// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Portions of this code based on Mozilla:
// (netwerk/cookie/src/nsCookieService.cpp)
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is mozilla.org code.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Daniel Witte (dwitte@stanford.edu)
* Michiel van Leeuwen (mvl@exedo.nl)
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#include "net/base/cookie_monster.h"
#include <algorithm>
#include "base/basictypes.h"
#include "base/format_macros.h"
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "base/message_loop.h"
#include "base/metrics/histogram.h"
#include "base/string_tokenizer.h"
#include "base/string_util.h"
#include "base/stringprintf.h"
#include "googleurl/src/gurl.h"
#include "googleurl/src/url_canon.h"
#include "net/base/net_util.h"
#include "net/base/registry_controlled_domain.h"
using base::Time;
using base::TimeDelta;
using base::TimeTicks;
static const int kMinutesInTenYears = 10 * 365 * 24 * 60;
namespace net {
// See comments at declaration of these variables in cookie_monster.h
// for details.
const size_t CookieMonster::kDomainMaxCookies = 180;
const size_t CookieMonster::kDomainPurgeCookies = 30;
const size_t CookieMonster::kMaxCookies = 3300;
const size_t CookieMonster::kPurgeCookies = 300;
const int CookieMonster::kSafeFromGlobalPurgeDays = 30;
namespace {
// Default minimum delay after updating a cookie's LastAccessDate before we
// will update it again.
const int kDefaultAccessUpdateThresholdSeconds = 60;
// Comparator to sort cookies from highest creation date to lowest
// creation date.
struct OrderByCreationTimeDesc {
bool operator()(const CookieMonster::CookieMap::iterator& a,
const CookieMonster::CookieMap::iterator& b) const {
return a->second->CreationDate() > b->second->CreationDate();
}
};
// Constants for use in VLOG
const int kVlogPerCookieMonster = 1;
const int kVlogPeriodic = 3;
const int kVlogGarbageCollection = 5;
const int kVlogSetCookies = 7;
const int kVlogGetCookies = 9;
// Mozilla sorts on the path length (longest first), and then it
// sorts by creation time (oldest first).
// The RFC says the sort order for the domain attribute is undefined.
bool CookieSorter(CookieMonster::CanonicalCookie* cc1,
CookieMonster::CanonicalCookie* cc2) {
if (cc1->Path().length() == cc2->Path().length())
return cc1->CreationDate() < cc2->CreationDate();
return cc1->Path().length() > cc2->Path().length();
}
bool LRUCookieSorter(const CookieMonster::CookieMap::iterator& it1,
const CookieMonster::CookieMap::iterator& it2) {
// Cookies accessed less recently should be deleted first.
if (it1->second->LastAccessDate() != it2->second->LastAccessDate())
return it1->second->LastAccessDate() < it2->second->LastAccessDate();
// In rare cases we might have two cookies with identical last access times.
// To preserve the stability of the sort, in these cases prefer to delete
// older cookies over newer ones. CreationDate() is guaranteed to be unique.
return it1->second->CreationDate() < it2->second->CreationDate();
}
// Our strategy to find duplicates is:
// (1) Build a map from (cookiename, cookiepath) to
// {list of cookies with this signature, sorted by creation time}.
// (2) For each list with more than 1 entry, keep the cookie having the
// most recent creation time, and delete the others.
//
// Two cookies are considered equivalent if they have the same domain,
// name, and path.
struct CookieSignature {
public:
CookieSignature(const std::string& name, const std::string& domain,
const std::string& path)
: name(name),
domain(domain),
path(path) {}
// To be a key for a map this class needs to be assignable, copyable,
// and have an operator<. The default assignment operator
// and copy constructor are exactly what we want.
bool operator<(const CookieSignature& cs) const {
// Name compare dominates, then domain, then path.
int diff = name.compare(cs.name);
if (diff != 0)
return diff < 0;
diff = domain.compare(cs.domain);
if (diff != 0)
return diff < 0;
return path.compare(cs.path) < 0;
}
std::string name;
std::string domain;
std::string path;
};
// Returns the effective TLD+1 for a given host. This only makes sense for http
// and https schemes. For other schemes, the host will be returned unchanged
// (minus any leading period).
std::string GetEffectiveDomain(const std::string& scheme,
const std::string& host) {
if (scheme == "http" || scheme == "https")
return RegistryControlledDomainService::GetDomainAndRegistry(host);
if (!CookieMonster::DomainIsHostOnly(host))
return host.substr(1);
return host;
}
// Determine the actual cookie domain based on the domain string passed
// (if any) and the URL from which the cookie came.
// On success returns true, and sets cookie_domain to either a
// -host cookie domain (ex: "google.com")
// -domain cookie domain (ex: ".google.com")
bool GetCookieDomainWithString(const GURL& url,
const std::string& domain_string,
std::string* result) {
const std::string url_host(url.host());
// If no domain was specified in the domain string, default to a host cookie.
// We match IE/Firefox in allowing a domain=IPADDR if it matches the url
// ip address hostname exactly. It should be treated as a host cookie.
if (domain_string.empty() ||
(url.HostIsIPAddress() && url_host == domain_string)) {
*result = url_host;
DCHECK(CookieMonster::DomainIsHostOnly(*result));
return true;
}
// Get the normalized domain specified in cookie line.
// Note: The RFC says we can reject a cookie if the domain
// attribute does not start with a dot. IE/FF/Safari however, allow a cookie
// of the form domain=my.domain.com, treating it the same as
// domain=.my.domain.com -- for compatibility we do the same here. Firefox
// also treats domain=.....my.domain.com like domain=.my.domain.com, but
// neither IE nor Safari do this, and we don't either.
url_canon::CanonHostInfo ignored;
std::string cookie_domain(CanonicalizeHost(domain_string, &ignored));
if (cookie_domain.empty())
return false;
if (cookie_domain[0] != '.')
cookie_domain = "." + cookie_domain;
// Ensure |url| and |cookie_domain| have the same domain+registry.
const std::string url_scheme(url.scheme());
const std::string url_domain_and_registry(
GetEffectiveDomain(url_scheme, url_host));
if (url_domain_and_registry.empty())
return false; // IP addresses/intranet hosts can't set domain cookies.
const std::string cookie_domain_and_registry(
GetEffectiveDomain(url_scheme, cookie_domain));
if (url_domain_and_registry != cookie_domain_and_registry)
return false; // Can't set a cookie on a different domain + registry.
// Ensure |url_host| is |cookie_domain| or one of its subdomains. Given that
// we know the domain+registry are the same from the above checks, this is
// basically a simple string suffix check.
if ((url_host.length() < cookie_domain.length()) ?
(cookie_domain != ("." + url_host)) :
url_host.compare(url_host.length() - cookie_domain.length(),
cookie_domain.length(), cookie_domain))
return false;
*result = cookie_domain;
return true;
}
// Determine the cookie domain to use for setting the specified cookie.
bool GetCookieDomain(const GURL& url,
const CookieMonster::ParsedCookie& pc,
std::string* result) {
std::string domain_string;
if (pc.HasDomain())
domain_string = pc.Domain();
return GetCookieDomainWithString(url, domain_string, result);
}
std::string CanonPathWithString(const GURL& url,
const std::string& path_string) {
// The RFC says the path should be a prefix of the current URL path.
// However, Mozilla allows you to set any path for compatibility with
// broken websites. We unfortunately will mimic this behavior. We try
// to be generous and accept cookies with an invalid path attribute, and
// default the path to something reasonable.
// The path was supplied in the cookie, we'll take it.
if (!path_string.empty() && path_string[0] == '/')
return path_string;
// The path was not supplied in the cookie or invalid, we will default
// to the current URL path.
// """Defaults to the path of the request URL that generated the
// Set-Cookie response, up to, but not including, the
// right-most /."""
// How would this work for a cookie on /? We will include it then.
const std::string& url_path = url.path();
size_t idx = url_path.find_last_of('/');
// The cookie path was invalid or a single '/'.
if (idx == 0 || idx == std::string::npos)
return std::string("/");
// Return up to the rightmost '/'.
return url_path.substr(0, idx);
}
std::string CanonPath(const GURL& url,
const CookieMonster::ParsedCookie& pc) {
std::string path_string;
if (pc.HasPath())
path_string = pc.Path();
return CanonPathWithString(url, path_string);
}
Time CanonExpirationInternal(const CookieMonster::ParsedCookie& pc,
const Time& current) {
// First, try the Max-Age attribute.
uint64 max_age = 0;
if (pc.HasMaxAge() &&
#ifdef COMPILER_MSVC
sscanf_s(
#else
sscanf(
#endif
pc.MaxAge().c_str(), " %" PRIu64, &max_age) == 1) {
return current + TimeDelta::FromSeconds(max_age);
}
// Try the Expires attribute.
if (pc.HasExpires())
return CookieMonster::ParseCookieTime(pc.Expires());
// Invalid or no expiration, persistent cookie.
return Time();
}
Time CanonExpiration(const CookieMonster::ParsedCookie& pc,
const Time& current,
const CookieOptions& options) {
Time expiration_time = CanonExpirationInternal(pc, current);
if (options.force_session()) {
// Only override the expiry adte if it's in the future. If the expiry date
// is before the creation date, the cookie is supposed to be deleted.
if (expiration_time.is_null() || expiration_time > current)
return Time();
}
return expiration_time;
}
// Helper for GarbageCollection. If |cookie_its->size() > num_max|, remove the
// |num_max - num_purge| most recently accessed cookies from cookie_its.
