/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* This file contains codegen for the Thumb2 ISA and is intended to be
* includes by:
*
* Codegen-$(TARGET_ARCH_VARIANT).c
*
*/
/*
* Reserve 6 bytes at the beginning of the trace
* +----------------------------+
* | prof count addr (4 bytes) |
* +----------------------------+
* | chain cell offset (2 bytes)|
* +----------------------------+
*
* ...and then code to increment the execution
*
* For continuous profiling (10 bytes)
* ldr r0, [pc-8] @ get prof count addr [4 bytes]
* ldr r1, [r0] @ load counter [2 bytes]
* add r1, #1 @ increment [2 bytes]
* str r1, [r0] @ store [2 bytes]
*
* For periodic profiling (4 bytes)
* call TEMPLATE_PERIODIC_PROFILING
*
* and return the size (in bytes) of the generated code.
*/
static int genTraceProfileEntry(CompilationUnit *cUnit)
{
intptr_t addr = (intptr_t)dvmJitNextTraceCounter();
assert(__BYTE_ORDER == __LITTLE_ENDIAN);
newLIR1(cUnit, kArm16BitData, addr & 0xffff);
newLIR1(cUnit, kArm16BitData, (addr >> 16) & 0xffff);
cUnit->chainCellOffsetLIR =
(LIR *) newLIR1(cUnit, kArm16BitData, CHAIN_CELL_OFFSET_TAG);
cUnit->headerSize = 6;
if ((gDvmJit.profileMode == kTraceProfilingContinuous) ||
(gDvmJit.profileMode == kTraceProfilingDisabled)) {
/* Thumb[2] instruction used directly here to ensure correct size */
newLIR2(cUnit, kThumb2LdrPcReln12, r0, 8);
newLIR3(cUnit, kThumbLdrRRI5, r1, r0, 0);
newLIR2(cUnit, kThumbAddRI8, r1, 1);
newLIR3(cUnit, kThumbStrRRI5, r1, r0, 0);
return 10;
} else {
int opcode = TEMPLATE_PERIODIC_PROFILING;
newLIR2(cUnit, kThumbBlx1,
(int) gDvmJit.codeCache + templateEntryOffsets[opcode],
(int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
newLIR2(cUnit, kThumbBlx2,
(int) gDvmJit.codeCache + templateEntryOffsets[opcode],
(int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
return 4;
}
}
static void genNegFloat(CompilationUnit *cUnit, RegLocation rlDest,
RegLocation rlSrc)
{
RegLocation rlResult;
rlSrc = loadValue(cUnit, rlSrc, kFPReg);
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kFPReg, true);
newLIR2(cUnit, kThumb2Vnegs, rlResult.lowReg, rlSrc.lowReg);
storeValue(cUnit, rlDest, rlResult);
}
static void genNegDouble(CompilationUnit *cUnit, RegLocation rlDest,
RegLocation rlSrc)
{
RegLocation rlResult;
rlSrc = loadValueWide(cUnit, rlSrc, kFPReg);
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kFPReg, true);
newLIR2(cUnit, kThumb2Vnegd, S2D(rlResult.lowReg, rlResult.highReg),
S2D(rlSrc.lowReg, rlSrc.highReg));
storeValueWide(cUnit, rlDest, rlResult);
}
/*
* To avoid possible conflicts, we use a lot of temps here. Note that
* our usage of Thumb2 instruction forms avoids the problems with register
* reuse for multiply instructions prior to arm6.
