// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/tracked_objects.h"
#include <math.h>
#include "base/format_macros.h"
#include "base/message_loop.h"
#include "base/string_util.h"
#include "base/stringprintf.h"
#include "base/threading/thread_restrictions.h"
using base::TimeDelta;
namespace tracked_objects {
// A TLS slot to the TrackRegistry for the current thread.
// static
base::ThreadLocalStorage::Slot ThreadData::tls_index_(base::LINKER_INITIALIZED);
// A global state variable to prevent repeated initialization during tests.
// static
AutoTracking::State AutoTracking::state_ = AutoTracking::kNeverBeenRun;
//------------------------------------------------------------------------------
// Death data tallies durations when a death takes place.
void DeathData::RecordDeath(const TimeDelta& duration) {
++count_;
life_duration_ += duration;
int64 milliseconds = duration.InMilliseconds();
square_duration_ += milliseconds * milliseconds;
}
int DeathData::AverageMsDuration() const {
return static_cast<int>(life_duration_.InMilliseconds() / count_);
}
double DeathData::StandardDeviation() const {
double average = AverageMsDuration();
double variance = static_cast<float>(square_duration_)/count_
- average * average;
return sqrt(variance);
}
void DeathData::AddDeathData(const DeathData& other) {
count_ += other.count_;
life_duration_ += other.life_duration_;
square_duration_ += other.square_duration_;
}
void DeathData::Write(std::string* output) const {
if (!count_)
return;
if (1 == count_) {
base::StringAppendF(output, "(1)Life in %dms ", AverageMsDuration());
} else {
base::StringAppendF(output, "(%d)Lives %dms/life ",
count_, AverageMsDuration());
}
}
void DeathData::Clear() {
count_ = 0;
life_duration_ = TimeDelta();
square_duration_ = 0;
}
//------------------------------------------------------------------------------
BirthOnThread::BirthOnThread(const Location& location)
: location_(location),
birth_thread_(ThreadData::current()) { }
//------------------------------------------------------------------------------
Births::Births(const Location& location)
: BirthOnThread(location),
birth_count_(1) { }
//------------------------------------------------------------------------------
// ThreadData maintains the central data for all births and death.
// static
ThreadData* ThreadData::first_ = NULL;
// static
base::Lock ThreadData::list_lock_;
// static
ThreadData::Status ThreadData::status_ = ThreadData::UNINITIALIZED;
ThreadData::ThreadData() : next_(NULL) {
// This shouldn't use the MessageLoop::current() LazyInstance since this might
// be used on a non-joinable thread.
// http://crbug.com/62728
base::ThreadRestrictions::ScopedAllowSingleton scoped_allow_singleton;
message_loop_ = MessageLoop::current();
}
ThreadData::~ThreadData() {}
// static
ThreadData* ThreadData::current() {
if (!tls_index_.initialized())
return NULL;
ThreadData* registry = static_cast<ThreadData*>(tls_index_.Get());
if (!registry) {
// We have to create a new registry for ThreadData.
bool too_late_to_create = false;
{
registry = new ThreadData;
base::AutoLock lock(list_lock_);
// Use lock to insure we have most recent status.
if (!IsActive()) {
too_late_to_create = true;
} else {
// Use lock to insert into list.
registry->next_ = first_;
first_ = registry;
}
} // Release lock.
if (too_late_to_create) {
delete registry;
registry = NULL;
} else {
tls_index_.Set(registry);
}
}
return registry;
}
// Do mininimal fixups for searching function names.
static std::string UnescapeQuery(const std::string& query) {
std::string result;
for (size_t i = 0; i < query.size(); i++) {
char next = query[i];
if ('%' == next && i + 2 < query.size()) {
std::string hex = query.substr(i + 1, 2);
char replacement = '\0';
// Only bother with "<", ">", and " ".
if (LowerCaseEqualsASCII(hex, "3c"))
replacement ='<';
else if (LowerCaseEqualsASCII(hex, "3e"))
replacement = '>';
else if (hex == "20")
replacement = ' ';
if (replacement) {
next = replacement;
i += 2;
}
}
result.push_back(next);
}
return result;
}
// static
void ThreadData::WriteHTML(const std::string& query, std::string* output) {
if (!ThreadData::IsActive())
return; // Not yet initialized.
