalValues(x509_name, NID_organizationName,
&principal->organization_names);
ParsePrincipalValues(x509_name, NID_organizationalUnitName,
&principal->organization_unit_names);
ParsePrincipalValues(x509_name, NID_domainComponent,
&principal->domain_components);
nxou::ParsePrincipalValueByNID(x509_name, NID_commonName,
&principal->common_name);
nxou::ParsePrincipalValueByNID(x509_name, NID_localityName,
&principal->locality_name);
nxou::ParsePrincipalValueByNID(x509_name, NID_stateOrProvinceName,
&principal->state_or_province_name);
nxou::ParsePrincipalValueByNID(x509_name, NID_countryName,
&principal->country_name);
}
void ParseSubjectAltNames(X509Certificate::OSCertHandle cert,
std::vector<std::string>* dns_names) {
int index = X509_get_ext_by_NID(cert, NID_subject_alt_name, -1);
X509_EXTENSION* alt_name_ext = X509_get_ext(cert, index);
if (!alt_name_ext)
return;
crypto::ScopedOpenSSL<GENERAL_NAMES, GENERAL_NAMES_free> alt_names(
reinterpret_cast<GENERAL_NAMES*>(X509V3_EXT_d2i(alt_name_ext)));
if (!alt_names.get())
return;
for (int i = 0; i < sk_GENERAL_NAME_num(alt_names.get()); ++i) {
const GENERAL_NAME* name = sk_GENERAL_NAME_value(alt_names.get(), i);
if (name->type == GEN_DNS) {
unsigned char* dns_name = ASN1_STRING_data(name->d.dNSName);
if (!dns_name)
continue;
int dns_name_len = ASN1_STRING_length(name->d.dNSName);
dns_names->push_back(
std::string(reinterpret_cast<char*>(dns_name), dns_name_len));
}
}
}
// Maps X509_STORE_CTX_get_error() return values to our cert status flags.
int MapCertErrorToCertStatus(int err) {
switch (err) {
case X509_V_ERR_SUBJECT_ISSUER_MISMATCH:
return CERT_STATUS_COMMON_NAME_INVALID;
case X509_V_ERR_CERT_NOT_YET_VALID:
case X509_V_ERR_CERT_HAS_EXPIRED:
case X509_V_ERR_CRL_NOT_YET_VALID:
case X509_V_ERR_CRL_HAS_EXPIRED:
case X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD:
case X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD:
case X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD:
case X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD:
return CERT_STATUS_DATE_INVALID;
case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT:
case X509_V_ERR_UNABLE_TO_GET_CRL:
case X509_V_ERR_INVALID_CA:
case X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER:
case X509_V_ERR_INVALID_NON_CA:
case X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT:
case X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN:
case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY:
return CERT_STATUS_AUTHORITY_INVALID;
#if 0
// TODO(bulach): what should we map to these status?
return CERT_STATUS_NO_REVOCATION_MECHANISM;
return CERT_STATUS_UNABLE_TO_CHECK_REVOCATION;
return CERT_STATUS_NOT_IN_DNS;
#endif
case X509_V_ERR_CERT_REVOKED:
return CERT_STATUS_REVOKED;
case X509_V_ERR_KEYUSAGE_NO_CERTSIGN:
return CERT_STATUS_WEAK_SIGNATURE_ALGORITHM;
// All these status are mapped to CERT_STATUS_INVALID.