// (In other words, leave the entries that are candidates for
// eviction in cookie_its.) The cookies returned will be in order sorted by
// access time, least recently accessed first. The access time of the least
// recently accessed entry not returned will be placed in
// |*lra_removed| if that pointer is set. FindLeastRecentlyAccessed
// returns false if no manipulation is done (because the list size is less
// than num_max), true otherwise.
bool FindLeastRecentlyAccessed(
size_t num_max,
size_t num_purge,
Time* lra_removed,
std::vector<CookieMonster::CookieMap::iterator>* cookie_its) {
DCHECK_LE(num_purge, num_max);
if (cookie_its->size() > num_max) {
VLOG(kVlogGarbageCollection)
<< "FindLeastRecentlyAccessed() Deep Garbage Collect.";
num_purge += cookie_its->size() - num_max;
DCHECK_GT(cookie_its->size(), num_purge);
// Add 1 so that we can get the last time left in the store.
std::partial_sort(cookie_its->begin(), cookie_its->begin() + num_purge + 1,
cookie_its->end(), LRUCookieSorter);
*lra_removed =
(*(cookie_its->begin() + num_purge))->second->LastAccessDate();
cookie_its->erase(cookie_its->begin() + num_purge, cookie_its->end());
return true;
}
return false;
}
// Mapping between DeletionCause and Delegate::ChangeCause; the mapping also
// provides a boolean that specifies whether or not an OnCookieChanged
// notification ought to be generated.
typedef struct ChangeCausePair_struct {
CookieMonster::Delegate::ChangeCause cause;
bool notify;
} ChangeCausePair;
ChangeCausePair ChangeCauseMapping[] = {
// DELETE_COOKIE_EXPLICIT
{ CookieMonster::Delegate::CHANGE_COOKIE_EXPLICIT, true },
// DELETE_COOKIE_OVERWRITE
{ CookieMonster::Delegate::CHANGE_COOKIE_OVERWRITE, true },
// DELETE_COOKIE_EXPIRED
{ CookieMonster::Delegate::CHANGE_COOKIE_EXPIRED, true },
// DELETE_COOKIE_EVICTED
{ CookieMonster::Delegate::CHANGE_COOKIE_EVICTED, true },
// DELETE_COOKIE_DUPLICATE_IN_BACKING_STORE
{ CookieMonster::Delegate::CHANGE_COOKIE_EXPLICIT, false },
// DELETE_COOKIE_DONT_RECORD
{ CookieMonster::Delegate::CHANGE_COOKIE_EXPLICIT, false },
// DELETE_COOKIE_EVICTED_DOMAIN
{ CookieMonster::Delegate::CHANGE_COOKIE_EVICTED, true },
// DELETE_COOKIE_EVICTED_GLOBAL
{ CookieMonster::Delegate::CHANGE_COOKIE_EVICTED, true },
// DELETE_COOKIE_EVICTED_DOMAIN_PRE_SAFE
{ CookieMonster::Delegate::CHANGE_COOKIE_EVICTED, true },
// DELETE_COOKIE_EVICTED_DOMAIN_POST_SAFE
{ CookieMonster::Delegate::CHANGE_COOKIE_EVICTED, true },
// DELETE_COOKIE_EXPIRED_OVERWRITE
{ CookieMonster::Delegate::CHANGE_COOKIE_EXPIRED_OVERWRITE, true },
// DELETE_COOKIE_LAST_ENTRY
{ CookieMonster::Delegate::CHANGE_COOKIE_EXPLICIT, false }
};
} // namespace
// static
bool CookieMonster::enable_file_scheme_ = false;
CookieMonster::CookieMonster(PersistentCookieStore* store, Delegate* delegate)
: initialized_(false),
expiry_and_key_scheme_(expiry_and_key_default_),
store_(store),
last_access_threshold_(
TimeDelta::FromSeconds(kDefaultAccessUpdateThresholdSeconds)),
delegate_(delegate),
last_statistic_record_time_(Time::Now()),
keep_expired_cookies_(false) {
InitializeHistograms();
SetDefaultCookieableSchemes();
}
CookieMonster::CookieMonster(PersistentCookieStore* store,
Delegate* delegate,
int last_access_threshold_milliseconds)
: initialized_(false),
expiry_and_key_scheme_(expiry_and_key_default_),
store_(store),
last_access_threshold_(base::TimeDelta::FromMilliseconds(
last_access_threshold_milliseconds)),
delegate_(delegate),
last_statistic_record_time_(base::Time::Now()),
keep_expired_cookies_(false) {
InitializeHistograms();
SetDefaultCookieableSchemes();
}
// Parse a cookie expiration time. We try to be lenient, but we need to
// assume some order to distinguish the fields. The basic rules:
// - The month name must be present and prefix the first 3 letters of the
// full month name (jan for January, jun for June).
// - If the year is <= 2 digits, it must occur after the day of month.
// - The time must be of the format hh:mm:ss.
// An average cookie expiration will look something like this:
// Sat, 15-Apr-17 21:01:22 GMT
Time CookieMonster::ParseCookieTime(const std::string& time_string) {
static const char* kMonths[] = { "jan", "feb", "mar", "apr", "may", "jun",
"jul", "aug", "sep", "oct", "nov", "dec" };
static const int kMonthsLen = arraysize(kMonths);
// We want to be pretty liberal, and support most non-ascii and non-digit
// characters as a delimiter. We can't treat : as a delimiter, because it
// is the delimiter for hh:mm:ss, and we want to keep this field together.
// We make sure to include - and +, since they could prefix numbers.
// If the cookie attribute came in in quotes (ex expires="XXX"), the quotes
// will be preserved, and we will get them here. So we make sure to include
// quote characters, and also \ for anything that was internally escaped.
static const char* kDelimiters = "\t !\"#$%&'()*+,-./;<=>?@[\\]^_`{|}~";
Time::Exploded exploded = {0};
StringTokenizer tokenizer(time_string, kDelimiters);
bool found_day_of_month = false;
bool found_month = false;
bool found_time = false;
bool found_year = false;
while (tokenizer.GetNext()) {
const std::string token = tokenizer.token();
DCHECK(!token.empty());
bool numerical = IsAsciiDigit(token[0]);
// String field
if (!numerical) {
if (!found_month) {
for (int i = 0; i < kMonthsLen; ++i) {
// Match prefix, so we could match January, etc
if (base::strncasecmp(token.c_str(), kMonths[i], 3) == 0) {
exploded.month = i + 1;
found_month = true;
break;
}
}
} else {
// If we've gotten here, it means we've already found and parsed our
// month, and we have another string, which we would expect to be the
// the time zone name. According to the RFC and my experiments with
// how sites format their expirations, we don't have much of a reason
// to support timezones. We don't want to ever barf on user input,
// but this DCHECK should pass for well-formed data.
// DCHECK(token == "GMT");
}
// Numeric field w/ a colon
} else if (token.find(':') != std::string::npos) {
if (!found_time &&
#ifdef COMPILER_MSVC
sscanf_s(
#else
sscanf(
#endif
token.c_str(), "%2u:%2u:%2u", &exploded.hour,
&exploded.minute, &exploded.second) == 3) {
found_time = true;
} else {
// We should only ever encounter one time-like thing. If we're here,
// it means we've found a second, which shouldn't happen. We keep
// the first. This check should be ok for well-formed input:
// NOTREACHED();
}
// Numeric field
} else {
// Overflow with atoi() is unspecified, so we enforce a max length.
if (!found_day_of_month && token.length() <= 2) {
exploded.day_of_month = atoi(token.c_str());
found_day_of_month = true;
} else if (!found_year && token.length() <= 5) {
exploded.year = atoi(token.c_str());
found_year = true;
} else {
// If we're here, it means we've either found an extra numeric field,
// or a numeric field which was too long. For well-formed input, the
// following check would be reasonable:
// NOTREACHED();
}
}
}
if (!found_day_of_month || !found_month || !found_time || !found_year) {
// We didn't find all of the fields we need. For well-formed input, the
// following check would be reasonable:
// NOTREACHED() << "Cookie parse expiration failed: " << time_string;
return Time();
}
// Normalize the year to expand abbreviated years to the full year.
if (exploded.year >= 69 && exploded.year <= 99)
exploded.year += 1900;
if (exploded.year >= 0 && exploded.year <= 68)
exploded.year += 2000;
// If our values are within their correct ranges, we got our time.
if (exploded.day_of_month >= 1 && exploded.day_of_month <= 31 &&
exploded.month >= 1 && exploded.month <= 12 &&
exploded.year >= 1601 && exploded.year <= 30827 &&
exploded.hour <= 23 && exploded.minute <= 59 && exploded.second <= 59) {
return Time::FromUTCExploded(exploded);
}
// One of our values was out of expected range. For well-formed input,
// the following check would be reasonable:
// NOTREACHED() << "Cookie exploded expiration failed: " << time_string;
return Time();
}
bool CookieMonster::DomainIsHostOnly(const std::string& domain_string) {
return (domain_string.empty() || domain_string[0] != '.');
}
bool CookieMonster::SetCookieWithDetails(
const GURL& url, const std::string& name, const std::string& value,
const std::string& domain, const std::string& path,
const base::Time& expiration_time, bool secure, bool http_only) {
base::AutoLock autolock(lock_);
if (!HasCookieableScheme(url))
return false;
InitIfNecessary();
Time creation_time = CurrentTime();
last_time_seen_ = creation_time;
scoped_ptr<CanonicalCookie> cc;
cc.reset(CanonicalCookie::Create(
url, name, value, domain, path,
creation_time, expiration_time,
secure, http_only));
if (!cc.get())
return false;
CookieOptions options;
options.set_include_httponly();
return SetCanonicalCookie(&cc, creation_time, options);
}
CookieList CookieMonster::GetAllCookies() {
base::AutoLock autolock(lock_);
InitIfNecessary();
// This function is being called to scrape the cookie list for management UI
// or similar. We shouldn't show expired cookies in this list since it will
// just be confusing to users, and this function is called rarely enough (and
// is already slow enough) that it's OK to take the time to garbage collect
// the expired cookies now.