DCHECK(ThreadData::current());
output->append("<html><head><title>About Tasks");
std::string escaped_query = UnescapeQuery(query);
if (!escaped_query.empty())
output->append(" - " + escaped_query);
output->append("</title></head><body><pre>");
DataCollector collected_data; // Gather data.
collected_data.AddListOfLivingObjects(); // Add births that are still alive.
// Data Gathering is complete. Now to sort/process/render.
DataCollector::Collection* collection = collected_data.collection();
// Create filtering and sort comparison object.
Comparator comparator;
comparator.ParseQuery(escaped_query);
// Filter out acceptable (matching) instances.
DataCollector::Collection match_array;
for (DataCollector::Collection::iterator it = collection->begin();
it != collection->end(); ++it) {
if (comparator.Acceptable(*it))
match_array.push_back(*it);
}
comparator.Sort(&match_array);
WriteHTMLTotalAndSubtotals(match_array, comparator, output);
comparator.Clear(); // Delete tiebreaker_ instances.
output->append("</pre>");
const char* help_string = "The following are the keywords that can be used to"
"sort and aggregate the data, or to select data.<br><ul>"
"<li><b>count</b> Number of instances seen."
"<li><b>duration</b> Duration in ms from construction to descrution."
"<li><b>birth</b> Thread on which the task was constructed."
"<li><b>death</b> Thread on which the task was run and deleted."
"<li><b>file</b> File in which the task was contructed."
"<li><b>function</b> Function in which the task was constructed."
"<li><b>line</b> Line number of the file in which the task was constructed."
"</ul><br>"
"As examples:<ul>"
"<li><b>about:tasks/file</b> would sort the above data by file, and"
" aggregate data on a per-file basis."
"<li><b>about:tasks/file=Dns</b> would only list data for tasks constructed"
" in a file containing the text |Dns|."
"<li><b>about:tasks/birth/death</b> would sort the above list by birth"
" thread, and then by death thread, and would aggregate data for each pair"
" of lifetime events."
"</ul>"
" The data can be reset to zero (discarding all births, deaths, etc.) using"
" <b>about:tasks/reset</b>. The existing stats will be displayed, but the"
" internal stats will be set to zero, and start accumulating afresh. This"
" option is very helpful if you only wish to consider tasks created after"
" some point in time.<br><br>"
"If you wish to monitor Renderer events, be sure to run in --single-process"
" mode.";
output->append(help_string);
output->append("</body></html>");
}
// static
void ThreadData::WriteHTMLTotalAndSubtotals(
const DataCollector::Collection& match_array,
const Comparator& comparator,
std::string* output) {
if (!match_array.size()) {
output->append("There were no tracked matches.");
} else {
// Aggregate during printing
Aggregation totals;
for (size_t i = 0; i < match_array.size(); ++i) {
totals.AddDeathSnapshot(match_array[i]);
}
output->append("Aggregate Stats: ");
totals.Write(output);
output->append("<hr><hr>");
Aggregation subtotals;
for (size_t i = 0; i < match_array.size(); ++i) {
if (0 == i || !comparator.Equivalent(match_array[i - 1],
match_array[i])) {
// Print group's defining characteristics.
comparator.WriteSortGrouping(match_array[i], output);
output->append("<br><br>");
}
comparator.WriteSnapshot(match_array[i], output);
output->append("<br>");
subtotals.AddDeathSnapshot(match_array[i]);
if (i + 1 >= match_array.size() ||
!comparator.Equivalent(match_array[i],
match_array[i + 1])) {
// Print aggregate stats for the group.
output->append("<br>");
subtotals.Write(output);
output->append("<br><hr><br>");
subtotals.Clear();
}
}
}
}
Births* ThreadData::TallyABirth(const Location& location) {
{
// This shouldn't use the MessageLoop::current() LazyInstance since this
// might be used on a non-joinable thread.