case X509_V_ERR_UNABLE_TO_DECRYPT_CERT_SIGNATURE:
case X509_V_ERR_UNABLE_TO_DECRYPT_CRL_SIGNATURE:
case X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY:
case X509_V_ERR_CERT_SIGNATURE_FAILURE:
case X509_V_ERR_CRL_SIGNATURE_FAILURE:
case X509_V_ERR_OUT_OF_MEM:
case X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE:
case X509_V_ERR_CERT_CHAIN_TOO_LONG:
case X509_V_ERR_PATH_LENGTH_EXCEEDED:
case X509_V_ERR_INVALID_PURPOSE:
case X509_V_ERR_CERT_UNTRUSTED:
case X509_V_ERR_CERT_REJECTED:
case X509_V_ERR_AKID_SKID_MISMATCH:
case X509_V_ERR_AKID_ISSUER_SERIAL_MISMATCH:
case X509_V_ERR_UNHANDLED_CRITICAL_EXTENSION:
case X509_V_ERR_KEYUSAGE_NO_CRL_SIGN:
case X509_V_ERR_UNHANDLED_CRITICAL_CRL_EXTENSION:
case X509_V_ERR_PROXY_PATH_LENGTH_EXCEEDED:
case X509_V_ERR_KEYUSAGE_NO_DIGITAL_SIGNATURE:
case X509_V_ERR_PROXY_CERTIFICATES_NOT_ALLOWED:
case X509_V_ERR_INVALID_EXTENSION:
case X509_V_ERR_INVALID_POLICY_EXTENSION:
case X509_V_ERR_NO_EXPLICIT_POLICY:
case X509_V_ERR_UNNESTED_RESOURCE:
case X509_V_ERR_APPLICATION_VERIFICATION:
return CERT_STATUS_INVALID;
default:
NOTREACHED() << "Invalid X509 err " << err;
return CERT_STATUS_INVALID;
}
}
// sk_X509_free is a function-style macro, so can't be used as a template
// param directly.
void sk_X509_free_fn(STACK_OF(X509)* st) {
sk_X509_free(st);
}
struct DERCache {
unsigned char* data;
int data_length;
};
void DERCache_free(void* parent, void* ptr, CRYPTO_EX_DATA* ad, int idx,
long argl, void* argp) {
DERCache* der_cache = static_cast<DERCache*>(ptr);
if (!der_cache)
return;
if (der_cache->data)
OPENSSL_free(der_cache->data);
OPENSSL_free(der_cache);
}
class X509InitSingleton {
public:
static X509InitSingleton* GetInstance() {
// We allow the X509 store to leak, because it is used from a non-joinable
// worker that is not stopped on shutdown, hence may still be using
// OpenSSL library after the AtExit runner has completed.
return Singleton<X509InitSingleton,
LeakySingletonTraits<X509InitSingleton> >::get();
}
int der_cache_ex_index() const { return der_cache_ex_index_; }
X509_STORE* store() const { return store_.get(); }
void ResetCertStore() {
store_.reset(X509_STORE_new());
DCHECK(store_.get());
X509_STORE_set_default_paths(store_.get());
// TODO(joth): Enable CRL (see X509_STORE_set_flags(X509_V_FLAG_CRL_CHECK)).
}
private:
friend struct DefaultSingletonTraits<X509InitSingleton>;
X509InitSingleton() {
crypto::EnsureOpenSSLInit();
der_cache_ex_index_ = X509_get_ex_new_index(0, 0, 0, 0, DERCache_free);
DCHECK_NE(der_cache_ex_index_, -1);
ResetCertStore();
}
int der_cache_ex_index_;
crypto::ScopedOpenSSL<X509_STORE, X509_STORE_free> store_;
DISALLOW_COPY_AND_ASSIGN(X509InitSingleton);
};
// Takes ownership of |data| (which must have been allocated by OpenSSL).
DERCache* SetDERCache(X509Certificate::OSCertHandle cert,
int x509_der_cache_index,
unsigned char* data,
int data_length) {
DERCache* internal_cache = static_cast<DERCache*>(
OPENSSL_malloc(sizeof(*internal_cache)));
if (!internal_cache) {
// We took ownership of |data|, so we must free if we can't add it to
// |cert|.