//
// Note that this does not prune cookies to be below our limits (if we've
// exceeded them) the way that calling GarbageCollect() would.
GarbageCollectExpired(Time::Now(),
CookieMapItPair(cookies_.begin(), cookies_.end()),
NULL);
// Copy the CanonicalCookie pointers from the map so that we can use the same
// sorter as elsewhere, then copy the result out.
std::vector<CanonicalCookie*> cookie_ptrs;
cookie_ptrs.reserve(cookies_.size());
for (CookieMap::iterator it = cookies_.begin(); it != cookies_.end(); ++it)
cookie_ptrs.push_back(it->second);
std::sort(cookie_ptrs.begin(), cookie_ptrs.end(), CookieSorter);
CookieList cookie_list;
cookie_list.reserve(cookie_ptrs.size());
for (std::vector<CanonicalCookie*>::const_iterator it = cookie_ptrs.begin();
it != cookie_ptrs.end(); ++it)
cookie_list.push_back(**it);
return cookie_list;
}
CookieList CookieMonster::GetAllCookiesForURLWithOptions(
const GURL& url,
const CookieOptions& options) {
base::AutoLock autolock(lock_);
InitIfNecessary();
std::vector<CanonicalCookie*> cookie_ptrs;
FindCookiesForHostAndDomain(url, options, false, &cookie_ptrs);
std::sort(cookie_ptrs.begin(), cookie_ptrs.end(), CookieSorter);
CookieList cookies;
for (std::vector<CanonicalCookie*>::const_iterator it = cookie_ptrs.begin();
it != cookie_ptrs.end(); it++)
cookies.push_back(**it);
return cookies;
}
CookieList CookieMonster::GetAllCookiesForURL(const GURL& url) {
CookieOptions options;
options.set_include_httponly();
return GetAllCookiesForURLWithOptions(url, options);
}
int CookieMonster::DeleteAll(bool sync_to_store) {
base::AutoLock autolock(lock_);
if (sync_to_store)
InitIfNecessary();
int num_deleted = 0;
for (CookieMap::iterator it = cookies_.begin(); it != cookies_.end();) {
CookieMap::iterator curit = it;
++it;
InternalDeleteCookie(curit, sync_to_store,
sync_to_store ? DELETE_COOKIE_EXPLICIT :
DELETE_COOKIE_DONT_RECORD /* Destruction. */);
++num_deleted;
}
return num_deleted;
}
int CookieMonster::DeleteAllCreatedBetween(const Time& delete_begin,
const Time& delete_end,
bool sync_to_store) {
base::AutoLock autolock(lock_);
InitIfNecessary();
int num_deleted = 0;
for (CookieMap::iterator it = cookies_.begin(); it != cookies_.end();) {
CookieMap::iterator curit = it;
CanonicalCookie* cc = curit->second;
++it;
if (cc->CreationDate() >= delete_begin &&
(delete_end.is_null() || cc->CreationDate() < delete_end)) {
InternalDeleteCookie(curit, sync_to_store, DELETE_COOKIE_EXPLICIT);
++num_deleted;
}
}
return num_deleted;
}
int CookieMonster::DeleteAllCreatedAfter(const Time& delete_begin,
bool sync_to_store) {
return DeleteAllCreatedBetween(delete_begin, Time(), sync_to_store);
}
int CookieMonster::DeleteAllForHost(const GURL& url) {
base::AutoLock autolock(lock_);
InitIfNecessary();
if (!HasCookieableScheme(url))
return 0;
const std::string scheme(url.scheme());
const std::string host(url.host());
// We store host cookies in the store by their canonical host name;
// domain cookies are stored with a leading ".". So this is a pretty
// simple lookup and per-cookie delete.
int num_deleted = 0;
for (CookieMapItPair its = cookies_.equal_range(GetKey(host));
its.first != its.second;) {
CookieMap::iterator curit = its.first;
++its.first;
const CanonicalCookie* const cc = curit->second;
// Delete only on a match as a host cookie.
if (cc->IsHostCookie() && cc->IsDomainMatch(scheme, host)) {
num_deleted++;
InternalDeleteCookie(curit, true, DELETE_COOKIE_EXPLICIT);
}
}
return num_deleted;
}
bool CookieMonster::DeleteCanonicalCookie(const CanonicalCookie& cookie) {
base::AutoLock autolock(lock_);
InitIfNecessary();
for (CookieMapItPair its = cookies_.equal_range(GetKey(cookie.Domain()));
its.first != its.second; ++its.first) {
// The creation date acts as our unique index...
if (its.first->second->CreationDate() == cookie.CreationDate()) {
InternalDeleteCookie(its.first, true, DELETE_COOKIE_EXPLICIT);
return true;
}
}
return false;
}
void CookieMonster::SetCookieableSchemes(
const char* schemes[], size_t num_schemes) {
base::AutoLock autolock(lock_);
// Cookieable Schemes must be set before first use of function.
DCHECK(!initialized_);
cookieable_schemes_.clear();
cookieable_schemes_.insert(cookieable_schemes_.end(),
schemes, schemes + num_schemes);
}
void CookieMonster::SetExpiryAndKeyScheme(ExpiryAndKeyScheme key_scheme) {
DCHECK(!initialized_);
expiry_and_key_scheme_ = key_scheme;
}
void CookieMonster::SetKeepExpiredCookies() {
keep_expired_cookies_ = true;
}
void CookieMonster::SetClearPersistentStoreOnExit(bool clear_local_store) {
if (store_)
store_->SetClearLocalStateOnExit(clear_local_store);
}
// static
void CookieMonster::EnableFileScheme() {
enable_file_scheme_ = true;
}
void CookieMonster::FlushStore(Task* completion_task) {
base::AutoLock autolock(lock_);
if (initialized_ && store_)
store_->Flush(completion_task);
else if (completion_task)
MessageLoop::current()->PostTask(FROM_HERE, completion_task);
}
bool CookieMonster::SetCookieWithOptions(const GURL& url,
const std::string& cookie_line,
const CookieOptions& options) {
base::AutoLock autolock(lock_);
if (!HasCookieableScheme(url)) {
return false;
}
InitIfNecessary();
return SetCookieWithCreationTimeAndOptions(url, cookie_line, Time(), options);
}
std::string CookieMonster::GetCookiesWithOptions(const GURL& url,
const CookieOptions& options) {
base::AutoLock autolock(lock_);
InitIfNecessary();
if (!HasCookieableScheme(url)) {
return std::string();
}
TimeTicks start_time(TimeTicks::Now());
// Get the cookies for this host and its domain(s).
std::vector<CanonicalCookie*> cookies;
FindCookiesForHostAndDomain(url, options, true, &cookies);
std::sort(cookies.begin(), cookies.end(), CookieSorter);
std::string cookie_line;
for (std::vector<CanonicalCookie*>::const_iterator it = cookies.begin();
it != cookies.end(); ++it) {
if (it != cookies.begin())
cookie_line += "; ";
// In Mozilla if you set a cookie like AAAA, it will have an empty token
// and a value of AAAA. When it sends the cookie back, it will send AAAA,
// so we need to avoid sending =AAAA for a blank token value.
if (!(*it)->Name().empty())
cookie_line += (*it)->Name() + "=";
cookie_line += (*it)->Value();
}
histogram_time_get_->AddTime(TimeTicks::Now() - start_time);
VLOG(kVlogGetCookies) << "GetCookies() result: " << cookie_line;
return cookie_line;
}
void CookieMonster::DeleteCookie(const GURL& url,
const std::string& cookie_name) {
base::AutoLock autolock(lock_);
InitIfNecessary();
if (!HasCookieableScheme(url))
return;
CookieOptions options;
options.set_include_httponly();
// Get the cookies for this host and its domain(s).
std::vector<CanonicalCookie*> cookies;
FindCookiesForHostAndDomain(url, options, true, &cookies);
std::set<CanonicalCookie*> matching_cookies;
for (std::vector<CanonicalCookie*>::const_iterator it = cookies.begin();
it != cookies.end(); ++it) {
if ((*it)->Name() != cookie_name)
continue;
if (url.path().find((*it)->Path()))
continue;
matching_cookies.insert(*it);
}
for (CookieMap::iterator it = cookies_.begin(); it != cookies_.end();) {
CookieMap::iterator curit = it;
++it;
if (matching_cookies.find(curit->second) != matching_cookies.end()) {
InternalDeleteCookie(curit, true, DELETE_COOKIE_EXPLICIT);
}
}
}
CookieMonster* CookieMonster::GetCookieMonster() {
return this;
}
CookieMonster::~CookieMonster() {
DeleteAll(false);
}
bool CookieMonster::SetCookieWithCreationTime(const GURL& url,
const std::string& cookie_line,
const base::Time& creation_time) {
base::AutoLock autolock(lock_);
if (!HasCookieableScheme(url)) {
return false;
}
InitIfNecessary();
return SetCookieWithCreationTimeAndOptions(url, cookie_line, creation_time,
CookieOptions());
}
void CookieMonster::InitStore() {
DCHECK(store_) << "Store must exist to initialize";
TimeTicks beginning_time(TimeTicks::Now());
// Initialize the store and sync in any saved persistent cookies. We don't
// care if it's expired, insert it so it can be garbage collected, removed,
// and sync'd.
std::vector<CanonicalCookie*> cookies;
// Reserve space for the maximum amount of cookies a database should have.
