/*
* Copyright (C) 2009 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "../include/vector"
#ifndef ANDROID_ASTL_VECTOR__
#error "Wrong header included!!"
#endif
#include <climits>
#include <cstring>
#include <string>
#include "common.h"
namespace android {
using std::string;
using std::vector;
static const size_t kExponentialFactor = 2;
bool testConstructorInt()
{
{
vector<int> vec1;
EXPECT_TRUE(vec1.empty());
EXPECT_TRUE(vec1.size() == 0);
EXPECT_TRUE(vec1.capacity() == 0);
}
{
vector<int> vec2(100);
EXPECT_TRUE(!vec2.empty());
EXPECT_TRUE(vec2.size() == 100);
EXPECT_TRUE(vec2.capacity() == 100);
for (size_t i = 0; i < 100; ++i)
{
EXPECT_TRUE(vec2[i] == 0);
}
}
{
vector<int> vec3(200, 0xaa);
EXPECT_TRUE(!vec3.empty());
EXPECT_TRUE(vec3.size() == 200);
EXPECT_TRUE(vec3.capacity() == 200);
for (size_t i = 0; i < 200; ++i)
{
EXPECT_TRUE(vec3[i] == 0xaa);
}
}
return true;
}
bool testConstructorString()
{
{
vector<string> vec1;
EXPECT_TRUE(vec1.empty());
EXPECT_TRUE(vec1.size() == 0);
EXPECT_TRUE(vec1.capacity() == 0);
}
return true;
}
typedef enum { ONE = 10, TWO} TestEnum;
bool testConstructorClass()
{
{
vector<B> vec1;
EXPECT_TRUE(vec1.empty());
EXPECT_TRUE(vec1.size() == 0);
EXPECT_TRUE(vec1.capacity() == 0);
}
{
vector<B> vec1(100);
EXPECT_TRUE(!vec1.empty());
EXPECT_TRUE(vec1.size() == 100);
EXPECT_TRUE(vec1.capacity() == 100);
}
return true;
}
bool testConstructorRepeat()
{
{
const vector<int> vec1(100, 10);
for (int i = 0; i < 100; ++i)
{
EXPECT_TRUE(vec1[i] == 10);
}
}
{
const vector<float> vec2(100, 10.0f);
for (int i = 0; i < 100; ++i)
{
EXPECT_TRUE(vec2[i] == 10.0f);
}
}
{
const vector<TestEnum> vec3(100, ONE);
for (int i = 0; i < 100; ++i)
{
EXPECT_TRUE(vec3[i] == ONE);
}
}
{
const vector< A<B> > vec4;
const vector< A<B> > vec5(10, A<B>());
EXPECT_TRUE(vec4.size() == 0);
EXPECT_TRUE(vec5.size() == 10);
}
return true;
}
bool testConstructorIterator()
{
{
vector<string> src;
EXPECT_TRUE(src.empty());
vector<string> dst(src.begin(), src.end());
EXPECT_TRUE(dst.empty());
}
{
vector<int> src;
EXPECT_TRUE(src.empty());
vector<int> dst(src.begin(), src.end());
EXPECT_TRUE(dst.empty());
}
{
vector<int> src;
src.push_back(10);
src.push_back(20);
src.push_back(30);
vector<int> dst(src.begin(), src.end());
EXPECT_TRUE(dst.size() == 3);
EXPECT_TRUE(dst[0] == 10);
EXPECT_TRUE(dst[1] == 20);
EXPECT_TRUE(dst[2] == 30);
}
{
vector<string> src;
src.push_back("str1");
src.push_back("str2");
src.push_back("str3");
vector<string> dst(src.begin(), src.end());
EXPECT_TRUE(dst.size() == 3);
EXPECT_TRUE(dst[0] == "str1");
EXPECT_TRUE(dst[1] == "str2");
EXPECT_TRUE(dst[2] == "str3");
}
return true;
}
bool testReserve()
{
{ // basic reserve + shrink.