OPENSSL_free(data);
return NULL;
}
internal_cache->data = data;
internal_cache->data_length = data_length;
X509_set_ex_data(cert, x509_der_cache_index, internal_cache);
return internal_cache;
}
// Returns true if |der_cache| points to valid data, false otherwise.
// (note: the DER-encoded data in |der_cache| is owned by |cert|, callers should
// not free it).
bool GetDERAndCacheIfNeeded(X509Certificate::OSCertHandle cert,
DERCache* der_cache) {
int x509_der_cache_index =
X509InitSingleton::GetInstance()->der_cache_ex_index();
// Re-encoding the DER data via i2d_X509 is an expensive operation, but it's
// necessary for comparing two certificates. We re-encode at most once per
// certificate and cache the data within the X509 cert using X509_set_ex_data.
DERCache* internal_cache = static_cast<DERCache*>(
X509_get_ex_data(cert, x509_der_cache_index));
if (!internal_cache) {
unsigned char* data = NULL;
int data_length = i2d_X509(cert, &data);
if (data_length <= 0 || !data)
return false;
internal_cache = SetDERCache(cert, x509_der_cache_index, data, data_length);
if (!internal_cache)
return false;
}
*der_cache = *internal_cache;
return true;
}
} // namespace
// static
X509Certificate::OSCertHandle X509Certificate::DupOSCertHandle(
OSCertHandle cert_handle) {
DCHECK(cert_handle);
// Using X509_dup causes the entire certificate to be reparsed. This
// conversion, besides being non-trivial, drops any associated
// application-specific data set by X509_set_ex_data. Using CRYPTO_add
// just bumps up the ref-count for the cert, without causing any allocations
// or deallocations.
CRYPTO_add(&cert_handle->references, 1, CRYPTO_LOCK_X509);
return cert_handle;
}
// static
void X509Certificate::FreeOSCertHandle(OSCertHandle cert_handle) {
// Decrement the ref-count for the cert and, if all references are gone,
// free the memory and any application-specific data associated with the
// certificate.
X509_free(cert_handle);
}
void X509Certificate::Initialize() {
crypto::EnsureOpenSSLInit();
fingerprint_ = CalculateFingerprint(cert_handle_);
ASN1_INTEGER* num = X509_get_serialNumber(cert_handle_);
if (num) {
serial_number_ = std::string(
reinterpret_cast<char*>(num->data),
num->length);
// Remove leading zeros.
while (serial_number_.size() > 1 && serial_number_[0] == 0)
serial_number_ = serial_number_.substr(1, serial_number_.size() - 1);
}
ParsePrincipal(cert_handle_, X509_get_subject_name(cert_handle_), &subject_);
ParsePrincipal(cert_handle_, X509_get_issuer_name(cert_handle_), &issuer_);
nxou::ParseDate(X509_get_notBefore(cert_handle_), &valid_start_);
nxou::ParseDate(X509_get_notAfter(cert_handle_), &valid_expiry_);
}
// static
void X509Certificate::ResetCertStore() {
X509InitSingleton::GetInstance()->ResetCertStore();
}
SHA1Fingerprint X509Certificate::CalculateFingerprint(OSCertHandle cert) {
SHA1Fingerprint sha1;
unsigned int sha1_size = static_cast<unsigned int>(sizeof(sha1.data));
int ret = X509_digest(cert, EVP_sha1(), sha1.data, &sha1_size);
CHECK(ret);
CHECK_EQ(sha1_size, sizeof(sha1.data));
return sha1;
}
// static
X509Certificate::OSCertHandle X509Certificate::CreateOSCertHandleFromBytes(
const char* data, int length) {
if (length < 0)
return NULL;
crypto::EnsureOpenSSLInit();
const unsigned char* d2i_data =
reinterpret_cast<const unsigned char*>(data);
// Don't cache this data via SetDERCache as this wire format may be not be
// identical from the i2d_X509 roundtrip.