// http://crbug.com/62728
base::ThreadRestrictions::ScopedAllowSingleton scoped_allow_singleton;
if (!message_loop_) // In case message loop wasn't yet around...
message_loop_ = MessageLoop::current(); // Find it now.
}
BirthMap::iterator it = birth_map_.find(location);
if (it != birth_map_.end()) {
it->second->RecordBirth();
return it->second;
}
Births* tracker = new Births(location);
// Lock since the map may get relocated now, and other threads sometimes
// snapshot it (but they lock before copying it).
base::AutoLock lock(lock_);
birth_map_[location] = tracker;
return tracker;
}
void ThreadData::TallyADeath(const Births& lifetimes,
const TimeDelta& duration) {
{
// http://crbug.com/62728
base::ThreadRestrictions::ScopedAllowSingleton scoped_allow_singleton;
if (!message_loop_) // In case message loop wasn't yet around...
message_loop_ = MessageLoop::current(); // Find it now.
}
DeathMap::iterator it = death_map_.find(&lifetimes);
if (it != death_map_.end()) {
it->second.RecordDeath(duration);
return;
}
base::AutoLock lock(lock_); // Lock since the map may get relocated now.
death_map_[&lifetimes].RecordDeath(duration);
}
// static
ThreadData* ThreadData::first() {
base::AutoLock lock(list_lock_);
return first_;
}
const std::string ThreadData::ThreadName() const {
if (message_loop_)
return message_loop_->thread_name();
return "ThreadWithoutMessageLoop";
}
// This may be called from another thread.
void ThreadData::SnapshotBirthMap(BirthMap *output) const {
base::AutoLock lock(lock_);
for (BirthMap::const_iterator it = birth_map_.begin();
it != birth_map_.end(); ++it)
(*output)[it->first] = it->second;
}
// This may be called from another thread.
void ThreadData::SnapshotDeathMap(DeathMap *output) const {
base::AutoLock lock(lock_);
for (DeathMap::const_iterator it = death_map_.begin();
it != death_map_.end(); ++it)
(*output)[it->first] = it->second;
}
// static
void ThreadData::ResetAllThreadData() {
ThreadData* my_list = ThreadData::current()->first();
for (ThreadData* thread_data = my_list;
thread_data;
thread_data = thread_data->next())
thread_data->Reset();
}
void ThreadData::Reset() {
base::AutoLock lock(lock_);
for (DeathMap::iterator it = death_map_.begin();
it != death_map_.end(); ++it)
it->second.Clear();
for (BirthMap::iterator it = birth_map_.begin();
it != birth_map_.end(); ++it)
it->second->Clear();
}
#ifdef OS_WIN
// A class used to count down which is accessed by several threads. This is
// used to make sure RunOnAllThreads() actually runs a task on the expected
// count of threads.
class ThreadData::ThreadSafeDownCounter {
public:
// Constructor sets the count, once and for all.
explicit ThreadSafeDownCounter(size_t count);
// Decrement the count, and return true if we hit zero. Also delete this
// instance automatically when we hit zero.
bool LastCaller();
private:
size_t remaining_count_;
base::Lock lock_; // protect access to remaining_count_.
};
ThreadData::ThreadSafeDownCounter::ThreadSafeDownCounter(size_t count)
: remaining_count_(count) {
DCHECK_GT(remaining_count_, 0u);
}
bool ThreadData::ThreadSafeDownCounter::LastCaller() {
{
base::AutoLock lock(lock_);
if (--remaining_count_)
return false;
} // Release lock, so we can delete everything in this instance.
delete this;
return true;
}
// A Task class that runs a static method supplied, and checks to see if this
// is the last tasks instance (on last thread) that will run the method.