vector<int> vec1(100, 10);
EXPECT_TRUE(vec1.capacity() == 100);
EXPECT_TRUE(vec1.reserve(200));
EXPECT_TRUE(vec1.capacity() == 200);
EXPECT_TRUE(vec1.size() == 100);
EXPECT_TRUE(vec1.reserve());
EXPECT_TRUE(vec1.capacity() == 100);
EXPECT_TRUE(vec1.size() == 100);
}
{
vector<int> vec2;
EXPECT_TRUE(vec2.capacity() == 0);
EXPECT_TRUE(vec2.reserve());
EXPECT_TRUE(vec2.capacity() == 0);
vec2.reserve(200);
EXPECT_TRUE(vec2.capacity() == 200);
vec2.reserve();
EXPECT_TRUE(vec2.capacity() == 0);
vec2.push_back(3);
vec2.reserve();
EXPECT_TRUE(vec2.capacity() == 1);
}
{
vector<int> vec3;
vec3.push_back(5);
vec3.reserve();
EXPECT_TRUE(vec3.capacity() == 1);
vec3.push_back(3);
EXPECT_TRUE(vec3.capacity() == kExponentialFactor);
while (vec3.size() < kExponentialFactor)
vec3.push_back(3);
EXPECT_TRUE(vec3.size() == kExponentialFactor);
EXPECT_TRUE(vec3.capacity() == kExponentialFactor);
// exp increment.
vec3.push_back(10);
EXPECT_TRUE(vec3.capacity() == kExponentialFactor * kExponentialFactor);
}
{
CopyCounter c;
c.mCount = 0;
vector<CopyCounter> vec4(100, c);
EXPECT_TRUE(c.mCount == 100);
// Growing does not do any copy via the copy assignement op.
vec4.reserve(1000);
EXPECT_TRUE(c.mCount == 200);
vec4.reserve(50); // reserving less than length is a nop.
EXPECT_TRUE(c.mCount == 200);
}
{
vector<unsigned short> vec5;
EXPECT_TRUE(!vec5.reserve(vec5.max_size() + 1));
EXPECT_TRUE(vec5.capacity() == 0);
}
return true;
}
bool testPushBack()
{
{
vector<CtorDtorCounter> vec1;
CtorDtorCounter c;
c.reset();
for (int i = 0; i < 1000; ++i)
{
vec1.push_back(c);
}
EXPECT_TRUE(vec1.capacity() == 1024);
EXPECT_TRUE(vec1.size() == 1000);
// Assignment should not be used, but the constructor should.
EXPECT_TRUE(c.mAssignCount == 0);
// Copy constructor was been invoked for each new element
// pushed and when the capacity was increased.
EXPECT_TRUE(c.mCopyCtorCount > 1000);
EXPECT_TRUE(c.mCtorCount == 0);
}
{
vector<int> vec2;
vec2.push_back(10);
EXPECT_TRUE(vec2.front() == 10);
EXPECT_TRUE(vec2.back() == 10);
EXPECT_TRUE(vec2.size() == 1);
vec2.push_back(20);
EXPECT_TRUE(vec2.front() == 10);
EXPECT_TRUE(vec2.back() == 20);
EXPECT_TRUE(vec2.size() == 2);
}
// Push back an non-pod object.