*/
static void genMulLong(CompilationUnit *cUnit, RegLocation rlDest,
RegLocation rlSrc1, RegLocation rlSrc2)
{
RegLocation rlResult;
int resLo = dvmCompilerAllocTemp(cUnit);
int resHi = dvmCompilerAllocTemp(cUnit);
int tmp1 = dvmCompilerAllocTemp(cUnit);
rlSrc1 = loadValueWide(cUnit, rlSrc1, kCoreReg);
rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
newLIR3(cUnit, kThumb2MulRRR, tmp1, rlSrc2.lowReg, rlSrc1.highReg);
newLIR4(cUnit, kThumb2Umull, resLo, resHi, rlSrc2.lowReg, rlSrc1.lowReg);
newLIR4(cUnit, kThumb2Mla, tmp1, rlSrc1.lowReg, rlSrc2.highReg, tmp1);
newLIR4(cUnit, kThumb2AddRRR, resHi, tmp1, resHi, 0);
dvmCompilerFreeTemp(cUnit, tmp1);
rlResult = dvmCompilerGetReturnWide(cUnit); // Just as a template, will patch
rlResult.lowReg = resLo;
rlResult.highReg = resHi;
storeValueWide(cUnit, rlDest, rlResult);
}
static void genLong3Addr(CompilationUnit *cUnit, MIR *mir, OpKind firstOp,
OpKind secondOp, RegLocation rlDest,
RegLocation rlSrc1, RegLocation rlSrc2)
{
RegLocation rlResult;
rlSrc1 = loadValueWide(cUnit, rlSrc1, kCoreReg);
rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
opRegRegReg(cUnit, firstOp, rlResult.lowReg, rlSrc1.lowReg, rlSrc2.lowReg);
opRegRegReg(cUnit, secondOp, rlResult.highReg, rlSrc1.highReg,
rlSrc2.highReg);
storeValueWide(cUnit, rlDest, rlResult);
}
void dvmCompilerInitializeRegAlloc(CompilationUnit *cUnit)
{
int numTemps = sizeof(coreTemps)/sizeof(int);
int numFPTemps = sizeof(fpTemps)/sizeof(int);
RegisterPool *pool = (RegisterPool *)dvmCompilerNew(sizeof(*pool), true);
cUnit->regPool = pool;
pool->numCoreTemps = numTemps;
pool->coreTemps = (RegisterInfo *)
dvmCompilerNew(numTemps * sizeof(*cUnit->regPool->coreTemps), true);
pool->numFPTemps = numFPTemps;
pool->FPTemps = (RegisterInfo *)
dvmCompilerNew(numFPTemps * sizeof(*cUnit->regPool->FPTemps), true);
dvmCompilerInitPool(pool->coreTemps, coreTemps, pool->numCoreTemps);
dvmCompilerInitPool(pool->FPTemps, fpTemps, pool->numFPTemps);
pool->nullCheckedRegs =
dvmCompilerAllocBitVector(cUnit->numSSARegs, false);
}
/*
* Generate a Thumb2 IT instruction, which can nullify up to
* four subsequent instructions based on a condition and its
* inverse. The condition applies to the first instruction, which
* is executed if the condition is met. The string "guide" consists
* of 0 to 3 chars, and applies to the 2nd through 4th instruction.
* A "T" means the instruction is executed if the condition is
* met, and an "E" means the instruction is executed if the condition
* is not met.