// This prevents multiple vector growth / copies as we append cookies.
cookies.reserve(kMaxCookies);
store_->Load(&cookies);
// Avoid ever letting cookies with duplicate creation times into the store;
// that way we don't have to worry about what sections of code are safe
// to call while it's in that state.
std::set<int64> creation_times;
// Presumably later than any access time in the store.
Time earliest_access_time;
for (std::vector<CanonicalCookie*>::const_iterator it = cookies.begin();
it != cookies.end(); ++it) {
int64 cookie_creation_time = (*it)->CreationDate().ToInternalValue();
if (creation_times.insert(cookie_creation_time).second) {
InternalInsertCookie(GetKey((*it)->Domain()), *it, false);
const Time cookie_access_time((*it)->LastAccessDate());
if (earliest_access_time.is_null() ||
cookie_access_time < earliest_access_time)
earliest_access_time = cookie_access_time;
} else {
LOG(ERROR) << base::StringPrintf("Found cookies with duplicate creation "
"times in backing store: "
"{name='%s', domain='%s', path='%s'}",
(*it)->Name().c_str(),
(*it)->Domain().c_str(),
(*it)->Path().c_str());
// We've been given ownership of the cookie and are throwing it
// away; reclaim the space.
delete (*it);
}
}
earliest_access_time_= earliest_access_time;
// After importing cookies from the PersistentCookieStore, verify that
// none of our other constraints are violated.
//
// In particular, the backing store might have given us duplicate cookies.
EnsureCookiesMapIsValid();
histogram_time_load_->AddTime(TimeTicks::Now() - beginning_time);
}
void CookieMonster::EnsureCookiesMapIsValid() {
lock_.AssertAcquired();
int num_duplicates_trimmed = 0;
// Iterate through all the of the cookies, grouped by host.
CookieMap::iterator prev_range_end = cookies_.begin();
while (prev_range_end != cookies_.end()) {
CookieMap::iterator cur_range_begin = prev_range_end;
const std::string key = cur_range_begin->first; // Keep a copy.
CookieMap::iterator cur_range_end = cookies_.upper_bound(key);
prev_range_end = cur_range_end;
// Ensure no equivalent cookies for this host.
num_duplicates_trimmed +=
TrimDuplicateCookiesForKey(key, cur_range_begin, cur_range_end);
}
// Record how many duplicates were found in the database.
// See InitializeHistograms() for details.
histogram_cookie_deletion_cause_->Add(num_duplicates_trimmed);
}
int CookieMonster::TrimDuplicateCookiesForKey(
const std::string& key,
CookieMap::iterator begin,
CookieMap::iterator end) {
lock_.AssertAcquired();
// Set of cookies ordered by creation time.
typedef std::set<CookieMap::iterator, OrderByCreationTimeDesc> CookieSet;
// Helper map we populate to find the duplicates.
typedef std::map<CookieSignature, CookieSet> EquivalenceMap;
EquivalenceMap equivalent_cookies;
// The number of duplicate cookies that have been found.
int num_duplicates = 0;
// Iterate through all of the cookies in our range, and insert them into
// the equivalence map.
for (CookieMap::iterator it = begin; it != end; ++it) {
DCHECK_EQ(key, it->first);
CanonicalCookie* cookie = it->second;
CookieSignature signature(cookie->Name(), cookie->Domain(),
cookie->Path());
CookieSet& set = equivalent_cookies[signature];
// We found a duplicate!
if (!set.empty())
num_duplicates++;
// We save the iterator into |cookies_| rather than the actual cookie
// pointer, since we may need to delete it later.
bool insert_success = set.insert(it).second;
DCHECK(insert_success) <<
"Duplicate creation times found in duplicate cookie name scan.";
}
// If there were no duplicates, we are done!
if (num_duplicates == 0)
return 0;
// Make sure we find everything below that we did above.
int num_duplicates_found = 0;
// Otherwise, delete all the duplicate cookies, both from our in-memory store
// and from the backing store.
for (EquivalenceMap::iterator it = equivalent_cookies.begin();
it != equivalent_cookies.end();
++it) {
const CookieSignature& signature = it->first;
CookieSet& dupes = it->second;
if (dupes.size() <= 1)
continue; // This cookiename/path has no duplicates.
num_duplicates_found += dupes.size() - 1;
// Since |dups| is sorted by creation time (descending), the first cookie
// is the most recent one, so we will keep it. The rest are duplicates.
dupes.erase(dupes.begin());
LOG(ERROR) << base::StringPrintf(
"Found %d duplicate cookies for host='%s', "
"with {name='%s', domain='%s', path='%s'}",
static_cast<int>(dupes.size()),
key.c_str(),
signature.name.c_str(),
signature.domain.c_str(),
signature.path.c_str());
// Remove all the cookies identified by |dupes|. It is valid to delete our
// list of iterators one at a time, since |cookies_| is a multimap (they
// don't invalidate existing iterators following deletion).
for (CookieSet::iterator dupes_it = dupes.begin();
dupes_it != dupes.end();
++dupes_it) {
InternalDeleteCookie(*dupes_it, true /*sync_to_store*/,
DELETE_COOKIE_DUPLICATE_IN_BACKING_STORE);
}
}
DCHECK_EQ(num_duplicates, num_duplicates_found);
return num_duplicates;
}
// Note: file must be the last scheme.
const char* CookieMonster::kDefaultCookieableSchemes[] =
{ "http", "https", "file" };
const int CookieMonster::kDefaultCookieableSchemesCount =
arraysize(CookieMonster::kDefaultCookieableSchemes);
void CookieMonster::SetDefaultCookieableSchemes() {
int num_schemes = enable_file_scheme_ ?
kDefaultCookieableSchemesCount : kDefaultCookieableSchemesCount - 1;
SetCookieableSchemes(kDefaultCookieableSchemes, num_schemes);
}
void CookieMonster::FindCookiesForHostAndDomain(
const GURL& url,
const CookieOptions& options,
bool update_access_time,
std::vector<CanonicalCookie*>* cookies) {
lock_.AssertAcquired();
const Time current_time(CurrentTime());
// Probe to save statistics relatively frequently. We do it here rather
// than in the set path as many websites won't set cookies, and we
// want to collect statistics whenever the browser's being used.
RecordPeriodicStats(current_time);
if (expiry_and_key_scheme_ == EKS_DISCARD_RECENT_AND_PURGE_DOMAIN) {
// Can just dispatch to FindCookiesForKey
const std::string key(GetKey(url.host()));
FindCookiesForKey(key, url, options, current_time,
update_access_time, cookies);
} else {
// Need to probe for all domains that might have relevant
// cookies for us.
// Query for the full host, For example: 'a.c.blah.com'.
std::string key(GetKey(url.host()));
FindCookiesForKey(key, url, options, current_time, update_access_time,
cookies);
// See if we can search for domain cookies, i.e. if the host has a TLD + 1.
const std::string domain(GetEffectiveDomain(url.scheme(), key));
if (domain.empty())
return;
DCHECK_LE(domain.length(), key.length());
DCHECK_EQ(0, key.compare(key.length() - domain.length(), domain.length(),
domain));
// Walk through the string and query at the dot points (GURL should have
// canonicalized the dots, so this should be safe). Stop once we reach the
// domain + registry; we can't write cookies past this point, and with some
// registrars other domains can, in which case we don't want to read their
// cookies.
for (key = "." + key; key.length() > domain.length(); ) {
FindCookiesForKey(key, url, options, current_time, update_access_time,
cookies);
const size_t next_dot = key.find('.', 1); // Skip over leading dot.
key.erase(0, next_dot);
}
}
}
void CookieMonster::FindCookiesForKey(
const std::string& key,
const GURL& url,
const CookieOptions& options,
const Time& current,
bool update_access_time,
std::vector<CanonicalCookie*>* cookies) {
lock_.AssertAcquired();
const std::string scheme(url.scheme());
const std::string host(url.host());
bool secure = url.SchemeIsSecure();
for (CookieMapItPair its = cookies_.equal_range(key);
its.first != its.second; ) {
CookieMap::iterator curit = its.first;
CanonicalCookie* cc = curit->second;
++its.first;
// If the cookie is expired, delete it.