{
string str = "a string";
vector<string> vec3;
vec3.push_back(str);
EXPECT_TRUE(vec3.size() == 1);
EXPECT_TRUE(vec3.front() == "a string");
EXPECT_TRUE(vec3.back() == "a string");
}
return true;
}
bool testPopBack()
{
vector<int> vec1(10, 0xdeadbeef);;
EXPECT_TRUE(vec1.capacity() == 10);
EXPECT_TRUE(vec1.size() == 10);
for(size_t i = 10; i > 0; --i)
{
EXPECT_TRUE(vec1.capacity() == 10);
EXPECT_TRUE(vec1.size() == i);
vec1.pop_back();
}
EXPECT_TRUE(vec1.empty());
EXPECT_TRUE(vec1.begin() == vec1.end());
vec1.pop_back(); // pop_back on empty vector
EXPECT_TRUE(vec1.size() == 0);
EXPECT_TRUE(vec1.capacity() == 10);
vec1.clear();
vec1.pop_back(); // pop_back on empty vector
EXPECT_TRUE(vec1.size() == 0);
EXPECT_TRUE(vec1.capacity() == 0);
EXPECT_TRUE(vec1.begin() == vec1.end());
EXPECT_TRUE(vec1.begin().base() == NULL);
CtorDtorCounter instance;
vector<CtorDtorCounter> vec2(10, instance);
CtorDtorCounter::reset();
for (int i = 0; i < 10; ++i)
{
vec2.pop_back();
}
EXPECT_TRUE(vec2.size() == 0);
EXPECT_TRUE(CtorDtorCounter::mDtorCount == 10);
return true;
}
bool testResize()
{
{
vector<int> vec1(10, 0xdeadbeef);
vec1.resize(0);
EXPECT_TRUE(vec1.capacity() == 10);
vec1.resize(5);
EXPECT_TRUE(vec1.capacity() == 10);
vec1.resize(10);
EXPECT_TRUE(vec1.capacity() == 10);
vec1.resize(11);
EXPECT_TRUE(vec1.capacity() == 11);
vec1.resize(100);
EXPECT_TRUE(vec1.capacity() == 100);
vec1.resize(10);
EXPECT_TRUE(vec1.capacity() == 100);
}
{
vector<B> vec1(10);
vec1.resize(0);
EXPECT_TRUE(vec1.capacity() == 10);
vec1.resize(5);
EXPECT_TRUE(vec1.capacity() == 10);
vec1.resize(10);
EXPECT_TRUE(vec1.capacity() == 10);
vec1.resize(11);
EXPECT_TRUE(vec1.capacity() == 11);
vec1.resize(100);
EXPECT_TRUE(vec1.capacity() == 100);
vec1.resize(10);
EXPECT_TRUE(vec1.capacity() == 100);
}
{
vector<CtorDtorCounter> vec;
CtorDtorCounter::reset();
vec.resize(10);
EXPECT_TRUE(CtorDtorCounter::mCtorCount == 1); // default arg.
EXPECT_TRUE(CtorDtorCounter::mCopyCtorCount == 10); // copied 10 times.
CtorDtorCounter::reset();
vec.resize(200);
EXPECT_TRUE(CtorDtorCounter::mCtorCount == 1); // default arg.
EXPECT_TRUE(CtorDtorCounter::mCopyCtorCount == 200);
CtorDtorCounter::reset();
vec.resize(199);
// the copy constructor should have been called once and the
// destructor twice (1 temp + 1 elt).
EXPECT_TRUE(CtorDtorCounter::mCtorCount == 1); // default arg.
EXPECT_TRUE(CtorDtorCounter::mDtorCount == 2);
CtorDtorCounter::reset();
vec.resize(0);
// the copy constructor should have been called once and the
// destructor twice (1 temp + 199 elts).
EXPECT_TRUE(CtorDtorCounter::mCtorCount == 1); // default arg.