*/
static ArmLIR *genIT(CompilationUnit *cUnit, ArmConditionCode code,
const char *guide)
{
int mask;
int condBit = code & 1;
int altBit = condBit ^ 1;
int mask3 = 0;
int mask2 = 0;
int mask1 = 0;
//Note: case fallthroughs intentional
switch(strlen(guide)) {
case 3:
mask1 = (guide[2] == 'T') ? condBit : altBit;
case 2:
mask2 = (guide[1] == 'T') ? condBit : altBit;
case 1:
mask3 = (guide[0] == 'T') ? condBit : altBit;
break;
case 0:
break;
default:
LOGE("Jit: bad case in genIT");
dvmCompilerAbort(cUnit);
}
mask = (mask3 << 3) | (mask2 << 2) | (mask1 << 1) |
(1 << (3 - strlen(guide)));
return newLIR2(cUnit, kThumb2It, code, mask);
}
/* Export the Dalvik PC assicated with an instruction to the StackSave area */
static ArmLIR *genExportPC(CompilationUnit *cUnit, MIR *mir)
{
ArmLIR *res;
int offset = offsetof(StackSaveArea, xtra.currentPc);
int rDPC = dvmCompilerAllocTemp(cUnit);
res = loadConstant(cUnit, rDPC, (int) (cUnit->method->insns + mir->offset));
newLIR3(cUnit, kThumb2StrRRI8Predec, rDPC, r5FP,
sizeof(StackSaveArea) - offset);
dvmCompilerFreeTemp(cUnit, rDPC);
return res;
}
/*
* Handle simple case (thin lock) inline. If it's complicated, bail
* out to the heavyweight lock/unlock routines. We'll use dedicated
* registers here in order to be in the right position in case we
* to bail to dvm[Lock/Unlock]Object(self, object)
*
* r0 -> self pointer [arg0 for dvm[Lock/Unlock]Object
* r1 -> object [arg1 for dvm[Lock/Unlock]Object
* r2 -> intial contents of object->lock, later result of strex
* r3 -> self->threadId
* r7 -> temp to hold new lock value [unlock only]
* r4 -> allow to be used by utilities as general temp
*
* The result of the strex is 0 if we acquire the lock.
*
* See comments in Sync.c for the layout of the lock word.
* Of particular interest to this code is the test for the
* simple case - which we handle inline. For monitor enter, the
* simple case is thin lock, held by no-one. For monitor exit,
* the simple case is thin lock, held by the unlocking thread with
* a recurse count of 0.
*
* A minor complication is that there is a field in the lock word
* unrelated to locking: the hash state. This field must be ignored, but
* preserved.
*
*/
static void genMonitorEnter(CompilationUnit *cUnit, MIR *mir)
{
RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
ArmLIR *target;
ArmLIR *hopTarget;
ArmLIR *branch;
ArmLIR *hopBranch;
assert(LW_SHAPE_THIN == 0);
loadValueDirectFixed(cUnit, rlSrc, r1); // Get obj
dvmCompilerLockAllTemps(cUnit); // Prepare for explicit register usage
dvmCompilerFreeTemp(cUnit, r4PC); // Free up r4 for general use
genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
loadWordDisp(cUnit, r6SELF, offsetof(Thread, threadId), r3); // Get threadId
newLIR3(cUnit, kThumb2Ldrex, r2, r1,
offsetof(Object, lock) >> 2); // Get object->lock
opRegImm(cUnit, kOpLsl, r3, LW_LOCK_OWNER_SHIFT); // Align owner
// Is lock unheld on lock or held by us (==threadId) on unlock?
newLIR4(cUnit, kThumb2Bfi, r3, r2, 0, LW_LOCK_OWNER_SHIFT - 1);
newLIR3(cUnit, kThumb2Bfc, r2, LW_HASH_STATE_SHIFT,
LW_LOCK_OWNER_SHIFT - 1);
hopBranch = newLIR2(cUnit, kThumb2Cbnz, r2, 0);
newLIR4(cUnit, kThumb2Strex, r2, r3, r1, offsetof(Object, lock) >> 2);
dvmCompilerGenMemBarrier(cUnit, kSY);
branch = newLIR2(cUnit, kThumb2Cbz, r2, 0);
hopTarget = newLIR0(cUnit, kArmPseudoTargetLabel);
hopTarget->defMask = ENCODE_ALL;
hopBranch->generic.target = (LIR *)hopTarget;
// Export PC (part 1)
loadConstant(cUnit, r3, (int) (cUnit->method->insns + mir->offset));
/* Get dPC of next insn */
loadConstant(cUnit, r4PC, (int)(cUnit->method->insns + mir->offset +
dexGetWidthFromOpcode(OP_MONITOR_ENTER)));
// Export PC (part 2)
newLIR3(cUnit, kThumb2StrRRI8Predec, r3, r5FP,
sizeof(StackSaveArea) -
offsetof(StackSaveArea, xtra.currentPc));
/* Call template, and don't return */
genRegCopy(cUnit, r0, r6SELF);
genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER);
// Resume here
target = newLIR0(cUnit, kArmPseudoTargetLabel);
target->defMask = ENCODE_ALL;
branch->generic.target = (LIR *)target;
}
/*
* For monitor unlock, we don't have to use ldrex/strex. Once
* we've determined that the lock is thin and that we own it with
* a zero recursion count, it's safe to punch it back to the
* initial, unlock thin state with a store word.