// IF this is the last run, then the supplied event is signalled.
class ThreadData::RunTheStatic : public Task {
public:
typedef void (*FunctionPointer)();
RunTheStatic(FunctionPointer function,
HANDLE completion_handle,
ThreadSafeDownCounter* counter);
// Run the supplied static method, and optionally set the event.
void Run();
private:
FunctionPointer function_;
HANDLE completion_handle_;
// Make sure enough tasks are called before completion is signaled.
ThreadSafeDownCounter* counter_;
DISALLOW_COPY_AND_ASSIGN(RunTheStatic);
};
ThreadData::RunTheStatic::RunTheStatic(FunctionPointer function,
HANDLE completion_handle,
ThreadSafeDownCounter* counter)
: function_(function),
completion_handle_(completion_handle),
counter_(counter) {
}
void ThreadData::RunTheStatic::Run() {
function_();
if (counter_->LastCaller())
SetEvent(completion_handle_);
}
// TODO(jar): This should use condition variables, and be cross platform.
void ThreadData::RunOnAllThreads(void (*function)()) {
ThreadData* list = first(); // Get existing list.
std::vector<MessageLoop*> message_loops;
for (ThreadData* it = list; it; it = it->next()) {
if (current() != it && it->message_loop())
message_loops.push_back(it->message_loop());
}
ThreadSafeDownCounter* counter =
new ThreadSafeDownCounter(message_loops.size() + 1); // Extra one for us!
HANDLE completion_handle = CreateEvent(NULL, false, false, NULL);
// Tell all other threads to run.
for (size_t i = 0; i < message_loops.size(); ++i)
message_loops[i]->PostTask(
FROM_HERE, new RunTheStatic(function, completion_handle, counter));
// Also run Task on our thread.
RunTheStatic local_task(function, completion_handle, counter);
local_task.Run();
WaitForSingleObject(completion_handle, INFINITE);
int ret_val = CloseHandle(completion_handle);
DCHECK(ret_val);
}
#endif // OS_WIN
// static
bool ThreadData::StartTracking(bool status) {
#ifndef TRACK_ALL_TASK_OBJECTS
return false; // Not compiled in.
#endif
if (!status) {
base::AutoLock lock(list_lock_);
DCHECK(status_ == ACTIVE || status_ == SHUTDOWN);
status_ = SHUTDOWN;
return true;
}
base::AutoLock lock(list_lock_);
DCHECK_EQ(UNINITIALIZED, status_);
CHECK(tls_index_.Initialize(NULL));
status_ = ACTIVE;
return true;
}
// static
bool ThreadData::IsActive() {
return status_ == ACTIVE;
}
#ifdef OS_WIN
// static
void ThreadData::ShutdownMultiThreadTracking() {
// Using lock, guarantee that no new ThreadData instances will be created.
if (!StartTracking(false))
return;
RunOnAllThreads(ShutdownDisablingFurtherTracking);
// Now the *only* threads that might change the database are the threads with
// no messages loops. They might still be adding data to their birth records,
// but since no objects are deleted on those threads, there will be no further
// access to to cross-thread data.
// We could do a cleanup on all threads except for the ones without
// MessageLoops, but we won't bother doing cleanup (destruction of data) yet.
return;
}
#endif
// static
void ThreadData::ShutdownSingleThreadedCleanup() {
// We must be single threaded... but be careful anyway.
if (!StartTracking(false))
return;
ThreadData* thread_data_list;
{
base::AutoLock lock(list_lock_);
thread_data_list = first_;
first_ = NULL;
}
while (thread_data_list) {
ThreadData* next_thread_data = thread_data_list;
thread_data_list = thread_data_list->next();
for (BirthMap::iterator it = next_thread_data->birth_map_.begin();
next_thread_data->birth_map_.end() != it; ++it)
delete it->second; // Delete the Birth Records.
next_thread_data->birth_map_.clear();
next_thread_data->death_map_.clear();
delete next_thread_data; // Includes all Death Records.