EXPECT_TRUE(CtorDtorCounter::mDtorCount == 200);
}
return true;
}
bool testSwap()
{
vector<int> vec1(100, 10);
vector<int> vec2;
vec1.swap(vec2);
EXPECT_TRUE(vec1.capacity() == 0);
EXPECT_TRUE(vec2.capacity() == 100);
EXPECT_TRUE(vec1.size() == 0);
EXPECT_TRUE(vec2.size() == 100);
EXPECT_TRUE(vec1.begin() == vec1.end());
EXPECT_TRUE(vec2.begin() != vec2.end());
return true;
}
bool testIterators()
{
vector<int> vec1(10);
for (size_t i = 0; i < 10; ++i)
{
vec1[i] = i;
}
vector<int>::iterator i = vec1.begin();
for (int c = 0; i != vec1.end(); ++i, ++c)
{
EXPECT_TRUE(c == *i);
}
vector<int>::const_iterator j = vec1.begin();
for (int c = 0; j != vec1.end(); ++j, ++c)
{
EXPECT_TRUE(c == *j);
}
{
const vector<int> vec1(100, 10);
EXPECT_TRUE(vec1.end().operator-(100) == vec1.begin());
EXPECT_TRUE(vec1.end() - 100 == vec1.begin());
EXPECT_TRUE(100 + vec1.begin() == vec1.end());
EXPECT_TRUE(vec1.begin() + 100 == vec1.end());
EXPECT_TRUE(vec1.end() - vec1.begin() == 100);
EXPECT_TRUE(std::distance(vec1.begin(), vec1.end()) == 100);
EXPECT_TRUE(std::distance(vec1.end(), vec1.begin()) == -100);
for (vector<int>::const_iterator i = vec1.begin();
i != vec1.end(); ++i) {
EXPECT_TRUE(*i == 10);
}
}
{
const vector<int> vec2;
EXPECT_TRUE(vec2.begin() == vec2.end());
}
return true;
}
bool testCtorDtorForNonPod()
{
{ // empty vector, no construction should happen.
CtorDtorCounter::reset();
vector<CtorDtorCounter> vec1;
EXPECT_TRUE(CtorDtorCounter::mCtorCount == 0);
EXPECT_TRUE(CtorDtorCounter::mCopyCtorCount == 0);
}
EXPECT_TRUE(CtorDtorCounter::mDtorCount == 0);
{
CtorDtorCounter instance;
EXPECT_TRUE(CtorDtorCounter::mCtorCount == 1);
CtorDtorCounter::reset();
vector<CtorDtorCounter> vec2(200, instance);
// 200 copies by assignement of the sample instance
EXPECT_TRUE(CtorDtorCounter::mAssignCount == 0);
EXPECT_TRUE(CtorDtorCounter::mCtorCount == 0);
EXPECT_TRUE(CtorDtorCounter::mCopyCtorCount == 200);
EXPECT_TRUE(CtorDtorCounter::mDtorCount == 0);
CtorDtorCounter::reset();
vec2.reserve(400);
// 200 moves: 200 copies by copy constructor and 200 destructions.
EXPECT_TRUE(CtorDtorCounter::mCopyCtorCount == 200);
EXPECT_TRUE(CtorDtorCounter::mDtorCount == 200);
EXPECT_TRUE(CtorDtorCounter::mCtorCount == 0);
EXPECT_TRUE(CtorDtorCounter::mAssignCount == 0);
CtorDtorCounter::reset();
}
// 200 + 1 for the instance
EXPECT_TRUE(CtorDtorCounter::mDtorCount == 201);
return true;
}
bool testEraseElt()
{
{
vector<B> empty;
vector<B>::iterator res = empty.erase(empty.end());
EXPECT_TRUE(res == empty.end());
EXPECT_TRUE(empty.empty());
}
{
vector<B> one;
one.push_back(B());
EXPECT_TRUE(!one.empty());
vector<B>::iterator res = one.erase(one.begin());
EXPECT_TRUE(res == one.end());
EXPECT_TRUE(one.begin() == one.end());
EXPECT_TRUE(one.empty());
}
{
vector<B> two;
two.push_back(B());
two.push_back(B());
vector<B>::iterator res = two.erase(two.begin());
EXPECT_TRUE(res == two.begin());
EXPECT_TRUE(res != two.end());
EXPECT_TRUE(two.begin() != two.end());
EXPECT_TRUE(two.size() == 1);
}
{
vector<int> vec;
for (int i = 0; i < 20; ++i) vec.push_back(i);
vector<int>::iterator pos;
pos = vec.erase(vec.begin() + 2); // removes '2'
EXPECT_TRUE(*pos == 3); // returns '3'
pos = vec.erase(vec.begin() + 18); // removes '19' now @ pos 18
EXPECT_TRUE(pos == vec.end()); // returns end()
EXPECT_TRUE(*(--pos) == 18); // last one is now '18'
}
{
vector<std::string> vec;
vec.push_back("first");
vec.push_back("second");
vec.push_back("third");
vec.push_back("fourth");
vector<std::string>::iterator pos;
pos = vec.erase(vec.begin() + 1); // removes 'second'
EXPECT_TRUE(vec.size() == 3);
EXPECT_TRUE(*pos == "third");
EXPECT_TRUE(vec[0] == "first");
EXPECT_TRUE(vec[1] == "third");
EXPECT_TRUE(vec[2] == "fourth");
}
return true;
}
bool testEraseRange()
{
{
vector<B> empty;
vector<B>::iterator res = empty.erase(empty.begin(), empty.end());
EXPECT_TRUE(res == empty.end());
EXPECT_TRUE(empty.empty());
EXPECT_TRUE(empty.size() == 0);
}
{
vector<B> one;
one.push_back(B());
EXPECT_TRUE(!one.empty());
vector<B>::iterator res = one.erase(one.begin(), one.end());
EXPECT_TRUE(res == one.end());
EXPECT_TRUE(one.begin() == one.end());
EXPECT_TRUE(one.empty());
}
{
vector<B> two;
two.push_back(B());
two.push_back(B());
// erase the 1st one.
