/* libs/pixelflinger/codeflinger/texturing.cpp ** ** Copyright 2006, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #include <assert.h> #include <stdint.h> #include <stdlib.h> #include <stdio.h> #include <sys/types.h> #include <cutils/log.h> #include "codeflinger/GGLAssembler.h" #ifdef __ARM_ARCH__ #include <machine/cpu-features.h> #endif namespace android { // --------------------------------------------------------------------------- // iterators are initialized like this: // (intToFixedCenter(x) * dx)>>16 + x0 // ((x<<16 + 0x8000) * dx)>>16 + x0 // ((x<<16)*dx + (0x8000*dx))>>16 + x0 // ( (x*dx) + dx>>1 ) + x0 // (x*dx) + (dx>>1 + x0) void GGLAssembler::init_iterated_color(fragment_parts_t& parts, const reg_t& x) { context_t const* c = mBuilderContext.c; const needs_t& needs = mBuilderContext.needs; if (mSmooth) { // NOTE: we could take this case in the mDithering + !mSmooth case, // but this would use up to 4 more registers for the color components // for only a little added quality. // Currently, this causes the system to run out of registers in // some case (see issue #719496) comment("compute initial iterated color (smooth and/or dither case)"); parts.iterated_packed = 0; parts.packed = 0; // 0x1: color component // 0x2: iterators const int optReload = mOptLevel >> 1; if (optReload >= 3) parts.reload = 0; // reload nothing else if (optReload == 2) parts.reload = 2; // reload iterators else if (optReload == 1) parts.reload = 1; // reload colors else if (optReload <= 0) parts.reload = 3; // reload both if (!mSmooth) { // we're not smoothing (just dithering), we never have to // reload the iterators parts.reload &= ~2; } Scratch scratches(registerFile()); const int t0 = (parts.reload & 1) ? scratches.obtain() : 0; const int t1 = (parts.reload & 2) ? scratches.obtain() : 0; for (int i=0 ; i<4 ; i++) { if (!mInfo[i].iterated) continue; // this component exists in the destination and is not replaced // by a texture unit. const int c = (parts.reload & 1) ? t0 : obtainReg(); if (i==0) CONTEXT_LOAD(c, iterators.ydady); if (i==1) CONTEXT_LOAD(c, iterators.ydrdy); if (i==2) CONTEXT_LOAD(c, iterators.ydgdy); if (i==3) CONTEXT_LOAD(c, iterators.ydbdy); parts.argb[i].reg = c; if (mInfo[i].smooth) { parts.argb_dx[i].reg = (parts.reload & 2) ? t1 : obtainReg(); const int dvdx = parts.argb_dx[i].reg; CONTEXT_LOAD(dvdx, generated_vars.argb[i].dx); MLA(AL, 0, c, x.reg, dvdx, c); // adjust the color iterator to make sure it won't overflow if (!mAA) { // this is not needed when we're using anti-aliasing // because we will (have to) clamp the components // anyway. int end = scratches.obtain(); MOV(AL, 0, end, reg_imm(parts.count.reg, LSR, 16)); MLA(AL, 1, end, dvdx, end, c); SUB(MI, 0, c, c, end); BIC(AL, 0, c, c, reg_imm(c, ASR, 31)); scratches.recycle(end); } } if (parts.reload & 1) { CONTEXT_STORE(c, generated_vars.argb[i].c); } } } else { // We're not smoothed, so we can // just use a packed version of the color and extract the // components as needed (or not at all if we don't blend) // figure out if we need the iterated color int load = 0; for (int i=0 ; i<4 ; i++) { component_info_t& info = mInfo[i]; if ((info.inDest || info.needed) && !info.replaced) load |= 1; } parts.iterated_packed = 1; parts.packed = (!mTextureMachine.mask && !mBlending && !mFog && !mDithering); parts.reload = 0; if (load || parts.packed) { if (mBlending || mDithering || mInfo[GGLFormat::ALPHA].needed) { comment("load initial iterated color (8888 packed)"); parts.iterated.setTo(obtainReg(), &(c->formats[GGL_PIXEL_FORMAT_RGBA_8888])); CONTEXT_LOAD(parts.iterated.reg, packed8888); } else { comment("load initial iterated color (dest format packed)"); parts.iterated.setTo(obtainReg(), &mCbFormat); // pre-mask the iterated color const int bits = parts.iterated.size(); const uint32_t size = ((bits>=32) ? 0 : (1LU << bits)) - 1; uint32_t mask = 0; if (mMasking) { for (int i=0 ; i<4 ; i++) { const int component_mask = 1<<i; const int h = parts.iterated.format.c[i].h; const int l = parts.iterated.format.c[i].l; if (h && (!(mMasking & component_mask))) { mask |= ((1<<(h-l))-1) << l; } } } if (mMasking && ((mask & size)==0)) { // none of the components are present in the mask } else { CONTEXT_LOAD(parts.iterated.reg, packed); if (mCbFormat.size == 1) { AND(AL, 0, parts.iterated.reg, parts.iterated.reg, imm(0xFF)); } else if (mCbFormat.size == 2) { MOV(AL, 0, parts.iterated.reg, reg_imm(parts.iterated.reg, LSR, 16)); } } // pre-mask the iterated color if (mMasking) { build_and_immediate(parts.iterated.reg, parts.iterated.reg, mask, bits); } } } } } void GGLAssembler::build_iterated_color( component_t& fragment, const fragment_parts_t& parts, int component, Scratch& regs) { fragment.setTo( regs.obtain(), 0, 32, CORRUPTIBLE); if (!mInfo[component].iterated) return; if (parts.iterated_packed) { // iterated colors are packed, extract the one we need extract(fragment, parts.iterated, component); } else { fragment.h = GGL_COLOR_BITS; fragment.l = GGL_COLOR_BITS - 8; fragment.flags |= CLEAR_LO; // iterated colors are held in their own register, // (smooth and/or dithering case) if (parts.reload==3) { // this implies mSmooth Scratch scratches(registerFile()); int dx = scratches.obtain(); CONTEXT_LOAD(fragment.reg, generated_vars.argb[component].c); CONTEXT_LOAD(dx, generated_vars.argb[component].dx); ADD(AL, 0, dx, fragment.reg, dx); CONTEXT_STORE(dx, generated_vars.argb[component].c); } else if (parts.reload & 1) { CONTEXT_LOAD(fragment.reg, generated_vars.argb[component].c); } else { // we don't reload, so simply rename the register and mark as // non CORRUPTIBLE so that the texture env or blending code // won't modify this (renamed) register regs.recycle(fragment.reg); fragment.reg = parts.argb[component].reg; fragment.flags &= ~CORRUPTIBLE; } if (mInfo[component].smooth && mAA) { // when using smooth shading AND anti-aliasing, we need to clamp // the iterators because there is always an extra pixel on the // edges, which most of the time will cause an overflow // (since technically its outside of the domain). BIC(AL, 0, fragment.reg, fragment.reg, reg_imm(fragment.reg, ASR, 31)); component_sat(fragment); } } } // --------------------------------------------------------------------------- void GGLAssembler::decodeLogicOpNeeds(const needs_t& needs) { // gather some informations about the components we need to process... const int opcode = GGL_READ_NEEDS(LOGIC_OP, needs.n) | GGL_CLEAR; switch(opcode) { case GGL_COPY: mLogicOp = 0; break; case GGL_CLEAR: case GGL_SET: mLogicOp = LOGIC_OP; break; case GGL_AND: case GGL_AND_REVERSE: case GGL_AND_INVERTED: case GGL_XOR: case GGL_OR: case GGL_NOR: case GGL_EQUIV: case GGL_OR_REVERSE: case GGL_OR_INVERTED: case GGL_NAND: mLogicOp = LOGIC_OP|LOGIC_OP_SRC|LOGIC_OP_DST; break; case GGL_NOOP: case GGL_INVERT: mLogicOp = LOGIC_OP|LOGIC_OP_DST; break; case GGL_COPY_INVERTED: mLogicOp = LOGIC_OP|LOGIC_OP_SRC; break; }; } void GGLAssembler::decodeTMUNeeds(const needs_t& needs, context_t const* c) { uint8_t replaced=0; mTextureMachine.mask = 0; mTextureMachine.activeUnits = 0; for (int i=GGL_TEXTURE_UNIT_COUNT-1 ; i>=0 ; i--) { texture_unit_t& tmu = mTextureMachine.tmu[i]; if (replaced == 0xF) { // all components are replaced, skip this TMU. tmu.format_idx = 0; tmu.mask = 0; tmu.replaced = replaced; continue; } tmu.format_idx = GGL_READ_NEEDS(T_FORMAT, needs.t[i]); tmu.format = c->formats[tmu.format_idx]; tmu.bits = tmu.format.size*8; tmu.swrap = GGL_READ_NEEDS(T_S_WRAP, needs.t[i]); tmu.twrap = GGL_READ_NEEDS(T_T_WRAP, needs.t[i]); tmu.env = ggl_needs_to_env(GGL_READ_NEEDS(T_ENV, needs.t[i])); tmu.pot = GGL_READ_NEEDS(T_POT, needs.t[i]); tmu.linear = GGL_READ_NEEDS(T_LINEAR, needs.t[i]) && tmu.format.size!=3; // XXX: only 8, 16 and 32 modes for now // 5551 linear filtering is not supported if (tmu.format_idx == GGL_PIXEL_FORMAT_RGBA_5551) tmu.linear = 0; tmu.mask = 0; tmu.replaced = replaced; if (tmu.format_idx) { mTextureMachine.activeUnits++; if (tmu.format.c[0].h) tmu.mask |= 0x1; if (tmu.format.c[1].h) tmu.mask |= 0x2; if (tmu.format.c[2].h) tmu.mask |= 0x4; if (tmu.format.c[3].h) tmu.mask |= 0x8; if (tmu.env == GGL_REPLACE) { replaced |= tmu.mask; } else if (tmu.env == GGL_DECAL) { if (!tmu.format.c[GGLFormat::ALPHA].h) { // if we don't have alpha, decal does nothing tmu.mask = 0; } else { // decal always ignores At tmu.mask &= ~(1<<GGLFormat::ALPHA); } } } mTextureMachine.mask |= tmu.mask; //printf("%d: mask=%08lx, replaced=%08lx\n", // i, int(tmu.mask), int(tmu.replaced)); } mTextureMachine.replaced = replaced; mTextureMachine.directTexture = 0; //printf("replaced=%08lx\n", mTextureMachine.replaced); } void GGLAssembler::init_textures( tex_coord_t* coords, const reg_t& x, const reg_t& y) { context_t const* c = mBuilderContext.c; const needs_t& needs = mBuilderContext.needs; int Rctx = mBuilderContext.Rctx; int Rx = x.reg; int Ry = y.reg; if (mTextureMachine.mask) { comment("compute texture coordinates"); } // init texture coordinates for each tmu const int cb_format_idx = GGL_READ_NEEDS(CB_FORMAT, needs.n); const bool multiTexture = mTextureMachine.activeUnits > 1; for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT; i++) { const texture_unit_t& tmu = mTextureMachine.tmu[i]; if (tmu.format_idx == 0) continue; if ((tmu.swrap == GGL_NEEDS_WRAP_11) && (tmu.twrap == GGL_NEEDS_WRAP_11)) { // 1:1 texture pointer_t& txPtr = coords[i].ptr; txPtr.setTo(obtainReg(), tmu.bits); CONTEXT_LOAD(txPtr.reg, state.texture[i].iterators.ydsdy); ADD(AL, 0, Rx, Rx, reg_imm(txPtr.reg, ASR, 16)); // x += (s>>16) CONTEXT_LOAD(txPtr.reg, state.texture[i].iterators.ydtdy); ADD(AL, 0, Ry, Ry, reg_imm(txPtr.reg, ASR, 16)); // y += (t>>16) // merge base & offset CONTEXT_LOAD(txPtr.reg, generated_vars.texture[i].stride); SMLABB(AL, Rx, Ry, txPtr.reg, Rx); // x+y*stride CONTEXT_LOAD(txPtr.reg, generated_vars.texture[i].data); base_offset(txPtr, txPtr, Rx); } else { Scratch