X509* cert = d2i_X509(NULL, &d2i_data, length);
return cert;
}
// static
X509Certificate::OSCertHandles X509Certificate::CreateOSCertHandlesFromBytes(
const char* data, int length, Format format) {
OSCertHandles results;
if (length < 0)
return results;
switch (format) {
case FORMAT_SINGLE_CERTIFICATE: {
OSCertHandle handle = CreateOSCertHandleFromBytes(data, length);
if (handle)
results.push_back(handle);
break;
}
case FORMAT_PKCS7: {
CreateOSCertHandlesFromPKCS7Bytes(data, length, &results);
break;
}
default: {
NOTREACHED() << "Certificate format " << format << " unimplemented";
break;
}
}
return results;
}
// static
X509Certificate* X509Certificate::CreateSelfSigned(
crypto::RSAPrivateKey* key,
const std::string& subject,
uint32 serial_number,
base::TimeDelta valid_duration) {
// TODO(port): Implement.
return NULL;
}
void X509Certificate::GetDNSNames(std::vector<std::string>* dns_names) const {
dns_names->clear();
ParseSubjectAltNames(cert_handle_, dns_names);
if (dns_names->empty())
dns_names->push_back(subject_.common_name);
}
// static
X509_STORE* X509Certificate::cert_store() {
return X509InitSingleton::GetInstance()->store();
}
#ifndef ANDROID
int X509Certificate::Verify(const std::string& hostname,
int flags,
CertVerifyResult* verify_result) const {
verify_result->Reset();
if (IsBlacklisted()) {
verify_result->cert_status |= CERT_STATUS_REVOKED;
return ERR_CERT_REVOKED;
}
// TODO(joth): We should fetch the subjectAltNames directly rather than via
// GetDNSNames, so we can apply special handling for IP addresses vs DNS
// names, etc. See http://crbug.com/62973.
std::vector<std::string> cert_names;
GetDNSNames(&cert_names);
if (!VerifyHostname(hostname, cert_names))
verify_result->cert_status |= CERT_STATUS_COMMON_NAME_INVALID;
crypto::ScopedOpenSSL<X509_STORE_CTX, X509_STORE_CTX_free> ctx(
X509_STORE_CTX_new());
crypto::ScopedOpenSSL<STACK_OF(X509), sk_X509_free_fn> intermediates(
sk_X509_new_null());
if (!intermediates.get())
return ERR_OUT_OF_MEMORY;
for (OSCertHandles::const_iterator it = intermediate_ca_certs_.begin();
it != intermediate_ca_certs_.end(); ++it) {
if (!sk_X509_push(intermediates.get(), *it))
return ERR_OUT_OF_MEMORY;
}
int rv = X509_STORE_CTX_init(ctx.get(), cert_store(),
cert_handle_, intermediates.get());
CHECK_EQ(1, rv);
if (X509_verify_cert(ctx.get()) != 1) {
int x509_error = X509_STORE_CTX_get_error(ctx.get());
int cert_status = MapCertErrorToCertStatus(x509_error);
LOG(ERROR) << "X509 Verification error "
<< X509_verify_cert_error_string(x509_error)
<< " : " << x509_error
<< " : " << X509_STORE_CTX_get_error_depth(ctx.get())
<< " : " << cert_status;
verify_result->cert_status |= cert_status;
}
if (IsCertStatusError(verify_result->cert_status))
return MapCertStatusToNetError(verify_result->cert_status);
STACK_OF(X509)* chain = X509_STORE_CTX_get_chain(ctx.get());
for (int i = 0; i < sk_X509_num(chain); ++i) {
X509* cert = sk_X509_value(chain, i);
DERCache der_cache;
if (!GetDERAndCacheIfNeeded(cert, &der_cache))
continue;
base::StringPiece der_bytes(reinterpret_cast<const char*>(der_cache.data),
der_cache.data_length);
base::StringPiece spki_bytes;
if (!asn1::ExtractSPKIFromDERCert(der_bytes, &spki_bytes))
continue;
SHA1Fingerprint hash;
base::SHA1HashBytes(reinterpret_cast<const uint8*>(spki_bytes.data()),
spki_bytes.size(), hash.data);
verify_result->public_key_hashes.push_back(hash);
}
if (IsPublicKeyBlacklisted(verify_result->public_key_hashes)) {
verify_result->cert_status |= CERT_STATUS_AUTHORITY_INVALID;
return MapCertStatusToNetError(verify_result->cert_status);
}
// Currently we only ues OpenSSL's default root CA paths, so treat all
// correctly verified certs as being from a known root. TODO(joth): if the
// motivations described in http://src.chromium.org/viewvc/chrome?view=rev&revision=80778
// become an issue on OpenSSL builds, we will need to embed a hardcoded list
// of well known root CAs, as per the _mac and _win versions.
