// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Detecting mime types is a tricky business because we need to balance
// compatibility concerns with security issues. Here is a survey of how other
// browsers behave and then a description of how we intend to behave.
//
// HTML payload, no Content-Type header:
// * IE 7: Render as HTML
// * Firefox 2: Render as HTML
// * Safari 3: Render as HTML
// * Opera 9: Render as HTML
//
// Here the choice seems clear:
// => Chrome: Render as HTML
//
// HTML payload, Content-Type: "text/plain":
// * IE 7: Render as HTML
// * Firefox 2: Render as text
// * Safari 3: Render as text (Note: Safari will Render as HTML if the URL
// has an HTML extension)
// * Opera 9: Render as text
//
// Here we choose to follow the majority (and break some compatibility with IE).
// Many folks dislike IE's behavior here.
// => Chrome: Render as text
// We generalize this as follows. If the Content-Type header is text/plain
// we won't detect dangerous mime types (those that can execute script).
//
// HTML payload, Content-Type: "application/octet-stream":
// * IE 7: Render as HTML
// * Firefox 2: Download as application/octet-stream
// * Safari 3: Render as HTML
// * Opera 9: Render as HTML
//
// We follow Firefox.
// => Chrome: Download as application/octet-stream
// One factor in this decision is that IIS 4 and 5 will send
// application/octet-stream for .xhtml files (because they don't recognize
// the extension). We did some experiments and it looks like this doesn't occur
// very often on the web. We choose the more secure option.
//
// GIF payload, no Content-Type header:
// * IE 7: Render as GIF
// * Firefox 2: Render as GIF
// * Safari 3: Download as Unknown (Note: Safari will Render as GIF if the
// URL has an GIF extension)
// * Opera 9: Render as GIF
//
// The choice is clear.
// => Chrome: Render as GIF
// Once we decide to render HTML without a Content-Type header, there isn't much
// reason not to render GIFs.
//
// GIF payload, Content-Type: "text/plain":
// * IE 7: Render as GIF
// * Firefox 2: Download as application/octet-stream (Note: Firefox will
// Download as GIF if the URL has an GIF extension)
// * Safari 3: Download as Unknown (Note: Safari will Render as GIF if the
// URL has an GIF extension)
// * Opera 9: Render as GIF
//
// Displaying as text/plain makes little sense as the content will look like
// gibberish. Here, we could change our minds and download.
// => Chrome: Render as GIF
//
// GIF payload, Content-Type: "application/octet-stream":
// * IE 7: Render as GIF
// * Firefox 2: Download as application/octet-stream (Note: Firefox will
// Download as GIF if the URL has an GIF extension)
// * Safari 3: Download as Unknown (Note: Safari will Render as GIF if the
// URL has an GIF extension)
// * Opera 9: Render as GIF
//
// We used to render as GIF here, but the problem is that some sites want to
// trigger downloads by sending application/octet-stream (even though they
// should be sending Content-Disposition: attachment). Although it is safe
// to render as GIF from a security perspective, we actually get better
// compatibility if we don't sniff from application/octet stream at all.
// => Chrome: Download as application/octet-stream
//
// XHTML payload, Content-Type: "text/xml":
// * IE 7: Render as XML
// * Firefox 2: Render as HTML
// * Safari 3: Render as HTML
// * Opera 9: Render as HTML
// The layout tests rely on us rendering this as HTML.
// But we're conservative in XHTML detection, as this runs afoul of the
// "don't detect dangerous mime types" rule.
//
// Note that our definition of HTML payload is much stricter than IE's
// definition and roughly the same as Firefox's definition.
#include <string>
#include "net/base/mime_sniffer.h"
#include "base/basictypes.h"
#include "base/logging.h"
#include "base/metrics/histogram.h"
#include "base/string_util.h"
#include "googleurl/src/gurl.h"
#include "net/base/mime_util.h"
namespace net {
// The number of content bytes we need to use all our magic numbers. Feel free
// to increase this number if you add a longer magic number.