scratches(registerFile()); reg_t& s = coords[i].s; reg_t& t = coords[i].t; // s = (x * dsdx)>>16 + ydsdy // s = (x * dsdx)>>16 + (y*dsdy)>>16 + s0 // t = (x * dtdx)>>16 + ydtdy // t = (x * dtdx)>>16 + (y*dtdy)>>16 + t0 s.setTo(obtainReg()); t.setTo(obtainReg()); const int need_w = GGL_READ_NEEDS(W, needs.n); if (need_w) { CONTEXT_LOAD(s.reg, state.texture[i].iterators.ydsdy); CONTEXT_LOAD(t.reg, state.texture[i].iterators.ydtdy); } else { int ydsdy = scratches.obtain(); int ydtdy = scratches.obtain(); CONTEXT_LOAD(s.reg, generated_vars.texture[i].dsdx); CONTEXT_LOAD(ydsdy, state.texture[i].iterators.ydsdy); CONTEXT_LOAD(t.reg, generated_vars.texture[i].dtdx); CONTEXT_LOAD(ydtdy, state.texture[i].iterators.ydtdy); MLA(AL, 0, s.reg, Rx, s.reg, ydsdy); MLA(AL, 0, t.reg, Rx, t.reg, ydtdy); } if ((mOptLevel&1)==0) { CONTEXT_STORE(s.reg, generated_vars.texture[i].spill[0]); CONTEXT_STORE(t.reg, generated_vars.texture[i].spill[1]); recycleReg(s.reg); recycleReg(t.reg); } } // direct texture? if (!multiTexture && !mBlending && !mDithering && !mFog && cb_format_idx == tmu.format_idx && !tmu.linear && mTextureMachine.replaced == tmu.mask) { mTextureMachine.directTexture = i + 1; } } } void GGLAssembler::build_textures( fragment_parts_t& parts, Scratch& regs) { context_t const* c = mBuilderContext.c; const needs_t& needs = mBuilderContext.needs; int Rctx = mBuilderContext.Rctx; // We don't have a way to spill registers automatically // spill depth and AA regs, when we know we may have to. // build the spill list... uint32_t spill_list = 0; for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT; i++) { const texture_unit_t& tmu = mTextureMachine.tmu[i]; if (tmu.format_idx == 0) continue; if (tmu.linear) { // we may run out of register if we have linear filtering // at 1 or 4 bytes / pixel on any texture unit. if (tmu.format.size == 1) { // if depth and AA enabled, we'll run out of 1 register if (parts.z.reg > 0 && parts.covPtr.reg > 0) spill_list |= 1<<parts.covPtr.reg; } if (tmu.format.size == 4) { // if depth or AA enabled, we'll run out of 1 or 2 registers if (parts.z.reg > 0) spill_list |= 1<<parts.z.reg; if (parts.covPtr.reg > 0) spill_list |= 1<<parts.covPtr.reg; } } } Spill spill(registerFile(), *this, spill_list); const bool multiTexture = mTextureMachine.activeUnits > 1; for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT; i++) { const texture_unit_t& tmu = mTextureMachine.tmu[i]; if (tmu.format_idx == 0) continue; pointer_t& txPtr = parts.coords[i].ptr; pixel_t& texel = parts.texel[i]; // repeat... if ((tmu.swrap == GGL_NEEDS_WRAP_11) && (tmu.twrap == GGL_NEEDS_WRAP_11)) { // 1:1 textures comment("fetch texel"); texel.setTo(regs.obtain(), &tmu.format); load(txPtr, texel, WRITE_BACK); } else { Scratch scratches(registerFile()); reg_t& s = parts.coords[i].s; reg_t& t = parts.coords[i].t; if ((mOptLevel&1)==0) { comment("reload s/t (multitexture or linear filtering)"); s.reg = scratches.obtain(); t.reg = scratches.obtain(); CONTEXT_LOAD(s.reg, generated_vars.texture[i].spill[0]); CONTEXT_LOAD(t.reg, generated_vars.texture[i].spill[1]); } comment("compute repeat/clamp"); int u = scratches.obtain(); int v = scratches.obtain(); int width = scratches.obtain(); int height = scratches.obtain(); int U = 0; int V = 