if (cc->IsExpired(current) && !keep_expired_cookies_) {
InternalDeleteCookie(curit, true, DELETE_COOKIE_EXPIRED);
continue;
}
// Filter out HttpOnly cookies, per options.
if (options.exclude_httponly() && cc->IsHttpOnly())
continue;
// Filter out secure cookies unless we're https.
if (!secure && cc->IsSecure())
continue;
// Filter out cookies that don't apply to this domain.
if (expiry_and_key_scheme_ == EKS_KEEP_RECENT_AND_PURGE_ETLDP1
&& !cc->IsDomainMatch(scheme, host))
continue;
if (!cc->IsOnPath(url.path()))
continue;
// Add this cookie to the set of matching cookies. Update the access
// time if we've been requested to do so.
if (update_access_time) {
InternalUpdateCookieAccessTime(cc, current);
}
cookies->push_back(cc);
}
}
bool CookieMonster::DeleteAnyEquivalentCookie(const std::string& key,
const CanonicalCookie& ecc,
bool skip_httponly,
bool already_expired) {
lock_.AssertAcquired();
bool found_equivalent_cookie = false;
bool skipped_httponly = false;
for (CookieMapItPair its = cookies_.equal_range(key);
its.first != its.second; ) {
CookieMap::iterator curit = its.first;
CanonicalCookie* cc = curit->second;
++its.first;
if (ecc.IsEquivalent(*cc)) {
// We should never have more than one equivalent cookie, since they should
// overwrite each other.
CHECK(!found_equivalent_cookie) <<
"Duplicate equivalent cookies found, cookie store is corrupted.";
if (skip_httponly && cc->IsHttpOnly()) {
skipped_httponly = true;
} else {
InternalDeleteCookie(curit, true, already_expired ?
DELETE_COOKIE_EXPIRED_OVERWRITE : DELETE_COOKIE_OVERWRITE);
}
found_equivalent_cookie = true;
}
}
return skipped_httponly;
}
void CookieMonster::InternalInsertCookie(const std::string& key,
CanonicalCookie* cc,
bool sync_to_store) {
lock_.AssertAcquired();
if (cc->IsPersistent() && store_ && sync_to_store)
store_->AddCookie(*cc);
cookies_.insert(CookieMap::value_type(key, cc));
if (delegate_.get()) {
delegate_->OnCookieChanged(
*cc, false, CookieMonster::Delegate::CHANGE_COOKIE_EXPLICIT);
}
}
bool CookieMonster::SetCookieWithCreationTimeAndOptions(
const GURL& url,
const std::string& cookie_line,
const Time& creation_time_or_null,
const CookieOptions& options) {
lock_.AssertAcquired();
VLOG(kVlogSetCookies) << "SetCookie() line: " << cookie_line;
Time creation_time = creation_time_or_null;
if (creation_time.is_null()) {
creation_time = CurrentTime();
last_time_seen_ = creation_time;
}
// Parse the cookie.
ParsedCookie pc(cookie_line);
if (!pc.IsValid()) {
VLOG(kVlogSetCookies) << "WARNING: Couldn't parse cookie";
return false;
}
if (options.exclude_httponly() && pc.IsHttpOnly()) {
VLOG(kVlogSetCookies) << "SetCookie() not setting httponly cookie";
return false;
}
std::string cookie_domain;
if (!GetCookieDomain(url, pc, &cookie_domain)) {
return false;
}
std::string cookie_path = CanonPath(url, pc);
scoped_ptr<CanonicalCookie> cc;
Time cookie_expires = CanonExpiration(pc, creation_time, options);
cc.reset(new CanonicalCookie(url, pc.Name(), pc.Value(), cookie_domain,
cookie_path, creation_time, cookie_expires,
creation_time, pc.IsSecure(), pc.IsHttpOnly(),
!cookie_expires.is_null()));
if (!cc.get()) {
VLOG(kVlogSetCookies) << "WARNING: Failed to allocate CanonicalCookie";
return false;
}
return SetCanonicalCookie(&cc, creation_time, options);
}
bool CookieMonster::SetCanonicalCookie(scoped_ptr<CanonicalCookie>* cc,
const Time& creation_time,
const CookieOptions& options) {
const std::string key(GetKey((*cc)->Domain()));
bool already_expired = (*cc)->IsExpired(creation_time);
if (DeleteAnyEquivalentCookie(key, **cc, options.exclude_httponly(),
already_expired)) {
VLOG(kVlogSetCookies) << "SetCookie() not clobbering httponly cookie";
return false;
}
VLOG(kVlogSetCookies) << "SetCookie() key: " << key << " cc: "
<< (*cc)->DebugString();
// Realize that we might be setting an expired cookie, and the only point
// was to delete the cookie which we've already done.
if (!already_expired || keep_expired_cookies_) {
// See InitializeHistograms() for details.
if ((*cc)->DoesExpire()) {
histogram_expiration_duration_minutes_->Add(
((*cc)->ExpiryDate() - creation_time).InMinutes());
}
InternalInsertCookie(key, cc->release(), true);
}
// We assume that hopefully setting a cookie will be less common than
// querying a cookie. Since setting a cookie can put us over our limits,
// make sure that we garbage collect... We can also make the assumption that
// if a cookie was set, in the common case it will be used soon after,
// and we will purge the expired cookies in GetCookies().
GarbageCollect(creation_time, key);
return true;
}
void CookieMonster::InternalUpdateCookieAccessTime(CanonicalCookie* cc,
const Time& current) {
lock_.AssertAcquired();
// Based off the Mozilla code. When a cookie has been accessed recently,
// don't bother updating its access time again. This reduces the number of
// updates we do during pageload, which in turn reduces the chance our storage
// backend will hit its batch thresholds and be forced to update.
if ((current - cc->LastAccessDate()) < last_access_threshold_)
return;
// See InitializeHistograms() for details.
histogram_between_access_interval_minutes_->Add(
(current - cc->LastAccessDate()).InMinutes());
cc->SetLastAccessDate(current);
if (cc->IsPersistent() && store_)
store_->UpdateCookieAccessTime(*cc);
}
void CookieMonster::InternalDeleteCookie(CookieMap::iterator it,
bool sync_to_store,
DeletionCause deletion_cause) {
lock_.AssertAcquired();
// Ideally, this would be asserted up where we define ChangeCauseMapping,
// but DeletionCause's visibility (or lack thereof) forces us to make
// this check here.
COMPILE_ASSERT(arraysize(ChangeCauseMapping) == DELETE_COOKIE_LAST_ENTRY + 1,
ChangeCauseMapping_size_not_eq_DeletionCause_enum_size);
// See InitializeHistograms() for details.
if (deletion_cause != DELETE_COOKIE_DONT_RECORD)
histogram_cookie_deletion_cause_->Add(deletion_cause);
CanonicalCookie* cc = it->second;
VLOG(kVlogSetCookies) << "InternalDeleteCookie() cc: " << cc->DebugString();
if (cc->IsPersistent() && store_ && sync_to_store)
store_->DeleteCookie(*cc);
if (delegate_.get()) {
ChangeCausePair mapping = ChangeCauseMapping[deletion_cause];
if (mapping.notify)
delegate_->OnCookieChanged(*cc, true, mapping.cause);
}
cookies_.erase(it);
delete cc;
}
// Domain expiry behavior is unchanged by key/expiry scheme (the
// meaning of the key is different, but that's not visible to this
// routine). Global garbage collection is dependent on key/expiry
// scheme in that recently touched cookies are not saved if
// expiry_and_key_scheme_ == EKS_DISCARD_RECENT_AND_PURGE_DOMAIN.
int CookieMonster::GarbageCollect(const Time& current,
const std::string& key) {
lock_.AssertAcquired();
int num_deleted = 0;
// Collect garbage for this key.
if (cookies_.count(key) > kDomainMaxCookies) {
VLOG(kVlogGarbageCollection) << "GarbageCollect() key: " << key;
std::vector<CookieMap::iterator> cookie_its;
num_deleted += GarbageCollectExpired(
current, cookies_.equal_range(key), &cookie_its);
base::Time oldest_removed;
if (FindLeastRecentlyAccessed(kDomainMaxCookies, kDomainPurgeCookies,
&oldest_removed, &cookie_its)) {
// Delete in two passes so we can figure out what we're nuking
// that would be kept at the global level.
int num_subject_to_global_purge =
GarbageCollectDeleteList(
current,
Time::Now() - TimeDelta::FromDays(kSafeFromGlobalPurgeDays),
DELETE_COOKIE_EVICTED_DOMAIN_PRE_SAFE,
cookie_its);
num_deleted += num_subject_to_global_purge;
// Correct because FindLeastRecentlyAccessed returns a sorted list.
cookie_its.erase(cookie_its.begin(),
cookie_its.begin() + num_subject_to_global_purge);
num_deleted +=
GarbageCollectDeleteList(
current,
Time(),
DELETE_COOKIE_EVICTED_DOMAIN_POST_SAFE,
cookie_its);
}
}
// Collect garbage for everything. With firefox style we want to
// preserve cookies touched in kSafeFromGlobalPurgeDays, otherwise
// not.
if (cookies_.size() > kMaxCookies &&
(expiry_and_key_scheme_ == EKS_DISCARD_RECENT_AND_PURGE_DOMAIN ||
earliest_access_time_ <
Time::Now() - TimeDelta::FromDays(kSafeFromGlobalPurgeDays))) {
VLOG(kVlogGarbageCollection) << "GarbageCollect() everything";
std::vector<CookieMap::iterator> cookie_its;
base::Time oldest_left;
num_deleted += GarbageCollectExpired(
current, CookieMapItPair(cookies_.begin(), cookies_.end()),
&cookie_its);
if (FindLeastRecentlyAccessed(kMaxCookies, kPurgeCookies,
&oldest_left, &cookie_its)) {
Time oldest_safe_cookie(
expiry_and_key_scheme_ == EKS_KEEP_RECENT_AND_PURGE_ETLDP1 ?