static const size_t kBytesRequiredForMagic = 42;
struct MagicNumber {
const char* mime_type;
const char* magic;
size_t magic_len;
bool is_string;
};
#define MAGIC_NUMBER(mime_type, magic) \
{ (mime_type), (magic), sizeof(magic)-1, false },
// Magic strings are case insensitive and must not include '\0' characters
#define MAGIC_STRING(mime_type, magic) \
{ (mime_type), (magic), sizeof(magic)-1, true },
static const MagicNumber kMagicNumbers[] = {
// Source: HTML 5 specification
MAGIC_NUMBER("application/pdf", "%PDF-")
MAGIC_NUMBER("application/postscript", "%!PS-Adobe-")
MAGIC_NUMBER("image/gif", "GIF87a")
MAGIC_NUMBER("image/gif", "GIF89a")
MAGIC_NUMBER("image/png", "\x89" "PNG\x0D\x0A\x1A\x0A")
MAGIC_NUMBER("image/jpeg", "\xFF\xD8\xFF")
MAGIC_NUMBER("image/bmp", "BM")
// Source: Mozilla
MAGIC_NUMBER("text/plain", "#!") // Script
MAGIC_NUMBER("text/plain", "%!") // Script, similar to PS
MAGIC_NUMBER("text/plain", "From")
MAGIC_NUMBER("text/plain", ">From")
// Chrome specific
MAGIC_NUMBER("application/x-gzip", "\x1F\x8B\x08")
MAGIC_NUMBER("audio/x-pn-realaudio", "\x2E\x52\x4D\x46")
MAGIC_NUMBER("video/x-ms-asf",
"\x30\x26\xB2\x75\x8E\x66\xCF\x11\xA6\xD9\x00\xAA\x00\x62\xCE\x6C")
MAGIC_NUMBER("image/tiff", "I I")
MAGIC_NUMBER("image/tiff", "II*")
MAGIC_NUMBER("image/tiff", "MM\x00*")
MAGIC_NUMBER("audio/mpeg", "ID3")
MAGIC_NUMBER("image/webp", "RIFF....WEBPVP8 ")
MAGIC_NUMBER("video/webm", "\x1A\x45\xDF\xA3")
// TODO(abarth): we don't handle partial byte matches yet
// MAGIC_NUMBER("video/mpeg", "\x00\x00\x01\xB")
// MAGIC_NUMBER("audio/mpeg", "\xFF\xE")
// MAGIC_NUMBER("audio/mpeg", "\xFF\xF")
MAGIC_NUMBER("application/zip", "PK\x03\x04")
MAGIC_NUMBER("application/x-rar-compressed", "Rar!\x1A\x07\x00")
MAGIC_NUMBER("application/x-msmetafile", "\xD7\xCD\xC6\x9A")
MAGIC_NUMBER("application/octet-stream", "MZ") // EXE
// Sniffing for Flash:
//
// MAGIC_NUMBER("application/x-shockwave-flash", "CWS")
// MAGIC_NUMBER("application/x-shockwave-flash", "FLV")
// MAGIC_NUMBER("application/x-shockwave-flash", "FWS")
//
// Including these magic number for Flash is a trade off.
//
// Pros:
// * Flash is an important and popular file format
//
// Cons:
// * These patterns are fairly weak
// * If we mistakenly decide something is Flash, we will execute it
// in the origin of an unsuspecting site. This could be a security
// vulnerability if the site allows users to upload content.
//
// On balance, we do not include these patterns.
};
// Our HTML sniffer differs slightly from Mozilla. For example, Mozilla will
// decide that a document that begins "<!DOCTYPE SOAP-ENV:Envelope PUBLIC " is
// HTML, but we will not.
#define MAGIC_HTML_TAG(tag) \
MAGIC_STRING("text/html", "<" tag)
static const MagicNumber kSniffableTags[] = {
// XML processing directive. Although this is not an HTML mime type, we sniff
// for this in the HTML phase because text/xml is just as powerful as HTML and
// we want to leverage our white space skipping technology.
MAGIC_NUMBER("text/xml", "<?xml") // Mozilla
// DOCTYPEs
MAGIC_HTML_TAG("!DOCTYPE html") // HTML5 spec
// Sniffable tags, ordered by how often they occur in sniffable documents.