}
CHECK(tls_index_.initialized());
tls_index_.Free();
DCHECK(!tls_index_.initialized());
status_ = UNINITIALIZED;
}
// static
void ThreadData::ShutdownDisablingFurtherTracking() {
// Redundantly set status SHUTDOWN on this thread.
if (!StartTracking(false))
return;
}
//------------------------------------------------------------------------------
// Individual 3-tuple of birth (place and thread) along with death thread, and
// the accumulated stats for instances (DeathData).
Snapshot::Snapshot(const BirthOnThread& birth_on_thread,
const ThreadData& death_thread,
const DeathData& death_data)
: birth_(&birth_on_thread),
death_thread_(&death_thread),
death_data_(death_data) {
}
Snapshot::Snapshot(const BirthOnThread& birth_on_thread, int count)
: birth_(&birth_on_thread),
death_thread_(NULL),
death_data_(DeathData(count)) {
}
const std::string Snapshot::DeathThreadName() const {
if (death_thread_)
return death_thread_->ThreadName();
return "Still_Alive";
}
void Snapshot::Write(std::string* output) const {
death_data_.Write(output);
base::StringAppendF(output, "%s->%s ",
birth_->birth_thread()->ThreadName().c_str(),
death_thread_->ThreadName().c_str());
birth_->location().Write(true, true, output);
}
void Snapshot::Add(const Snapshot& other) {
death_data_.AddDeathData(other.death_data_);
}
//------------------------------------------------------------------------------
// DataCollector
DataCollector::DataCollector() {
DCHECK(ThreadData::IsActive());
// Get an unchanging copy of a ThreadData list.
ThreadData* my_list = ThreadData::current()->first();
count_of_contributing_threads_ = 0;
for (ThreadData* thread_data = my_list;
thread_data;
thread_data = thread_data->next()) {
++count_of_contributing_threads_;
}
// Gather data serially. A different constructor could be used to do in
// parallel, and then invoke an OnCompletion task.
// This hackish approach *can* get some slighly corrupt tallies, as we are
// grabbing values without the protection of a lock, but it has the advantage
// of working even with threads that don't have message loops. If a user
// sees any strangeness, they can always just run their stats gathering a
// second time.
// TODO(jar): Provide version that gathers stats safely via PostTask in all
// cases where thread_data supplies a message_loop to post to. Be careful to
// handle message_loops that are destroyed!?!
for (ThreadData* thread_data = my_list;
thread_data;
thread_data = thread_data->next()) {
Append(*thread_data);
}
}
DataCollector::~DataCollector() {
}
void DataCollector::Append(const ThreadData& thread_data) {
// Get copy of data (which is done under ThreadData's lock).
ThreadData::BirthMap birth_map;
thread_data.SnapshotBirthMap(&birth_map);
ThreadData::DeathMap death_map;
thread_data.SnapshotDeathMap(&death_map);
// Use our lock to protect our accumulation activity.