(Time::Now() - TimeDelta::FromDays(kSafeFromGlobalPurgeDays)) :
Time()); // Null time == ignore access time.
int num_evicted = GarbageCollectDeleteList(
current,
oldest_safe_cookie,
DELETE_COOKIE_EVICTED_GLOBAL,
cookie_its);
// If no cookies were preserved by the time limit, the global last
// access is set to the value returned from FindLeastRecentlyAccessed.
// If the time limit preserved some cookies, we use the last access of
// the oldest preserved cookie.
if (num_evicted == static_cast<int>(cookie_its.size())) {
earliest_access_time_ = oldest_left;
} else {
earliest_access_time_ =
(*(cookie_its.begin() + num_evicted))->second->LastAccessDate();
}
num_deleted += num_evicted;
}
}
return num_deleted;
}
int CookieMonster::GarbageCollectExpired(
const Time& current,
const CookieMapItPair& itpair,
std::vector<CookieMap::iterator>* cookie_its) {
if (keep_expired_cookies_)
return 0;
lock_.AssertAcquired();
int num_deleted = 0;
for (CookieMap::iterator it = itpair.first, end = itpair.second; it != end;) {
CookieMap::iterator curit = it;
++it;
if (curit->second->IsExpired(current)) {
InternalDeleteCookie(curit, true, DELETE_COOKIE_EXPIRED);
++num_deleted;
} else if (cookie_its) {
cookie_its->push_back(curit);
}
}
return num_deleted;
}
int CookieMonster::GarbageCollectDeleteList(
const Time& current,
const Time& keep_accessed_after,
DeletionCause cause,
std::vector<CookieMap::iterator>& cookie_its) {
int num_deleted = 0;
for (std::vector<CookieMap::iterator>::iterator it = cookie_its.begin();
it != cookie_its.end(); it++) {
if (keep_accessed_after.is_null() ||
(*it)->second->LastAccessDate() < keep_accessed_after) {
histogram_evicted_last_access_minutes_->Add(
(current - (*it)->second->LastAccessDate()).InMinutes());
InternalDeleteCookie((*it), true, cause);
num_deleted++;
}
}
return num_deleted;
}
// A wrapper around RegistryControlledDomainService::GetDomainAndRegistry
// to make clear we're creating a key for our local map. Here and
// in FindCookiesForHostAndDomain() are the only two places where
// we need to conditionalize based on key type.
//
// Note that this key algorithm explicitly ignores the scheme. This is
// because when we're entering cookies into the map from the backing store,
// we in general won't have the scheme at that point.
// In practical terms, this means that file cookies will be stored
// in the map either by an empty string or by UNC name (and will be
// limited by kMaxCookiesPerHost), and extension cookies will be stored
// based on the single extension id, as the extension id won't have the
// form of a DNS host and hence GetKey() will return it unchanged.
//
// Arguably the right thing to do here is to make the key
// algorithm dependent on the scheme, and make sure that the scheme is
// available everywhere the key must be obtained (specfically at backing
// store load time). This would require either changing the backing store
// database schema to include the scheme (far more trouble than it's worth), or
// separating out file cookies into their own CookieMonster instance and
// thus restricting each scheme to a single cookie monster (which might
// be worth it, but is still too much trouble to solve what is currently a
// non-problem).
std::string CookieMonster::GetKey(const std::string& domain) const {
if (expiry_and_key_scheme_ == EKS_DISCARD_RECENT_AND_PURGE_DOMAIN)
return domain;
std::string effective_domain(
RegistryControlledDomainService::GetDomainAndRegistry(domain));
if (effective_domain.empty())
effective_domain = domain;
if (!effective_domain.empty() && effective_domain[0] == '.')
return effective_domain.substr(1);
return effective_domain;
}
bool CookieMonster::HasCookieableScheme(const GURL& url) {
lock_.AssertAcquired();
// Make sure the request is on a cookie-able url scheme.
for (size_t i = 0; i < cookieable_schemes_.size(); ++i) {
// We matched a scheme.
if (url.SchemeIs(cookieable_schemes_[i].c_str())) {
// We've matched a supported scheme.
return true;
}
}
// The scheme didn't match any in our whitelist.
VLOG(kVlogPerCookieMonster) << "WARNING: Unsupported cookie scheme: "
<< url.scheme();
return false;
}
// Test to see if stats should be recorded, and record them if so.
// The goal here is to get sampling for the average browser-hour of
// activity. We won't take samples when the web isn't being surfed,
// and when the web is being surfed, we'll take samples about every
// kRecordStatisticsIntervalSeconds.
// last_statistic_record_time_ is initialized to Now() rather than null
// in the constructor so that we won't take statistics right after
// startup, to avoid bias from browsers that are started but not used.
void CookieMonster::RecordPeriodicStats(const base::Time& current_time) {
const base::TimeDelta kRecordStatisticsIntervalTime(
base::TimeDelta::FromSeconds(kRecordStatisticsIntervalSeconds));
// If we've taken statistics recently, return.
if (current_time - last_statistic_record_time_ <=
kRecordStatisticsIntervalTime) {
return;
}
// See InitializeHistograms() for details.
histogram_count_->Add(cookies_.size());
// More detailed statistics on cookie counts at different granularities.
TimeTicks beginning_of_time(TimeTicks::Now());
for (CookieMap::const_iterator it_key = cookies_.begin();
it_key != cookies_.end(); ) {
const std::string& key(it_key->first);
int key_count = 0;
typedef std::map<std::string, unsigned int> DomainMap;
DomainMap domain_map;
CookieMapItPair its_cookies = cookies_.equal_range(key);
while (its_cookies.first != its_cookies.second) {
key_count++;
const std::string& cookie_domain(its_cookies.first->second->Domain());
domain_map[cookie_domain]++;
its_cookies.first++;
}
histogram_etldp1_count_->Add(key_count);
histogram_domain_per_etldp1_count_->Add(domain_map.size());
for (DomainMap::const_iterator domain_map_it = domain_map.begin();
domain_map_it != domain_map.end(); domain_map_it++)
histogram_domain_count_->Add(domain_map_it->second);
it_key = its_cookies.second;
}
VLOG(kVlogPeriodic)
<< "Time for recording cookie stats (us): "
<< (TimeTicks::Now() - beginning_of_time).InMicroseconds();
last_statistic_record_time_ = current_time;
}
// Initialize all histogram counter variables used in this class.
//
// Normal histogram usage involves using the macros defined in
// histogram.h, which automatically takes care of declaring these
// variables (as statics), initializing them, and accumulating into
// them, all from a single entry point. Unfortunately, that solution
// doesn't work for the CookieMonster, as it's vulnerable to races between
// separate threads executing the same functions and hence initializing the
// same static variables. There isn't a race danger in the histogram
// accumulation calls; they are written to be resilient to simultaneous
// calls from multiple threads.
//
// The solution taken here is to have per-CookieMonster instance
// variables that are constructed during CookieMonster construction.
// Note that these variables refer to the same underlying histogram,
// so we still race (but safely) with other CookieMonster instances
// for accumulation.
//
// To do this we've expanded out the individual histogram macros calls,
// with declarations of the variables in the class decl, initialization here
// (done from the class constructor) and direct calls to the accumulation
// methods where needed. The specific histogram macro calls on which the
// initialization is based are included in comments below.