MAGIC_HTML_TAG("script") // HTML5 spec, Mozilla
MAGIC_HTML_TAG("html") // HTML5 spec, Mozilla
MAGIC_HTML_TAG("!--")
MAGIC_HTML_TAG("head") // HTML5 spec, Mozilla
MAGIC_HTML_TAG("iframe") // Mozilla
MAGIC_HTML_TAG("h1") // Mozilla
MAGIC_HTML_TAG("div") // Mozilla
MAGIC_HTML_TAG("font") // Mozilla
MAGIC_HTML_TAG("table") // Mozilla
MAGIC_HTML_TAG("a") // Mozilla
MAGIC_HTML_TAG("style") // Mozilla
MAGIC_HTML_TAG("title") // Mozilla
MAGIC_HTML_TAG("b") // Mozilla
MAGIC_HTML_TAG("body") // Mozilla
MAGIC_HTML_TAG("br")
MAGIC_HTML_TAG("p") // Mozilla
};
static base::Histogram* UMASnifferHistogramGet(const char* name,
int array_size) {
base::Histogram* counter =
base::LinearHistogram::FactoryGet(name, 1, array_size - 1, array_size,
base::Histogram::kUmaTargetedHistogramFlag);
return counter;
}
// Compare content header to a magic number where magic_entry can contain '.'
// for single character of anything, allowing some bytes to be skipped.
static bool MagicCmp(const char* magic_entry, const char* content, size_t len) {
while (len) {
if ((*magic_entry != '.') && (*magic_entry != *content))
return false;
++magic_entry;
++content;
--len;
}
return true;
}
static bool MatchMagicNumber(const char* content, size_t size,
const MagicNumber* magic_entry,
std::string* result) {
const size_t len = magic_entry->magic_len;
// Keep kBytesRequiredForMagic honest.
DCHECK_LE(len, kBytesRequiredForMagic);
// To compare with magic strings, we need to compute strlen(content), but
// content might not actually have a null terminator. In that case, we
// pretend the length is content_size.
const char* end =
static_cast<const char*>(memchr(content, '\0', size));
const size_t content_strlen =
(end != NULL) ? static_cast<size_t>(end - content) : size;
bool match = false;
if (magic_entry->is_string) {
if (content_strlen >= len) {
// String comparisons are case-insensitive
match = (base::strncasecmp(magic_entry->magic, content, len) == 0);
}
} else {
if (size >= len)
match = MagicCmp(magic_entry->magic, content, len);
}
if (match) {
result->assign(magic_entry->mime_type);
return true;
}
return false;
}
static bool CheckForMagicNumbers(const char* content, size_t size,
const MagicNumber* magic, size_t magic_len,
base::Histogram* counter,
std::string* result) {
for (size_t i = 0; i < magic_len; ++i) {
if (MatchMagicNumber(content, size, &(magic[i]), result)) {
if (counter) counter->Add(static_cast<int>(i));
return true;
}
}
return false;
}
// Truncates |size| to |max_size| and returns true if |size| is at least
// |max_size|.
static bool TruncateSize(const size_t max_size, size_t* size) {
// Keep kMaxBytesToSniff honest.
DCHECK_LE(static_cast<int>(max_size), kMaxBytesToSniff);
if (*size >= max_size) {
*size = max_size;
return true;
}
return false;
}
// Returns true and sets result if the content appears to be HTML.
// Clears have_enough_content if more data could possibly change the result.
static bool SniffForHTML(const char* content,
size_t size,
bool* have_enough_content,
std::string* result) {
// For HTML, we are willing to consider up to 512 bytes. This may be overly
// conservative as IE only considers 256.
*have_enough_content &= TruncateSize(512, &size);
// We adopt a strategy similar to that used by Mozilla to sniff HTML tags,
// but with some modifications to better match the HTML5 spec.
const char* const end = content + size;
const char* pos;
for (pos = content; pos < end; ++pos) {
if (!IsAsciiWhitespace(*pos))
break;
}
static base::Histogram* counter(NULL);
if (!counter)
counter = UMASnifferHistogramGet("mime_sniffer.kSniffableTags2",
arraysize(kSniffableTags));
// |pos| now points to first non-whitespace character (or at end).
return CheckForMagicNumbers(pos, end - pos,
kSniffableTags, arraysize(kSniffableTags),
counter, result);
}
// Returns true and sets result if the content matches any of kMagicNumbers.