*/
static void genMonitorExit(CompilationUnit *cUnit, MIR *mir)
{
RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
ArmLIR *target;
ArmLIR *branch;
ArmLIR *hopTarget;
ArmLIR *hopBranch;
assert(LW_SHAPE_THIN == 0);
loadValueDirectFixed(cUnit, rlSrc, r1); // Get obj
dvmCompilerLockAllTemps(cUnit); // Prepare for explicit register usage
dvmCompilerFreeTemp(cUnit, r4PC); // Free up r4 for general use
genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
loadWordDisp(cUnit, r1, offsetof(Object, lock), r2); // Get object->lock
loadWordDisp(cUnit, r6SELF, offsetof(Thread, threadId), r3); // Get threadId
// Is lock unheld on lock or held by us (==threadId) on unlock?
opRegRegImm(cUnit, kOpAnd, r7, r2,
(LW_HASH_STATE_MASK << LW_HASH_STATE_SHIFT));
opRegImm(cUnit, kOpLsl, r3, LW_LOCK_OWNER_SHIFT); // Align owner
newLIR3(cUnit, kThumb2Bfc, r2, LW_HASH_STATE_SHIFT,
LW_LOCK_OWNER_SHIFT - 1);
opRegReg(cUnit, kOpSub, r2, r3);
hopBranch = opCondBranch(cUnit, kArmCondNe);
dvmCompilerGenMemBarrier(cUnit, kSY);
storeWordDisp(cUnit, r1, offsetof(Object, lock), r7);
branch = opNone(cUnit, kOpUncondBr);
hopTarget = newLIR0(cUnit, kArmPseudoTargetLabel);
hopTarget->defMask = ENCODE_ALL;
hopBranch->generic.target = (LIR *)hopTarget;
// Export PC (part 1)
loadConstant(cUnit, r3, (int) (cUnit->method->insns + mir->offset));
LOAD_FUNC_ADDR(cUnit, r7, (int)dvmUnlockObject);
genRegCopy(cUnit, r0, r6SELF);
// Export PC (part 2)
newLIR3(cUnit, kThumb2StrRRI8Predec, r3, r5FP,
sizeof(StackSaveArea) -
offsetof(StackSaveArea, xtra.currentPc));
opReg(cUnit, kOpBlx, r7);
/* Did we throw? */
ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
loadConstant(cUnit, r0,
(int) (cUnit->method->insns + mir->offset +
dexGetWidthFromOpcode(OP_MONITOR_EXIT)));
genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
// Resume here
target = newLIR0(cUnit, kArmPseudoTargetLabel);
target->defMask = ENCODE_ALL;
branch->generic.target = (LIR *)target;
branchOver->generic.target = (LIR *) target;
}
static void genMonitor(CompilationUnit *cUnit, MIR *mir)
{
if (mir->dalvikInsn.opcode == OP_MONITOR_ENTER)
genMonitorEnter(cUnit, mir);
else
genMonitorExit(cUnit, mir);
}
/*
* 64-bit 3way compare function.
