/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
#include "GlitchTest.h"
#include "Window.h"
#include "Fft.h"
#include <math.h>
GlitchTest::GlitchTest(void) : mRe(0), mIm(0), mFt(0), mWind(0) {}
void GlitchTest::init(float sampleRate, float stimFreq, float onsetThresh,
float dbSnrThresh) {
cleanup(); // in case Init gets called multiple times.
// Analysis parameters
float windowDur = 0.025; // Duration of the analysis window in seconds.
float frameInterval = 0.01; // Interval in seconds between frame onsets
float lowestFreq = 200.0; // Lowest frequency to include in
// background noise power integration.
mSampleRate = sampleRate;
mOnsetThresh = onsetThresh;
mDbSnrThresh = dbSnrThresh;
mFrameStep = (int)(0.5 + (mSampleRate * frameInterval));
mWindowSize = (int)(0.5 + (mSampleRate * windowDur));
mWind = new Window(mWindowSize);
mFt = new Fft;
mFt->fftInit(mFt->fftPow2FromWindowSize(mWindowSize));
mFftSize = mFt->fftGetSize();
mRe = new float[mFftSize];
mIm = new float[mFftSize];
float freqInterval = mSampleRate / mFftSize;
// We can exclude low frequencies from consideration, since the
// phone may have DC offset in the A/D, and there may be rumble in
// the testing room.
mLowestSpectrumBin = (int)(0.5 + (lowestFreq / freqInterval));
// These are the bin indices within which most of the energy due to
// the (windowed) tone should be found.
mLowToneBin = (int)(0.5 + (stimFreq / freqInterval)) - 2;
mHighToneBin = (int)(0.5 + (stimFreq / freqInterval)) + 2;
if (mLowestSpectrumBin >= mLowToneBin) {
mLowestSpectrumBin = mHighToneBin + 1;
}
}
int GlitchTest::checkToneSnr(short* pcm, int numSamples, float* duration,
int* numBadFrames) {
*numBadFrames = 0;
*duration = 0.0;
if (!(mRe && mIm)) {
return -1; // not initialized.
}
int n_frames = 1 + ((numSamples - mWindowSize) / mFrameStep);
if (n_frames < 4) { // pathologically short input signal
return -2;
}
*numBadFrames = 0;
int onset = -1;
int offset = -1;
for (int frame = 0; frame < n_frames; ++frame) {
int numSpectra = 0;
mWind->window(pcm + frame*mFrameStep, mRe, 0.0);
realMagSqSpectrum(mRe, mWindowSize, mRe, &numSpectra);
int maxLoc = 0;
float maxValue = 0.0;
findPeak(mRe, mLowestSpectrumBin, numSpectra, &maxLoc, &maxValue);
// possible states: (1) before tone onset; (2) within tone
// region; (3) after tone offset.
if ((onset < 0) && (offset < 0)) { // (1)
if ((maxLoc >= mLowToneBin) && (maxLoc <= mHighToneBin)
&& (maxValue > mOnsetThresh)) {
onset = frame;
}
continue;
}
if ((onset >= 0) && (offset < 0)) { // (2)
if (frame > (onset + 2)) { // let the framer get completely
// into the tonal signal
double sumNoise = 1.0; // init. to small non-zero vals to
// avoid log or divz problems
double sumSignal = 1.0;
float snr = 0.0;
if (maxValue < mOnsetThresh) {
offset = frame;
*duration = mFrameStep * (offset - onset) / mSampleRate;
if (*numBadFrames >= 1) {
(*numBadFrames) -= 1; // account for expected glitch at
// signal offset
}
continue;
}
for (int i = mLowestSpectrumBin; i < mLowToneBin; ++i) {
sumNoise += mRe[i]; // note that mRe contains the magnitude
// squared spectrum.
}
for (int i = mLowToneBin; i <= mHighToneBin; ++i)
sumSignal += mRe[i];
for (int i = mHighToneBin + 1; i < numSpectra; ++i) {
sumNoise += mRe[i]; // Note: mRe has the mag squared spectrum.
}
snr = 10.0 * log10(sumSignal / sumNoise);
if (snr < mDbSnrThresh)
(*numBadFrames) += 1;
}
continue;
}
if ((onset >= 0) && (offset > 0)) { // (3)
if ((maxLoc >= mLowToneBin) && (maxLoc <= mHighToneBin) &&
(maxValue > mOnsetThresh)) { // tone should not pop up again!
(*numBadFrames) += 1;
}
continue;
}
}
if ((onset >= 0) && (offset > 0))
return 1; // Success.
if (onset < 0) {
return -3; // Signal onset not found.
}
return -4; // Signal offset not found.
}
void GlitchTest::cleanup(void) {
delete [] mRe;
delete [] mIm;
delete mFt;
delete mWind;
mRe = 0;
mIm = 0;
mWind = 0;
mFt = 0;
}
int GlitchTest::realMagSqSpectrum(float* data, int numInput,
float* output, int* numOutput) {
*numOutput = 0;
if ((numInput <= 0) || (numInput > mFftSize))
return 0;
int i = 0;
for (i = 0; i < numInput; ++i) {
mRe[i] = data[i];
mIm[i] = 0.0;
}
for ( ; i < mFftSize; ++i) {
mRe[i] = 0.0;
mIm[i] = 0.0;
}
mFt->fft(mRe, mIm);
*numOutput = 1 + (mFftSize / 2);
for (i = 0; i < *numOutput; ++i) {
output[i] = (mRe[i] * mRe[i]) + (mIm[i] * mIm[i]);
}
return 1;
}
void GlitchTest::findPeak(float* data, int startSearch, int endSearch,
int* maxLoc, float* maxValue) {
float amax = data[startSearch];
int loc = startSearch;
for (int i = startSearch + 1; i < endSearch; ++i) {
if (data[i] > amax) {
amax = data[i];
loc = i;
}
}
*maxLoc = loc;
*maxValue = 10.0 * log10(amax / mWindowSize);
}