// Clears have_enough_content if more data could possibly change the result.
static bool SniffForMagicNumbers(const char* content,
size_t size,
bool* have_enough_content,
std::string* result) {
*have_enough_content &= TruncateSize(kBytesRequiredForMagic, &size);
// Check our big table of Magic Numbers
static base::Histogram* counter(NULL);
if (!counter)
counter = UMASnifferHistogramGet("mime_sniffer.kMagicNumbers2",
arraysize(kMagicNumbers));
return CheckForMagicNumbers(content, size,
kMagicNumbers, arraysize(kMagicNumbers),
counter, result);
}
// Byte order marks
static const MagicNumber kMagicXML[] = {
// We want to be very conservative in interpreting text/xml content as
// XHTML -- we just want to sniff enough to make unit tests pass.
// So we match explicitly on this, and don't match other ways of writing
// it in semantically-equivalent ways.
MAGIC_STRING("application/xhtml+xml",
"<html xmlns=\"http://www.w3.org/1999/xhtml\"")
MAGIC_STRING("application/atom+xml", "<feed")
MAGIC_STRING("application/rss+xml", "<rss") // UTF-8
};
// Returns true and sets result if the content appears to contain XHTML or a
// feed.
// Clears have_enough_content if more data could possibly change the result.
//
// TODO(evanm): this is similar but more conservative than what Safari does,
// while HTML5 has a different recommendation -- what should we do?
// TODO(evanm): this is incorrect for documents whose encoding isn't a superset
// of ASCII -- do we care?
static bool SniffXML(const char* content,
size_t size,
bool* have_enough_content,
std::string* result) {
// We allow at most 300 bytes of content before we expect the opening tag.
*have_enough_content &= TruncateSize(300, &size);
const char* pos = content;
const char* const end = content + size;
// This loop iterates through tag-looking offsets in the file.
// We want to skip XML processing instructions (of the form "<?xml ...")
// and stop at the first "plain" tag, then make a decision on the mime-type
// based on the name (or possibly attributes) of that tag.
static base::Histogram* counter(NULL);
if (!counter)
counter = UMASnifferHistogramGet("mime_sniffer.kMagicXML2",
arraysize(kMagicXML));
const int kMaxTagIterations = 5;
for (int i = 0; i < kMaxTagIterations && pos < end; ++i) {
pos = reinterpret_cast<const char*>(memchr(pos, '<', end - pos));
if (!pos)
return false;
if (base::strncasecmp(pos, "<?xml", sizeof("<?xml")-1) == 0) {
// Skip XML declarations.
++pos;
continue;
} else if (base::strncasecmp(pos, "<!DOCTYPE",
sizeof("<!DOCTYPE")-1) == 0) {
// Skip DOCTYPE declarations.
++pos;
continue;
}
if (CheckForMagicNumbers(pos, end - pos,
kMagicXML, arraysize(kMagicXML),
counter, result))
return true;
// TODO(evanm): handle RSS 1.0, which is an RDF format and more difficult
// to identify.
// If we get here, we've hit an initial tag that hasn't matched one of the
// above tests. Abort.
return true;
}
// We iterated too far without finding a start tag.
// If we have more content to look at, we aren't going to change our mind by
// seeing more bytes from the network.
return pos < end;
}
// Byte order marks
static const MagicNumber kByteOrderMark[] = {
MAGIC_NUMBER("text/plain", "\xFE\xFF") // UTF-16BE
MAGIC_NUMBER("text/plain", "\xFF\xFE") // UTF-16LE
MAGIC_NUMBER("text/plain", "\xEF\xBB\xBF") // UTF-8
};
// Whether a given byte looks like it might be part of binary content.
// Source: HTML5 spec
static char kByteLooksBinary[] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, // 0x00 - 0x0F
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, // 0x10 - 0x1F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x20 - 0x2F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x30 - 0x3F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x40 - 0x4F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x50 - 0x5F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x60 - 0x6F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x70 - 0x7F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x80 - 0x8F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x90 - 0x9F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xA0 - 0xAF
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xB0 - 0xBF
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xC0 - 0xCF
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xD0 - 0xDF
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xE0 - 0xEF
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xF0 - 0xFF
};
// Returns true and sets result to "application/octet-stream" if the content
// appears to be binary data. Otherwise, returns false and sets "text/plain".
// Clears have_enough_content if more data could possibly change the result.
static bool SniffBinary(const char* content,
size_t size,
bool* have_enough_content,
std::string* result) {
// There is no concensus about exactly how to sniff for binary content.