void CookieMonster::InitializeHistograms() {
// From UMA_HISTOGRAM_CUSTOM_COUNTS
histogram_expiration_duration_minutes_ = base::Histogram::FactoryGet(
"Cookie.ExpirationDurationMinutes",
1, kMinutesInTenYears, 50,
base::Histogram::kUmaTargetedHistogramFlag);
histogram_between_access_interval_minutes_ = base::Histogram::FactoryGet(
"Cookie.BetweenAccessIntervalMinutes",
1, kMinutesInTenYears, 50,
base::Histogram::kUmaTargetedHistogramFlag);
histogram_evicted_last_access_minutes_ = base::Histogram::FactoryGet(
"Cookie.EvictedLastAccessMinutes",
1, kMinutesInTenYears, 50,
base::Histogram::kUmaTargetedHistogramFlag);
histogram_count_ = base::Histogram::FactoryGet(
"Cookie.Count", 1, 4000, 50,
base::Histogram::kUmaTargetedHistogramFlag);
histogram_domain_count_ = base::Histogram::FactoryGet(
"Cookie.DomainCount", 1, 4000, 50,
base::Histogram::kUmaTargetedHistogramFlag);
histogram_etldp1_count_ = base::Histogram::FactoryGet(
"Cookie.Etldp1Count", 1, 4000, 50,
base::Histogram::kUmaTargetedHistogramFlag);
histogram_domain_per_etldp1_count_ = base::Histogram::FactoryGet(
"Cookie.DomainPerEtldp1Count", 1, 4000, 50,
base::Histogram::kUmaTargetedHistogramFlag);
// From UMA_HISTOGRAM_COUNTS_10000 & UMA_HISTOGRAM_CUSTOM_COUNTS
histogram_number_duplicate_db_cookies_ = base::Histogram::FactoryGet(
"Net.NumDuplicateCookiesInDb", 1, 10000, 50,
base::Histogram::kUmaTargetedHistogramFlag);
// From UMA_HISTOGRAM_ENUMERATION
histogram_cookie_deletion_cause_ = base::LinearHistogram::FactoryGet(
"Cookie.DeletionCause", 1,
DELETE_COOKIE_LAST_ENTRY - 1, DELETE_COOKIE_LAST_ENTRY,
base::Histogram::kUmaTargetedHistogramFlag);
// From UMA_HISTOGRAM_{CUSTOM_,}TIMES
histogram_time_get_ = base::Histogram::FactoryTimeGet("Cookie.TimeGet",
base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(1),
50, base::Histogram::kUmaTargetedHistogramFlag);
histogram_time_load_ = base::Histogram::FactoryTimeGet("Cookie.TimeLoad",
base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(1),
50, base::Histogram::kUmaTargetedHistogramFlag);
}
// The system resolution is not high enough, so we can have multiple
// set cookies that result in the same system time. When this happens, we
// increment by one Time unit. Let's hope computers don't get too fast.
Time CookieMonster::CurrentTime() {
return std::max(Time::Now(),
Time::FromInternalValue(last_time_seen_.ToInternalValue() + 1));
}
CookieMonster::ParsedCookie::ParsedCookie(const std::string& cookie_line)
: is_valid_(false),
path_index_(0),
domain_index_(0),
expires_index_(0),
maxage_index_(0),
secure_index_(0),
httponly_index_(0) {
if (cookie_line.size() > kMaxCookieSize) {
VLOG(1) << "Not parsing cookie, too large: " << cookie_line.size();
return;
}
ParseTokenValuePairs(cookie_line);
if (!pairs_.empty()) {
is_valid_ = true;
SetupAttributes();
}
}
CookieMonster::ParsedCookie::~ParsedCookie() {
}
// Returns true if |c| occurs in |chars|
// TODO maybe make this take an iterator, could check for end also?
static inline bool CharIsA(const char c, const char* chars) {
return strchr(chars, c) != NULL;
}
// Seek the iterator to the first occurrence of a character in |chars|.
// Returns true if it hit the end, false otherwise.
static inline bool SeekTo(std::string::const_iterator* it,
const std::string::const_iterator& end,
const char* chars) {
for (; *it != end && !CharIsA(**it, chars); ++(*it)) {}
return *it == end;
}
// Seek the iterator to the first occurrence of a character not in |chars|.
// Returns true if it hit the end, false otherwise.
static inline bool SeekPast(std::string::const_iterator* it,
const std::string::const_iterator& end,
const char* chars) {
for (; *it != end && CharIsA(**it, chars); ++(*it)) {}
return *it == end;
}
static inline bool SeekBackPast(std::string::const_iterator* it,
const std::string::const_iterator& end,
const char* chars) {
for (; *it != end && CharIsA(**it, chars); --(*it)) {}
return *it == end;
}
const char CookieMonster::ParsedCookie::kTerminator[] = "\n\r\0";
const int CookieMonster::ParsedCookie::kTerminatorLen =
sizeof(kTerminator) - 1;
const char CookieMonster::ParsedCookie::kWhitespace[] = " \t";
const char CookieMonster::ParsedCookie::kValueSeparator[] = ";";
const char CookieMonster::ParsedCookie::kTokenSeparator[] = ";=";
// Create a cookie-line for the cookie. For debugging only!
// If we want to use this for something more than debugging, we
// should rewrite it better...
std::string CookieMonster::ParsedCookie::DebugString() const {
std::string out;
for (PairList::const_iterator it = pairs_.begin();
it != pairs_.end(); ++it) {
out.append(it->first);
out.append("=");
out.append(it->second);
out.append("; ");
}
return out;
}
std::string::const_iterator CookieMonster::ParsedCookie::FindFirstTerminator(
const std::string& s) {
std::string::const_iterator end = s.end();
size_t term_pos =
s.find_first_of(std::string(kTerminator, kTerminatorLen));
if (term_pos != std::string::npos) {
// We found a character we should treat as an end of string.
end = s.begin() + term_pos;
}
return end;
}
bool CookieMonster::ParsedCookie::ParseToken(
std::string::const_iterator* it,
const std::string::const_iterator& end,
std::string::const_iterator* token_start,
std::string::const_iterator* token_end) {
DCHECK(it && token_start && token_end);
std::string::const_iterator token_real_end;
// Seek past any whitespace before the "token" (the name).
// token_start should point at the first character in the token
if (SeekPast(it, end, kWhitespace))
return false; // No token, whitespace or empty.
*token_start = *it;
// Seek over the token, to the token separator.
// token_real_end should point at the token separator, i.e. '='.
// If it == end after the seek, we probably have a token-value.
SeekTo(it, end, kTokenSeparator);
token_real_end = *it;
// Ignore any whitespace between the token and the token separator.
// token_end should point after the last interesting token character,
// pointing at either whitespace, or at '=' (and equal to token_real_end).
if (*it != *token_start) { // We could have an empty token name.
--(*it); // Go back before the token separator.
// Skip over any whitespace to the first non-whitespace character.
SeekBackPast(it, *token_start, kWhitespace);
// Point after it.
++(*it);
}
*token_end = *it;
// Seek us back to the end of the token.
*it = token_real_end;
return true;
}
void CookieMonster::ParsedCookie::ParseValue(
std::string::const_iterator* it,
const std::string::const_iterator& end,
std::string::const_iterator* value_start,
std::string::const_iterator* value_end) {
DCHECK(it && value_start && value_end);
// Seek past any whitespace that might in-between the token and value.
SeekPast(it, end, kWhitespace);
// value_start should point at the first character of the value.
*value_start = *it;
#ifdef ANDROID
// It is unclear exactly how quoted string values should be handled.
// Major browsers do different things, for example, Firefox and Safari support
// semicolons embedded in a quoted value, while IE does not. Looking at
// the specs, RFC 2109 and 2965 allow for a quoted-string as the value.
// However, these specs were apparently written after browsers had
// implemented cookies, and they seem very distant from the reality of
// what is actually implemented and used on the web. The original spec
// from Netscape is possibly what is closest to the cookies used today.
// This spec didn't have explicit support for double quoted strings, and
// states that ; is not allowed as part of a value.
// The spec disallows control characters and separators in the unquoted value,
// but we allow all of these, other than the value separator ';'.
#ifdef ALLOW_QUOTED_COOKIE_VALUES
// When a value is quoted, the spec states that any text (other than a double
// quote character, but including an escaped double quote character) is
// treated as an opaque part of the value. The spec allows for exactly one
// such quoted string for the value, but we allow multiple such strings,
// possibly with intermediate separators. This matches our policy of allowing
// separators in the unquoted value. This matches the behaviour of Safari, but
// not that of FF.
bool isInQuotedString = false;
for (; *it != end && (isInQuotedString || !CharIsA(**it, kValueSeparator)); ++(*it)) {
// Inside a quoted string, a backslash esacpes the next character, which can
// be any character and should be ignored.
if (isInQuotedString && **it == '\\') {
++(*it);
// If this backslash is the last character, we just take what we have.
if (*it == end)
break;
continue;
}
if (**it == '\"')
isInQuotedString = !isInQuotedString;
}
#else
// Just look for ';' to terminate ('=' allowed).
// We can hit the end, maybe they didn't terminate.
SeekTo(it, end, kValueSeparator);
#endif
#endif // ANDROID
// Will be pointed at the ; seperator or the end.
*value_end = *it;
// Ignore any unwanted whitespace after the value.
if (*value_end != *value_start) { // Could have an empty value
--(*value_end);
SeekBackPast(value_end, *value_start, kWhitespace);
++(*value_end);
}
}
std::string CookieMonster::ParsedCookie::ParseTokenString(
const std::string& token) {
std::string::const_iterator it = token.begin();
std::string::const_iterator end = FindFirstTerminator(token);
std::string::const_iterator token_start, token_end;
if (ParseToken(&it, end, &token_start, &token_end))
return std::string(token_start, token_end);
return std::string();
}
std::string CookieMonster::ParsedCookie::ParseValueString(
const std::string& value) {
std::string::const_iterator it = value.begin();
std::string::const_iterator end = FindFirstTerminator(value);
std::string::const_iterator value_start, value_end;
ParseValue(&it, end, &value_start, &value_end);
return std::string(value_start, value_end);
}
// Parse all token/value pairs and populate pairs_.
void CookieMonster::ParsedCookie::ParseTokenValuePairs(
const std::string& cookie_line) {
pairs_.clear();
// Ok, here we go. We should be expecting to be starting somewhere
// before the cookie line, not including any header name...
std::string::const_iterator start = cookie_line.begin();
std::string::const_iterator it = start;
// TODO Make sure we're stripping \r\n in the network code. Then we
// can log any unexpected terminators.
std::string::const_iterator end = FindFirstTerminator(cookie_line);
for (int pair_num = 0; pair_num < kMaxPairs && it != end; ++pair_num) {
TokenValuePair pair;
std::string::const_iterator token_start, token_end;
if (!ParseToken(&it, end, &token_start, &token_end))
break;
if (it == end || *it != '=') {
// We have a token-value, we didn't have any token name.
if (pair_num == 0) {
// For the first time around, we want to treat single values
// as a value with an empty name. (Mozilla bug 169091).