vector<B>::iterator res = two.erase(two.begin(), two.begin() + 1);
EXPECT_TRUE(res == two.begin());
EXPECT_TRUE(res != two.end());
EXPECT_TRUE(two.begin() != two.end());
EXPECT_TRUE(two.size() == 1);
}
{
vector<B> two;
two.push_back(B());
two.push_back(B());
// erase range is empty.
vector<B>::iterator res = two.erase(two.begin(), two.begin());
EXPECT_TRUE(res == two.begin());
EXPECT_TRUE(res != two.end());
EXPECT_TRUE(two.begin() != two.end());
EXPECT_TRUE(two.size() == 2);
}
{
vector<int> vec;
for (int i = 0; i < 20; ++i) vec.push_back(i);
vector<int>::iterator pos;
pos = vec.erase(vec.begin() + 2, vec.begin() + 3); // removes '2'
EXPECT_TRUE(*pos == 3); // returns '3'
pos = vec.erase(vec.begin() + 18, vec.end()); // removes '19' now @ pos 18
EXPECT_TRUE(pos == vec.end()); // returns end()
EXPECT_TRUE(*(--pos) == 18); // last one is now '18'
}
{
vector<std::string> vec;
vec.push_back("first");
vec.push_back("second");
vec.push_back("third");
vec.push_back("fourth");
vector<std::string>::iterator pos;
pos = vec.erase(vec.begin() + 1, vec.begin() + 3); // removes 'second' and third.
EXPECT_TRUE(vec.size() == 2);
EXPECT_TRUE(*pos == "fourth");
EXPECT_TRUE(vec[0] == "first");
EXPECT_TRUE(vec[1] == "fourth");
pos = vec.erase(vec.begin(), vec.end()); // clears the vector
EXPECT_TRUE(vec.empty());
}
return true;
}
// Valgrind should not barf when we access element out of bound.
bool testAt() {
vector<int> vec;
vec.at(1000) = 0xdeadbeef;
EXPECT_TRUE(vec.at(1000) == 0xdeadbeef);
return true;
}
} // namespace android
int main(int argc, char **argv)
{
FAIL_UNLESS(testConstructorInt);
FAIL_UNLESS(testConstructorString);
FAIL_UNLESS(testConstructorClass);
FAIL_UNLESS(testConstructorRepeat);
FAIL_UNLESS(testConstructorIterator);
FAIL_UNLESS(testReserve);
FAIL_UNLESS(testPushBack);
FAIL_UNLESS(testPopBack);
FAIL_UNLESS(testResize);
FAIL_UNLESS(testSwap);
FAIL_UNLESS(testIterators);
FAIL_UNLESS(testCtorDtorForNonPod);
FAIL_UNLESS(testEraseElt);
FAIL_UNLESS(testEraseRange);
FAIL_UNLESS(testAt);
return kPassed;
}