0; CONTEXT_LOAD(width, generated_vars.texture[i].width); CONTEXT_LOAD(height, generated_vars.texture[i].height); int FRAC_BITS = 0; if (tmu.linear) { // linear interpolation if (tmu.format.size == 1) { // for 8-bits textures, we can afford // 7 bits of fractional precision at no // additional cost (we can't do 8 bits // because filter8 uses signed 16 bits muls) FRAC_BITS = 7; } else if (tmu.format.size == 2) { // filter16() is internally limited to 4 bits, so: // FRAC_BITS=2 generates less instructions, // FRAC_BITS=3,4,5 creates unpleasant artifacts, // FRAC_BITS=6+ looks good FRAC_BITS = 6; } else if (tmu.format.size == 4) { // filter32() is internally limited to 8 bits, so: // FRAC_BITS=4 looks good // FRAC_BITS=5+ looks better, but generates 3 extra ipp FRAC_BITS = 6; } else { // for all other cases we use 4 bits. FRAC_BITS = 4; } } wrapping(u, s.reg, width, tmu.swrap, FRAC_BITS); wrapping(v, t.reg, height, tmu.twrap, FRAC_BITS); if (tmu.linear) { comment("compute linear filtering offsets"); // pixel size scale const int shift = 31 - gglClz(tmu.format.size); U = scratches.obtain(); V = scratches.obtain(); // sample the texel center SUB(AL, 0, u, u, imm(1<<(FRAC_BITS-1))); SUB(AL, 0, v, v, imm(1<<(FRAC_BITS-1))); // get the fractionnal part of U,V AND(AL, 0, U, u, imm((1<<FRAC_BITS)-1)); AND(AL, 0, V, v, imm((1<<FRAC_BITS)-1)); // compute width-1 and height-1 SUB(AL, 0, width, width, imm(1)); SUB(AL, 0, height, height, imm(1)); // get the integer part of U,V and clamp/wrap // and compute offset to the next texel if (tmu.swrap == GGL_NEEDS_WRAP_REPEAT) { // u has already been REPEATed MOV(AL, 1, u, reg_imm(u, ASR, FRAC_BITS)); MOV(MI, 0, u, width); CMP(AL, u, width); MOV(LT, 0, width, imm(1 << shift)); if (shift) MOV(GE, 0, width, reg_imm(width, LSL, shift)); RSB(GE, 0, width, width, imm(0)); } else { // u has not been CLAMPed yet // algorithm: // if ((u>>4) >= width) // u = width<<4 // width = 0 // else // width = 1<<shift // u = u>>4; // get integer part // if (u<0) // u = 0 // width = 0 // generated_vars.rt = width CMP(AL, width, reg_imm(u, ASR, FRAC_BITS)); MOV(LE, 0, u, reg_imm(width, LSL, FRAC_BITS)); MOV(LE, 0, width, imm(0)); MOV(GT, 0, width, imm(1 << shift)); MOV(AL, 1, u, reg_imm(u, ASR, FRAC_BITS)); MOV(MI, 0, u, imm(0)); MOV(MI, 0, width, imm(0)); } CONTEXT_STORE(width, generated_vars.rt); const int stride = width; CONTEXT_LOAD(stride, generated_vars.texture[i].stride); if (tmu.twrap == GGL_NEEDS_WRAP_REPEAT) { // v has already been REPEATed MOV(AL, 1, v, reg_imm(v, ASR, FRAC_BITS)); MOV(MI, 0, v, height); CMP(AL, v, height); MOV(LT, 0, height, imm(1 << shift)); if (shift) MOV(GE, 0, height, reg_imm(height, LSL, shift)); RSB(GE, 0, height, height, imm(0)); MUL(AL, 0, height, stride, height); } else { // v has not been CLAMPed yet CMP(AL, height, reg_imm(v, ASR, FRAC_BITS)); MOV(LE, 0, v, reg_imm(height, LSL, FRAC_BITS)); MOV(LE, 0, height, imm(0)); if (shift) { MOV(GT, 0, height, reg_imm(stride, LSL, shift)); } else { MOV(GT, 0, height, stride); } MOV(AL, 1, v, reg_imm(v, ASR, FRAC_BITS)); MOV(MI, 0, v, imm(0)); MOV(MI, 0, height, imm(0)); } CONTEXT_STORE(height, generated_vars.lb); } scratches.recycle(width); scratches.recycle(height); // iterate texture coordinates... comment("iterate s,t"); int dsdx = scratches.obtain(); int dtdx = scratches.obtain(); CONTEXT_LOAD(dsdx, generated_vars.texture[i].dsdx); CONTEXT_LOAD(dtdx, generated_vars.texture[i].dtdx); ADD(AL, 0, s.reg, s.reg, dsdx); ADD(AL, 0, t.reg, t.reg, dtdx); if ((mOptLevel&1)==0) { CONTEXT_STORE(s.reg, generated_vars.texture[i].spill[0]); CONTEXT_STORE(t.reg, generated_vars.texture[i].spill[1]); scratches.recycle(s.reg); scratches.recycle(t.reg); } scratches.recycle(dsdx); scratches.recycle(dtdx); // merge base & offset... comment("merge base & offset"); texel.setTo(regs.obtain(), &tmu.format); txPtr.setTo(texel.reg, tmu.bits); int stride = scratches.obtain(); CONTEXT_LOAD(stride, generated_vars.texture[i].stride); CONTEXT_LOAD(txPtr.reg, generated_vars.texture[i].data); SMLABB(AL, u, v, stride, u); // u+v*stride base_offset(txPtr, txPtr, u); // load texel if (!tmu.linear) { comment("fetch texel"); load(txPtr, texel, 0); } else { // recycle registers we don't need anymore scratches.recycle(u); scratches.recycle(v); scratches.recycle(stride); comment("fetch texel, bilinear"); switch (tmu.format.size) { case 1: filter8(parts, texel, tmu, U, V, txPtr, FRAC_BITS); break; case 2: filter16(parts, texel, tmu, U, V, txPtr, FRAC_BITS); break; case 3: filter24(parts, texel, tmu, U, V, txPtr, FRAC_BITS); break; case 4: filter32(parts, texel, tmu, U, V, txPtr, FRAC_BITS); break; } } } } } void GGLAssembler::build_iterate_texture_coordinates( const fragment_parts_t& parts) { const bool multiTexture = mTextureMachine.activeUnits > 1; for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT; i++) { const texture_unit_t& tmu = mTextureMachine.tmu[i]; if (tmu.format_idx == 0) continue; if ((tmu.swrap == GGL_NEEDS_WRAP_11) && (tmu.twrap == GGL_NEEDS_WRAP_11)) { // 1:1 textures const pointer_t& txPtr = parts.coords[i].ptr; ADD(AL, 0, txPtr.reg, txPtr.reg, imm(txPtr.size>>3)); } else { Scratch scratches(registerFile()); int s = parts.coords[i].s.reg; int t = parts.coords[i].t.reg; if ((mOptLevel&1)==0) { s = scratches.obtain(); t = scratches.obtain(); CONTEXT_LOAD(s, generated_vars.texture[i].spill[0]); CONTEXT_LOAD(t, generated_vars.texture[i].spill[1]); } int dsdx = scratches.obtain(); int dtdx = scratches.obtain(); CONTEXT_LOAD(dsdx, generated_vars.texture[i].dsdx); CONTEXT_LOAD(dtdx, generated_vars.texture[i].dtdx); ADD(AL, 0, s, s, dsdx); ADD(AL, 0, t, t, dtdx); if ((mOptLevel&1)==0) { CONTEXT_STORE(s, generated_vars.texture[i].spill[0]); CONTEXT_STORE(t, generated_vars.texture[i].spill[1]); } } } } void GGLAssembler::filter8( const fragment_parts_t& parts, pixel_t& texel, const texture_unit_t& tmu, int U, int V, pointer_t& txPtr, int FRAC_BITS) { if (tmu.format.components != GGL_ALPHA && tmu.format.components != GGL_LUMINANCE) { // this is a packed format, and we don't support // linear filtering (it's probably RGB 332) // Should not happen with OpenGL|ES LDRB(AL, texel.reg, txPtr.reg); return; } // ------------------------ // about ~22 cycles / pixel Scratch scratches(registerFile()); int pixel= scratches.obtain(); int d = scratches.obtain(); int u = scratches.obtain(); int k = scratches.obtain(); int rt = scratches.obtain(); int lb = scratches.obtain(); // RB -> U * V CONTEXT_LOAD(rt, generated_vars.rt); CONTEXT_LOAD(lb, generated_vars.lb); int offset = pixel; ADD(AL, 0, offset, lb, rt); LDRB(AL, pixel, txPtr.reg, reg_scale_pre(offset)); SMULBB(AL, u, U, V); SMULBB(AL, d, pixel, u); RSB(AL, 