// IE seems to also have this behavior, ex "AAA", and "AAA=10" will
// set 2 different cookies, and setting "BBB" will then replace "AAA".
pair.first = "";
// Rewind to the beginning of what we thought was the token name,
// and let it get parsed as a value.
it = token_start;
} else {
// Any not-first attribute we want to treat a value as a
// name with an empty value... This is so something like
// "secure;" will get parsed as a Token name, and not a value.
pair.first = std::string(token_start, token_end);
}
} else {
// We have a TOKEN=VALUE.
pair.first = std::string(token_start, token_end);
++it; // Skip past the '='.
}
// OK, now try to parse a value.
std::string::const_iterator value_start, value_end;
ParseValue(&it, end, &value_start, &value_end);
// OK, we're finished with a Token/Value.
pair.second = std::string(value_start, value_end);
// From RFC2109: "Attributes (names) (attr) are case-insensitive."
if (pair_num != 0)
StringToLowerASCII(&pair.first);
pairs_.push_back(pair);
// We've processed a token/value pair, we're either at the end of
// the string or a ValueSeparator like ';', which we want to skip.
if (it != end)
++it;
}
}
void CookieMonster::ParsedCookie::SetupAttributes() {
static const char kPathTokenName[] = "path";
static const char kDomainTokenName[] = "domain";
static const char kExpiresTokenName[] = "expires";
static const char kMaxAgeTokenName[] = "max-age";
static const char kSecureTokenName[] = "secure";
static const char kHttpOnlyTokenName[] = "httponly";
// We skip over the first token/value, the user supplied one.
for (size_t i = 1; i < pairs_.size(); ++i) {
if (pairs_[i].first == kPathTokenName) {
path_index_ = i;
} else if (pairs_[i].first == kDomainTokenName) {
domain_index_ = i;
} else if (pairs_[i].first == kExpiresTokenName) {
expires_index_ = i;
} else if (pairs_[i].first == kMaxAgeTokenName) {
maxage_index_ = i;
} else if (pairs_[i].first == kSecureTokenName) {
secure_index_ = i;
} else if (pairs_[i].first == kHttpOnlyTokenName) {
httponly_index_ = i;
} else {
/* some attribute we don't know or don't care about. */
}
}
}
CookieMonster::CanonicalCookie::CanonicalCookie()
: secure_(false),
httponly_(false),
has_expires_(false) {
}
CookieMonster::CanonicalCookie::CanonicalCookie(const GURL& url,
const std::string& name,
const std::string& value,
const std::string& domain,
const std::string& path,
const base::Time& creation,
const base::Time& expiration,
const base::Time& last_access,
bool secure,
bool httponly,
bool has_expires)
: source_(GetCookieSourceFromURL(url)),
name_(name),
value_(value),
domain_(domain),
path_(path),
creation_date_(creation),
expiry_date_(expiration),
last_access_date_(last_access),
secure_(secure),
httponly_(httponly),
has_expires_(has_expires) {
}
CookieMonster::CanonicalCookie::CanonicalCookie(const GURL& url,
const ParsedCookie& pc)
: source_(GetCookieSourceFromURL(url)),
name_(pc.Name()),
value_(pc.Value()),
path_(CanonPath(url, pc)),
creation_date_(Time::Now()),
last_access_date_(Time()),
secure_(pc.IsSecure()),
httponly_(pc.IsHttpOnly()),
has_expires_(pc.HasExpires()) {
if (has_expires_)
expiry_date_ = CanonExpiration(pc, creation_date_, CookieOptions());
// Do the best we can with the domain.
std::string cookie_domain;
std::string domain_string;
if (pc.HasDomain()) {
domain_string = pc.Domain();
}
bool result
= GetCookieDomainWithString(url, domain_string,
&cookie_domain);
// Caller is responsible for passing in good arguments.
DCHECK(result);
domain_ = cookie_domain;
}
CookieMonster::CanonicalCookie::~CanonicalCookie() {
}
std::string CookieMonster::CanonicalCookie::GetCookieSourceFromURL(
const GURL& url) {
if (url.SchemeIsFile())
return url.spec();
url_canon::Replacements<char> replacements;
replacements.ClearPort();
if (url.SchemeIsSecure())
replacements.SetScheme("http", url_parse::Component(0, 4));
return url.GetOrigin().ReplaceComponents(replacements).spec();
}
CookieMonster::CanonicalCookie* CookieMonster::CanonicalCookie::Create(
const GURL& url,
const std::string& name,
const std::string& value,
const std::string& domain,
const std::string& path,
const base::Time& creation,
const base::Time& expiration,
bool secure,
bool http_only) {
// Expect valid attribute tokens and values, as defined by the ParsedCookie
// logic, otherwise don't create the cookie.
std::string parsed_name = ParsedCookie::ParseTokenString(name);
if (parsed_name != name)
return NULL;
std::string parsed_value = ParsedCookie::ParseValueString(value);
if (parsed_value != value)
return NULL;
std::string parsed_domain = ParsedCookie::ParseValueString(domain);
if (parsed_domain != domain)
return NULL;
std::string cookie_domain;
if (!GetCookieDomainWithString(url, parsed_domain, &cookie_domain))
return NULL;
std::string parsed_path = ParsedCookie::ParseValueString(path);
if (parsed_path != path)
return NULL;
std::string cookie_path = CanonPathWithString(url, parsed_path);
// Expect that the path was either not specified (empty), or is valid.
if (!parsed_path.empty() && cookie_path != parsed_path)
return NULL;
// Canonicalize path again to make sure it escapes characters as needed.
url_parse::Component path_component(0, cookie_path.length());
url_canon::RawCanonOutputT<char> canon_path;
url_parse::Component canon_path_component;
url_canon::CanonicalizePath(cookie_path.data(), path_component,
&canon_path, &canon_path_component);
cookie_path = std::string(canon_path.data() + canon_path_component.begin,
canon_path_component.len);
return new CanonicalCookie(url, parsed_name, parsed_value, cookie_domain,
cookie_path, creation, expiration, creation,
secure, http_only, !expiration.is_null());
}
bool CookieMonster::CanonicalCookie::IsOnPath(
const std::string& url_path) const {
// A zero length would be unsafe for our trailing '/' checks, and
// would also make no sense for our prefix match. The code that
// creates a CanonicalCookie should make sure the path is never zero length,
// but we double check anyway.
if (path_.empty())
return false;
// The Mozilla code broke it into 3 cases, if it's strings lengths
// are less than, equal, or greater. I think this is simpler:
// Make sure the cookie path is a prefix of the url path. If the
// url path is shorter than the cookie path, then the cookie path
// can't be a prefix.
if (url_path.find(path_) != 0)
return false;
// Now we know that url_path is >= cookie_path, and that cookie_path
// is a prefix of url_path. If they are the are the same length then
// they are identical, otherwise we need an additional check:
// In order to avoid in correctly matching a cookie path of /blah
// with a request path of '/blahblah/', we need to make sure that either
// the cookie path ends in a trailing '/', or that we prefix up to a '/'
// in the url path. Since we know that the url path length is greater
// than the cookie path length, it's safe to index one byte past.
if (path_.length() != url_path.length() &&
path_[path_.length() - 1] != '/' &&
url_path[path_.length()] != '/')
return false;
return true;
}
bool CookieMonster::CanonicalCookie::IsDomainMatch(
const std::string& scheme,
const std::string& host) const {
// Can domain match in two ways; as a domain cookie (where the cookie
// domain begins with ".") or as a host cookie (where it doesn't).
// Some consumers of the CookieMonster expect to set cookies on
// URLs like http://.strange.url. To retrieve cookies in this instance,
// we allow matching as a host cookie even when the domain_ starts with
// a period.
if (host == domain_)
return true;
// Domain cookie must have an initial ".". To match, it must be
// equal to url's host with initial period removed, or a suffix of
// it.
// Arguably this should only apply to "http" or "https" cookies, but
// extension cookie tests currently use the funtionality, and if we
// ever decide to implement that it should be done by preventing
// such cookies from being set.
if (domain_.empty() || domain_[0] != '.')
return false;
// The host with a "." prefixed.
if (domain_.compare(1, std::string::npos, host) == 0)
return true;
// A pure suffix of the host (ok since we know the domain already
// starts with a ".")
return (host.length() > domain_.length() &&
host.compare(host.length() - domain_.length(),
domain_.length(), domain_) == 0);
}
std::string CookieMonster::CanonicalCookie::DebugString() const {
return base::StringPrintf(
"name: %s value: %s domain: %s path: %s creation: %"
PRId64,
name_.c_str(), value_.c_str(),
domain_.c_str(), path_.c_str(),
static_cast<int64>(creation_date_.ToTimeT()));
}
} // namespace