// * IE 7: Don't sniff for binary looking bytes, but trust the file extension.
// * Firefox 3.5: Sniff first 4096 bytes for a binary looking byte.
// Here, we side with FF, but with a smaller buffer. This size was chosen
// because it is small enough to comfortably fit into a single packet (after
// allowing for headers) and yet large enough to account for binary formats
// that have a significant amount of ASCII at the beginning (crbug.com/15314).
const bool is_truncated = TruncateSize(kMaxBytesToSniff, &size);
// First, we look for a BOM.
static base::Histogram* counter(NULL);
if (!counter)
counter = UMASnifferHistogramGet("mime_sniffer.kByteOrderMark2",
arraysize(kByteOrderMark));
std::string unused;
if (CheckForMagicNumbers(content, size,
kByteOrderMark, arraysize(kByteOrderMark),
counter, &unused)) {
// If there is BOM, we think the buffer is not binary.
result->assign("text/plain");
return false;
}
// Next we look to see if any of the bytes "look binary."
for (size_t i = 0; i < size; ++i) {
// If we a see a binary-looking byte, we think the content is binary.
if (kByteLooksBinary[static_cast<unsigned char>(content[i])]) {
result->assign("application/octet-stream");
return true;
}
}
// No evidence either way. Default to non-binary and, if truncated, clear
// have_enough_content because there could be a binary looking byte in the
// truncated data.
*have_enough_content &= is_truncated;
result->assign("text/plain");
return false;
}
static bool IsUnknownMimeType(const std::string& mime_type) {
// TODO(tc): Maybe reuse some code in net/http/http_response_headers.* here.
// If we do, please be careful not to alter the semantics at all.
static const char* kUnknownMimeTypes[] = {
// Empty mime types are as unknown as they get.
"",
// The unknown/unknown type is popular and uninformative
"unknown/unknown",
// The second most popular unknown mime type is application/unknown
"application/unknown",
// Firefox rejects a mime type if it is exactly */*
"*/*",
};
static base::Histogram* counter(NULL);
if (!counter)
counter = UMASnifferHistogramGet("mime_sniffer.kUnknownMimeTypes2",
arraysize(kUnknownMimeTypes) + 1);
for (size_t i = 0; i < arraysize(kUnknownMimeTypes); ++i) {
if (mime_type == kUnknownMimeTypes[i]) {
counter->Add(i);
return true;
}
}
if (mime_type.find('/') == std::string::npos) {
// Firefox rejects a mime type if it does not contain a slash
counter->Add(arraysize(kUnknownMimeTypes));
return true;
}
return false;
}
// Returns true and sets result if the content appears to be a crx (chrome
// extension) file.
// Clears have_enough_content if more data could possibly change the result.
static bool SniffCRX(const char* content,
size_t size,
const GURL& url,
const std::string& type_hint,
bool* have_enough_content,
std::string* result) {
static base::Histogram* counter(NULL);
if (!counter)
counter = UMASnifferHistogramGet("mime_sniffer.kSniffCRX", 3);
// Technically, the crx magic number is just Cr24, but the bytes after that
// are a version number which changes infrequently. Including it in the
// sniffing gives us less room for error. If the version number ever changes,
// we can just add an entry to this list.
//
// TODO(aa): If we ever have another magic number, we'll want to pass a
// histogram into CheckForMagicNumbers(), below, to see which one matched.
static const struct MagicNumber kCRXMagicNumbers[] = {
MAGIC_NUMBER("application/x-chrome-extension", "Cr24\x02\x00\x00\x00")
};
// Only consider files that have the extension ".crx".
static const char kCRXExtension[] = ".crx";
// Ignore null by subtracting 1.