verify_result->is_issued_by_known_root = true;
return OK;
}
bool X509Certificate::GetDEREncoded(std::string* encoded) {
DERCache der_cache;
if (!GetDERAndCacheIfNeeded(cert_handle_, &der_cache))
return false;
encoded->assign(reinterpret_cast<const char*>(der_cache.data),
der_cache.data_length);
return true;
}
#endif
// static
bool X509Certificate::IsSameOSCert(X509Certificate::OSCertHandle a,
X509Certificate::OSCertHandle b) {
DCHECK(a && b);
if (a == b)
return true;
// X509_cmp only checks the fingerprint, but we want to compare the whole
// DER data. Encoding it from OSCertHandle is an expensive operation, so we
// cache the DER (if not already cached via X509_set_ex_data).
DERCache der_cache_a, der_cache_b;
return GetDERAndCacheIfNeeded(a, &der_cache_a) &&
GetDERAndCacheIfNeeded(b, &der_cache_b) &&
der_cache_a.data_length == der_cache_b.data_length &&
memcmp(der_cache_a.data, der_cache_b.data, der_cache_a.data_length) == 0;
}
// static
X509Certificate::OSCertHandle
X509Certificate::ReadCertHandleFromPickle(const Pickle& pickle,
void** pickle_iter) {
const char* data;
int length;
if (!pickle.ReadData(pickle_iter, &data, &length))
return NULL;
return CreateOSCertHandleFromBytes(data, length);
}
// static
bool X509Certificate::WriteCertHandleToPickle(OSCertHandle cert_handle,
Pickle* pickle) {
DERCache der_cache;
if (!GetDERAndCacheIfNeeded(cert_handle, &der_cache))
return false;
return pickle->WriteData(
reinterpret_cast<const char*>(der_cache.data),
der_cache.data_length);
}
#if defined(ANDROID)
// static
std::string X509Certificate::GetDEREncodedBytes(OSCertHandle handle) {
DERCache der_cache = {0};
GetDERAndCacheIfNeeded(handle, &der_cache);
return std::string(reinterpret_cast<const char*>(der_cache.data),
der_cache.data_length);
}
#endif
#if defined(ANDROID)
void X509Certificate::GetChainDEREncodedBytes(
std::vector<std::string>* chain_bytes) const {
OSCertHandles cert_handles(intermediate_ca_certs_);
// Make sure the peer's own cert is the first in the chain, if it's not
// already there.
if (cert_handles.empty() || cert_handles[0] != cert_handle_)
cert_handles.insert(cert_handles.begin(), cert_handle_);
chain_bytes->reserve(cert_handles.size());
for (OSCertHandles::const_iterator it = cert_handles.begin();
it != cert_handles.end(); ++it) {
DERCache der_cache = {0};
GetDERAndCacheIfNeeded(*it, &der_cache);
std::string cert_bytes = std::string(
reinterpret_cast<const char*>(der_cache.data), der_cache.data_length);
chain_bytes->push_back(cert_bytes);
}
}
#endif
} // namespace net