0, k, u, imm(1<<(FRAC_BITS*2))); // LB -> (1-U) * V RSB(AL, 0, U, U, imm(1<<FRAC_BITS)); LDRB(AL, pixel, txPtr.reg, reg_scale_pre(lb)); SMULBB(AL, u, U, V); SMLABB(AL, d, pixel, u, d); SUB(AL, 0, k, k, u); // LT -> (1-U)*(1-V) RSB(AL, 0, V, V, imm(1<<FRAC_BITS)); LDRB(AL, pixel, txPtr.reg); SMULBB(AL, u, U, V); SMLABB(AL, d, pixel, u, d); // RT -> U*(1-V) LDRB(AL, pixel, txPtr.reg, reg_scale_pre(rt)); SUB(AL, 0, u, k, u); SMLABB(AL, texel.reg, pixel, u, d); for (int i=0 ; i<4 ; i++) { if (!texel.format.c[i].h) continue; texel.format.c[i].h = FRAC_BITS*2+8; texel.format.c[i].l = FRAC_BITS*2; // keeping 8 bits in enough } texel.format.size = 4; texel.format.bitsPerPixel = 32; texel.flags |= CLEAR_LO; } void GGLAssembler::filter16( const fragment_parts_t& parts, pixel_t& texel, const texture_unit_t& tmu, int U, int V, pointer_t& txPtr, int FRAC_BITS) { // compute the mask // XXX: it would be nice if the mask below could be computed // automatically. uint32_t mask = 0; int shift = 0; int prec = 0; switch (tmu.format_idx) { case GGL_PIXEL_FORMAT_RGB_565: // source: 00000ggg.ggg00000 | rrrrr000.000bbbbb // result: gggggggg.gggrrrrr | rrrrr0bb.bbbbbbbb mask = 0x07E0F81F; shift = 16; prec = 5; break; case GGL_PIXEL_FORMAT_RGBA_4444: // 0000,1111,0000,1111 | 0000,1111,0000,1111 mask = 0x0F0F0F0F; shift = 12; prec = 4; break; case GGL_PIXEL_FORMAT_LA_88: // 0000,0000,1111,1111 | 0000,0000,1111,1111 // AALL -> 00AA | 00LL mask = 0x00FF00FF; shift = 8; prec = 8; break; default: // unsupported format, do something sensical... LOGE("Unsupported 16-bits texture format (%d)", tmu.format_idx); LDRH(AL, texel.reg, txPtr.reg); return; } const int adjust = FRAC_BITS*2 - prec; const int round = 0; // update the texel format texel.format.size = 4; texel.format.bitsPerPixel = 32; texel.flags |= CLEAR_HI|CLEAR_LO; for (int i=0 ; i<4 ; i++) { if (!texel.format.c[i].h) continue; const uint32_t offset = (mask & tmu.format.mask(i)) ? 0 : shift; texel.format.c[i].h = tmu.format.c[i].h + offset + prec; texel.format.c[i].l = texel.format.c[i].h - (tmu.format.bits(i) + prec); } // ------------------------ // about ~40 cycles / pixel Scratch scratches(registerFile()); int pixel= scratches.obtain(); int d = scratches.obtain(); int u = scratches.obtain(); int k = scratches.obtain(); // RB -> U * V int offset = pixel; CONTEXT_LOAD(offset, generated_vars.rt); CONTEXT_LOAD(u, generated_vars.lb); ADD(AL, 0, offset, offset, u); LDRH(AL, pixel, txPtr.reg, reg_pre(offset)); SMULBB(AL, u, U, V); ORR(AL, 0, pixel, pixel, reg_imm(pixel, LSL, shift)); build_and_immediate(pixel, pixel, mask, 32); if (adjust) { if (round) ADD(AL, 0, u, u, imm(1<<(adjust-1))); MOV(AL, 0, u, reg_imm(u, LSR, adjust)); } MUL(AL, 0, d, pixel, u); RSB(AL, 0, k, u, imm(1<<prec)); // LB -> (1-U) * V CONTEXT_LOAD(offset, generated_vars.lb); RSB(AL, 0, U, U, imm(1<<FRAC_BITS)); LDRH(AL, pixel, txPtr.reg, reg_pre(offset)); SMULBB(AL, u, U, V); ORR(AL, 0, pixel, pixel, reg_imm(pixel, LSL, shift)); build_and_immediate(pixel, pixel, mask, 32); if (adjust) { if (round) ADD(AL, 0, u, u, imm(1<<(adjust-1))); MOV(AL, 0, u, reg_imm(u, LSR, adjust)); } MLA(AL, 0, d, pixel, u, d); SUB(AL, 0, k, k, u); // LT -> (1-U)*(1-V) RSB(AL, 0, V, V, imm(1<<FRAC_BITS)); LDRH(AL, pixel, txPtr.reg); SMULBB(AL, u, U, V); ORR(AL, 