* mov r7, #-1
* cmp op1hi, op2hi
* blt done
* bgt flip
* sub r7, op1lo, op2lo (treat as unsigned)
* beq done
* ite hi
* mov(hi) r7, #-1
* mov(!hi) r7, #1
* flip:
* neg r7
* done:
*/
static void genCmpLong(CompilationUnit *cUnit, MIR *mir,
RegLocation rlDest, RegLocation rlSrc1,
RegLocation rlSrc2)
{
RegLocation rlTemp = LOC_C_RETURN; // Just using as template, will change
ArmLIR *target1;
ArmLIR *target2;
rlSrc1 = loadValueWide(cUnit, rlSrc1, kCoreReg);
rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
rlTemp.lowReg = dvmCompilerAllocTemp(cUnit);
loadConstant(cUnit, rlTemp.lowReg, -1);
opRegReg(cUnit, kOpCmp, rlSrc1.highReg, rlSrc2.highReg);
ArmLIR *branch1 = opCondBranch(cUnit, kArmCondLt);
ArmLIR *branch2 = opCondBranch(cUnit, kArmCondGt);
opRegRegReg(cUnit, kOpSub, rlTemp.lowReg, rlSrc1.lowReg, rlSrc2.lowReg);
ArmLIR *branch3 = opCondBranch(cUnit, kArmCondEq);
genIT(cUnit, kArmCondHi, "E");
newLIR2(cUnit, kThumb2MovImmShift, rlTemp.lowReg, modifiedImmediate(-1));
loadConstant(cUnit, rlTemp.lowReg, 1);
genBarrier(cUnit);
target2 = newLIR0(cUnit, kArmPseudoTargetLabel);
target2->defMask = -1;
opRegReg(cUnit, kOpNeg, rlTemp.lowReg, rlTemp.lowReg);
target1 = newLIR0(cUnit, kArmPseudoTargetLabel);
target1->defMask = -1;
storeValue(cUnit, rlDest, rlTemp);
branch1->generic.target = (LIR *)target1;
branch2->generic.target = (LIR *)target2;
branch3->generic.target = branch1->generic.target;
}
static bool genInlinedAbsFloat(CompilationUnit *cUnit, MIR *mir)
{
RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
RegLocation rlDest = inlinedTarget(cUnit, mir, true);
rlSrc = loadValue(cUnit, rlSrc, kFPReg);
RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kFPReg, true);
newLIR2(cUnit, kThumb2Vabss, rlResult.lowReg, rlSrc.lowReg);
storeValue(cUnit, rlDest, rlResult);
return false;
}
static bool genInlinedAbsDouble(CompilationUnit *cUnit, MIR *mir)
{
RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
RegLocation rlDest = inlinedTargetWide(cUnit, mir, true);
rlSrc = loadValueWide(cUnit, rlSrc, kFPReg);
RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kFPReg, true);
newLIR2(cUnit, kThumb2Vabsd, S2D(rlResult.lowReg, rlResult.highReg),
S2D(rlSrc.lowReg, rlSrc.highReg));
storeValueWide(cUnit, rlDest, rlResult);
return false;
}
static bool genInlinedMinMaxInt(CompilationUnit *cUnit, MIR *mir, bool isMin)
{
RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
RegLocation rlDest = inlinedTarget(cUnit, mir, false);
RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg);
genIT(cUnit, (isMin) ? kArmCondGt : kArmCondLt, "E");
opRegReg(cUnit, kOpMov, rlResult.lowReg, rlSrc2.lowReg);
opRegReg(cUnit, kOpMov, rlResult.lowReg, rlSrc1.lowReg);
genBarrier(cUnit);
storeValue(cUnit, rlDest, rlResult);
return false;
}
static void genMultiplyByTwoBitMultiplier(CompilationUnit *cUnit,
RegLocation rlSrc, RegLocation rlResult, int lit,
int firstBit, int secondBit)
{
opRegRegRegShift(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, rlSrc.lowReg,
encodeShift(kArmLsl, secondBit - firstBit));
if (firstBit != 0) {
opRegRegImm(cUnit, kOpLsl, rlResult.lowReg, rlResult.lowReg, firstBit);
}
}