base::AutoLock lock(accumulation_lock_);
DCHECK(count_of_contributing_threads_);
for (ThreadData::DeathMap::const_iterator it = death_map.begin();
it != death_map.end(); ++it) {
collection_.push_back(Snapshot(*it->first, thread_data, it->second));
global_birth_count_[it->first] -= it->first->birth_count();
}
for (ThreadData::BirthMap::const_iterator it = birth_map.begin();
it != birth_map.end(); ++it) {
global_birth_count_[it->second] += it->second->birth_count();
}
--count_of_contributing_threads_;
}
DataCollector::Collection* DataCollector::collection() {
DCHECK(!count_of_contributing_threads_);
return &collection_;
}
void DataCollector::AddListOfLivingObjects() {
DCHECK(!count_of_contributing_threads_);
for (BirthCount::iterator it = global_birth_count_.begin();
it != global_birth_count_.end(); ++it) {
if (it->second > 0)
collection_.push_back(Snapshot(*it->first, it->second));
}
}
//------------------------------------------------------------------------------
// Aggregation
Aggregation::Aggregation()
: birth_count_(0) {
}
Aggregation::~Aggregation() {
}
void Aggregation::AddDeathSnapshot(const Snapshot& snapshot) {
AddBirth(snapshot.birth());
death_threads_[snapshot.death_thread()]++;
AddDeathData(snapshot.death_data());
}
void Aggregation::AddBirths(const Births& births) {
AddBirth(births);
birth_count_ += births.birth_count();
}
void Aggregation::AddBirth(const BirthOnThread& birth) {
AddBirthPlace(birth.location());
birth_threads_[birth.birth_thread()]++;
}
void Aggregation::AddBirthPlace(const Location& location) {
locations_[location]++;
birth_files_[location.file_name()]++;
}
void Aggregation::Write(std::string* output) const {
if (locations_.size() == 1) {
locations_.begin()->first.Write(true, true, output);
} else {
base::StringAppendF(output, "%" PRIuS " Locations. ", locations_.size());
if (birth_files_.size() > 1) {
base::StringAppendF(output, "%" PRIuS " Files. ", birth_files_.size());
} else {
base::StringAppendF(output, "All born in %s. ",
birth_files_.begin()->first.c_str());
}
}
if (birth_threads_.size() > 1) {
base::StringAppendF(output, "%" PRIuS " BirthingThreads. ",
birth_threads_.size());
} else {
base::StringAppendF(output, "All born on %s. ",
birth_threads_.begin()->first->ThreadName().c_str());
}
if (death_threads_.size() > 1) {
base::StringAppendF(output, "%" PRIuS " DeathThreads. ",
death_threads_.size());
} else {
if (death_threads_.begin()->first) {
base::StringAppendF(output, "All deleted on %s. ",
death_threads_.begin()->first->ThreadName().c_str());
} else {
output->append("All these objects are still alive.");
}
}
if (birth_count_ > 1)
base::StringAppendF(output, "Births=%d ", birth_count_);
DeathData::Write(output);
}
void Aggregation::Clear() {
birth_count_ = 0;
birth_files_.clear();
locations_.clear();
birth_threads_.clear();
DeathData::Clear();
death_threads_.clear();
}
//------------------------------------------------------------------------------
// Comparison object for sorting.
Comparator::Comparator()
: selector_(NIL),
tiebreaker_(NULL),
combined_selectors_(0),
use_tiebreaker_for_sort_only_(false) {}
void Comparator::Clear() {
if (tiebreaker_) {
tiebreaker_->Clear();
delete tiebreaker_;
tiebreaker_ = NULL;
}
use_tiebreaker_for_sort_only_ = false;
selector_ = NIL;
}
bool Comparator::operator()(const Snapshot& left,
const Snapshot& right) const {
switch (selector_) {
case BIRTH_THREAD:
if (left.birth_thread() != right.birth_thread() &&
left.birth_thread()->ThreadName() !=
right.birth_thread()->ThreadName())
return left.birth_thread()->ThreadName() <
right.birth_thread()->ThreadName();
break;
case DEATH_THREAD:
if (left.death_thread() != right.death_thread() &&
left.DeathThreadName() !=
right.DeathThreadName()) {
if (!left.death_thread())
return true;
if (!right.death_thread())
return false;
return left.DeathThreadName() <
right.DeathThreadName();
}
break;
case BIRTH_FILE:
if (left.location().file_name() != right.location().file_name()) {
int comp = strcmp(left.location().file_name(),
right.location().file_name());
if (comp)
return 0 > comp;
}
break;
case BIRTH_FUNCTION:
if (left.location().function_name() != right.location().function_name()) {
int comp = strcmp(left.location().function_name(),
right.location().function_name());
if (comp)
return 0 > comp;
}
break;
case BIRTH_LINE:
if (left.location().line_number() != right.location().line_number())
return left.location().line_number() <
right.location().line_number();
break;
case COUNT:
if (left.count() != right.count())
return left.count() > right.count(); // Sort large at front of vector.