static const int kExtensionLength = arraysize(kCRXExtension) - 1;
if (url.path().rfind(kCRXExtension, std::string::npos, kExtensionLength) ==
url.path().size() - kExtensionLength) {
counter->Add(1);
} else {
return false;
}
*have_enough_content &= TruncateSize(kBytesRequiredForMagic, &size);
if (CheckForMagicNumbers(content, size,
kCRXMagicNumbers, arraysize(kCRXMagicNumbers),
NULL, result)) {
counter->Add(2);
} else {
return false;
}
return true;
}
bool ShouldSniffMimeType(const GURL& url, const std::string& mime_type) {
static base::Histogram* should_sniff_counter(NULL);
if (!should_sniff_counter)
should_sniff_counter =
UMASnifferHistogramGet("mime_sniffer.ShouldSniffMimeType2", 3);
// We are willing to sniff the mime type for HTTP, HTTPS, and FTP
bool sniffable_scheme = url.is_empty() ||
url.SchemeIs("http") ||
url.SchemeIs("https") ||
url.SchemeIs("ftp") ||
url.SchemeIsFile();
if (!sniffable_scheme) {
should_sniff_counter->Add(1);
return false;
}
static const char* kSniffableTypes[] = {
// Many web servers are misconfigured to send text/plain for many
// different types of content.
"text/plain",
// We want to sniff application/octet-stream for
// application/x-chrome-extension, but nothing else.
"application/octet-stream",
// XHTML and Atom/RSS feeds are often served as plain xml instead of
// their more specific mime types.
"text/xml",
"application/xml",
};
static base::Histogram* counter(NULL);
if (!counter)
counter = UMASnifferHistogramGet("mime_sniffer.kSniffableTypes2",
arraysize(kSniffableTypes) + 1);
for (size_t i = 0; i < arraysize(kSniffableTypes); ++i) {
if (mime_type == kSniffableTypes[i]) {
counter->Add(i);
should_sniff_counter->Add(2);
return true;
}
}
if (IsUnknownMimeType(mime_type)) {
// The web server didn't specify a content type or specified a mime
// type that we ignore.
counter->Add(arraysize(kSniffableTypes));
should_sniff_counter->Add(2);
return true;
}
should_sniff_counter->Add(1);
return false;
}
bool SniffMimeType(const char* content, size_t content_size,
const GURL& url, const std::string& type_hint,
std::string* result) {
DCHECK_LT(content_size, 1000000U); // sanity check
DCHECK(content);
DCHECK(result);
// By default, we assume we have enough content.
// Each sniff routine may unset this if it wasn't provided enough content.
bool have_enough_content = true;
// By default, we'll return the type hint.
// Each sniff routine may modify this if it has a better guess..
result->assign(type_hint);
// Cache information about the type_hint
const bool hint_is_unknown_mime_type = IsUnknownMimeType(type_hint);
// First check for HTML
if (hint_is_unknown_mime_type) {
// We're only willing to sniff HTML if the server has not supplied a mime
// type, or if the type it did supply indicates that it doesn't know what
// the type should be.
if (SniffForHTML(content, content_size, &have_enough_content, result))
return true; // We succeeded in sniffing HTML. No more content needed.
}
// We're only willing to sniff for binary in 3 cases:
// 1. The server has not supplied a mime type.
// 2. The type it did supply indicates that it doesn't know what the type
// should be.
// 3. The type is "text/plain" which is the default on some web servers and
// could be indicative of a mis-configuration that we shield the user from.
const bool hint_is_text_plain = (type_hint == "text/plain");
if (hint_is_unknown_mime_type || hint_is_text_plain) {
if (!SniffBinary(content, content_size, &have_enough_content, result)) {
// If the server said the content was text/plain and it doesn't appear
// to be binary, then we trust it.
if (hint_is_text_plain) {
return have_enough_content;
}
}
}
// If we have plain XML, sniff XML subtypes.
if (type_hint == "text/xml" || type_hint == "application/xml") {
// We're not interested in sniffing these types for images and the like.
// Instead, we're looking explicitly for a feed. If we don't find one
// we're done and return early.
if (SniffXML(content, content_size, &have_enough_content, result))
return true;
return have_enough_content;
}
// CRX files (chrome extensions) have a special sniffing algorithm. It is
// tighter than the others because we don't have to match legacy behavior.
if (SniffCRX(content, content_size, url, type_hint,
&have_enough_content, result))
return true;
// We're not interested in sniffing for magic numbers when the type_hint
// is application/octet-stream. Time to bail out.
if (type_hint == "application/octet-stream")
return have_enough_content;
// Now we look in our large table of magic numbers to see if we can find
// anything that matches the content.
if (SniffForMagicNumbers(content, content_size,
&have_enough_content, result))
return true; // We've matched a magic number. No more content needed.
return have_enough_content;
}
} // namespace net