break;
case AVERAGE_DURATION:
if (!left.count() || !right.count())
break;
if (left.AverageMsDuration() != right.AverageMsDuration())
return left.AverageMsDuration() > right.AverageMsDuration();
break;
default:
break;
}
if (tiebreaker_)
return tiebreaker_->operator()(left, right);
return false;
}
void Comparator::Sort(DataCollector::Collection* collection) const {
std::sort(collection->begin(), collection->end(), *this);
}
bool Comparator::Equivalent(const Snapshot& left,
const Snapshot& right) const {
switch (selector_) {
case BIRTH_THREAD:
if (left.birth_thread() != right.birth_thread() &&
left.birth_thread()->ThreadName() !=
right.birth_thread()->ThreadName())
return false;
break;
case DEATH_THREAD:
if (left.death_thread() != right.death_thread() &&
left.DeathThreadName() != right.DeathThreadName())
return false;
break;
case BIRTH_FILE:
if (left.location().file_name() != right.location().file_name()) {
int comp = strcmp(left.location().file_name(),
right.location().file_name());
if (comp)
return false;
}
break;
case BIRTH_FUNCTION:
if (left.location().function_name() != right.location().function_name()) {
int comp = strcmp(left.location().function_name(),
right.location().function_name());
if (comp)
return false;
}
break;
case COUNT:
if (left.count() != right.count())
return false;
break;
case AVERAGE_DURATION:
if (left.life_duration() != right.life_duration())
return false;
break;
default:
break;
}
if (tiebreaker_ && !use_tiebreaker_for_sort_only_)
return tiebreaker_->Equivalent(left, right);
return true;
}
bool Comparator::Acceptable(const Snapshot& sample) const {
if (required_.size()) {
switch (selector_) {
case BIRTH_THREAD:
if (sample.birth_thread()->ThreadName().find(required_) ==
std::string::npos)
return false;
break;
case DEATH_THREAD:
if (sample.DeathThreadName().find(required_) == std::string::npos)
return false;
break;
case BIRTH_FILE:
if (!strstr(sample.location().file_name(), required_.c_str()))
return false;
break;
case BIRTH_FUNCTION:
if (!strstr(sample.location().function_name(), required_.c_str()))
return false;
break;
default:
break;
}
}
if (tiebreaker_ && !use_tiebreaker_for_sort_only_)
return tiebreaker_->Acceptable(sample);
return true;
}
void Comparator::SetTiebreaker(Selector selector, const std::string& required) {
if (selector == selector_ || NIL == selector)
return;
combined_selectors_ |= selector;
if (NIL == selector_) {
selector_ = selector;
if (required.size())
required_ = required;
return;
}
if (tiebreaker_) {
if (use_tiebreaker_for_sort_only_) {
Comparator* temp = new Comparator;
temp->tiebreaker_ = tiebreaker_;
tiebreaker_ = temp;
}
} else {
tiebreaker_ = new Comparator;
DCHECK(!use_tiebreaker_for_sort_only_);
}
tiebreaker_->SetTiebreaker(selector, required);
}
bool Comparator::IsGroupedBy(Selector selector) const {
return 0 != (selector & combined_selectors_);
}
void Comparator::SetSubgroupTiebreaker(Selector selector) {
if (selector == selector_ || NIL == selector)
return;
if (!tiebreaker_) {
use_tiebreaker_for_sort_only_ = true;
tiebreaker_ = new Comparator;
tiebreaker_->SetTiebreaker(selector, "");
} else {
tiebreaker_->SetSubgroupTiebreaker(selector);
}
}
void Comparator::ParseKeyphrase(const std::string& key_phrase) {
typedef std::map<const std::string, Selector> KeyMap;
static KeyMap key_map;
static bool initialized = false;
if (!initialized) {
initialized = true;
// Sorting and aggretation keywords, which specify how to sort the data, or
// can specify a required match from the specified field in the record.
key_map["count"] = COUNT;
key_map["duration"] = AVERAGE_DURATION;
key_map["birth"] = BIRTH_THREAD;
key_map["death"] = DEATH_THREAD;
key_map["file"] = BIRTH_FILE;
key_map["function"] = BIRTH_FUNCTION;
key_map["line"] = BIRTH_LINE;
// Immediate commands that do not involve setting sort order.
key_map["reset"] = RESET_ALL_DATA;
}
std::string required;
// Watch for: "sort_key=value" as we parse.
size_t equal_offset = key_phrase.find('=', 0);
if (key_phrase.npos != equal_offset) {
// There is a value that must be matched for the data to display.
required = key_phrase.substr(equal_offset + 1, key_phrase.npos);
}
std::string keyword(key_phrase.substr(0, equal_offset));
keyword = StringToLowerASCII(keyword);
KeyMap::iterator it = key_map.find(keyword);
if (key_map.end() == it)
return; // Unknown keyword.
if (it->second == RESET_ALL_DATA)
ThreadData::ResetAllThreadData();
else
SetTiebreaker(key_map[keyword], required);
}
bool Comparator::ParseQuery(const std::string& query) {
// Parse each keyphrase between consecutive slashes.
for (size_t i = 0; i < query.size();) {
size_t slash_offset = query.find('/', i);
ParseKeyphrase(query.substr(i, slash_offset - i));
if (query.npos == slash_offset)
break;
i = slash_offset + 1;
}
// Select subgroup ordering (if we want to display the subgroup)
SetSubgroupTiebreaker(COUNT);
SetSubgroupTiebreaker(AVERAGE_DURATION);
SetSubgroupTiebreaker(BIRTH_THREAD);
SetSubgroupTiebreaker(DEATH_THREAD);
SetSubgroupTiebreaker(BIRTH_FUNCTION);
SetSubgroupTiebreaker(BIRTH_FILE);
SetSubgroupTiebreaker(BIRTH_LINE);
return true;
}
bool Comparator::WriteSortGrouping(const Snapshot& sample,
std::string* output) const {
bool wrote_data = false;
switch (selector_) {
case BIRTH_THREAD:
base::StringAppendF(output, "All new on %s ",
sample.birth_thread()->ThreadName().c_str());
wrote_data = true;
break;
case DEATH_THREAD:
if (sample.death_thread()) {
base::StringAppendF(output, "All deleted on %s ",
sample.DeathThreadName().c_str());
} else {
output->append("All still alive ");
}
wrote_data = true;
break;
case BIRTH_FILE:
base::StringAppendF(output, "All born in %s ",
sample.location().file_name());
break;
case BIRTH_FUNCTION:
output->append("All born in ");
sample.location().WriteFunctionName(output);
output->push_back(' ');
break;
default:
break;
}
if (tiebreaker_ && !use_tiebreaker_for_sort_only_) {
wrote_data |= tiebreaker_->WriteSortGrouping(sample, output);
}
return wrote_data;
}
void Comparator::WriteSnapshot(const Snapshot& sample,
std::string* output) const {
sample.death_data().Write(output);
if (!(combined_selectors_ & BIRTH_THREAD) ||
!(combined_selectors_ & DEATH_THREAD))
base::StringAppendF(output, "%s->%s ",
(combined_selectors_ & BIRTH_THREAD) ? "*" :
sample.birth().birth_thread()->ThreadName().c_str(),
(combined_selectors_ & DEATH_THREAD) ? "*" :
sample.DeathThreadName().c_str());
sample.birth().location().Write(!(combined_selectors_ & BIRTH_FILE),
!(combined_selectors_ & BIRTH_FUNCTION),
output);
}
} // namespace tracked_objects