0, pixel, pixel, reg_imm(pixel, LSL, shift)); build_and_immediate(pixel, pixel, mask, 32); if (adjust) { if (round) ADD(AL, 0, u, u, imm(1<<(adjust-1))); MOV(AL, 0, u, reg_imm(u, LSR, adjust)); } MLA(AL, 0, d, pixel, u, d); // RT -> U*(1-V) CONTEXT_LOAD(offset, generated_vars.rt); LDRH(AL, pixel, txPtr.reg, reg_pre(offset)); SUB(AL, 0, u, k, u); ORR(AL, 0, pixel, pixel, reg_imm(pixel, LSL, shift)); build_and_immediate(pixel, pixel, mask, 32); MLA(AL, 0, texel.reg, pixel, u, d); } void GGLAssembler::filter24( const fragment_parts_t& parts, pixel_t& texel, const texture_unit_t& tmu, int U, int V, pointer_t& txPtr, int FRAC_BITS) { // not supported yet (currently disabled) load(txPtr, texel, 0); } #if __ARM_ARCH__ >= 6 // ARMv6 version, using UXTB16, and scheduled for Cortex-A8 pipeline void GGLAssembler::filter32( const fragment_parts_t& parts, pixel_t& texel, const texture_unit_t& tmu, int U, int V, pointer_t& txPtr, int FRAC_BITS) { const int adjust = FRAC_BITS*2 - 8; const int round = 0; const int prescale = 16 - adjust; Scratch scratches(registerFile()); int pixel= scratches.obtain(); int dh = scratches.obtain(); int u = scratches.obtain(); int k = scratches.obtain(); int temp = scratches.obtain(); int dl = scratches.obtain(); int offsetrt = scratches.obtain(); int offsetlb = scratches.obtain(); int pixellb = offsetlb; // RB -> U * V CONTEXT_LOAD(offsetrt, generated_vars.rt); CONTEXT_LOAD(offsetlb, generated_vars.lb); if(!round) { MOV(AL, 0, U, reg_imm(U, LSL, prescale)); } ADD(AL, 0, u, offsetrt, offsetlb); LDR(AL, pixel, txPtr.reg, reg_scale_pre(u)); if (round) { SMULBB(AL, u, U, V); RSB(AL, 0, U, U, imm(1<<FRAC_BITS)); } else { SMULWB(AL, u, U, V); RSB(AL, 0, U, U, imm(1<<(FRAC_BITS+prescale))); } UXTB16(AL, temp, pixel, 0); if (round) { ADD(AL, 0, u, u, imm(1<<(adjust-1))); MOV(AL, 0, u, reg_imm(u, LSR, adjust)); } LDR(AL, pixellb, txPtr.reg, reg_scale_pre(offsetlb)); MUL(AL, 0, dh, temp, u); UXTB16(AL, temp, pixel, 8); MUL(AL, 0, dl, temp, u); RSB(AL, 0, k, u, imm(0x100)); // LB -> (1-U) * V if (round) { SMULBB(AL, u, U, V); } else { SMULWB(AL, u, U, V); } UXTB16(AL, temp, pixellb, 0); if (round) { ADD(AL, 0, u, u, imm(1<<(adjust-1))); MOV(AL, 0, u, reg_imm(u, LSR, adjust)); } MLA(AL, 0, dh, temp, u, dh); UXTB16(AL, temp, pixellb, 8); MLA(AL, 0, dl, temp, u, dl); SUB(AL, 0, k, k, u); // LT -> (1-U)*(1-V) RSB(AL, 0, V, V, imm(1<<FRAC_BITS)); LDR(AL, pixel, txPtr.reg); if (round) { SMULBB(AL, u, U, V); } else { SMULWB(AL, u, U, V); } UXTB16(AL, temp, pixel, 0); if (round) { ADD(AL, 0, u, u, imm(1<<(adjust-1))); MOV(AL, 0, u, reg_imm(u, LSR, adjust)); } MLA(AL, 0, dh, temp, u, dh); UXTB16(AL, temp, pixel, 8); MLA(AL, 0, dl, temp, u, dl); // RT -> U*(1-V) LDR(AL, pixel, txPtr.reg, reg_scale_pre(offsetrt)); SUB(AL, 0, u, k, u); UXTB16(AL, temp, pixel, 0); MLA(AL, 0, dh, temp, u, dh); UXTB16(AL, temp, pixel, 8); MLA(AL, 0, dl, temp, u, dl); UXTB16(AL, dh, dh, 8); UXTB16(AL, dl, dl, 8); ORR(AL, 0, texel.reg, dh, reg_imm(dl, LSL, 8)); } #else void GGLAssembler::filter32( const fragment_parts_t& parts, pixel_t& texel, const texture_unit_t& tmu, int U, int V, pointer_t& txPtr, int FRAC_BITS) { const int adjust = FRAC_BITS*2 - 8; const int round = 0; // ------------------------ // about ~38 cycles / pixel Scratch scratches(registerFile()); int pixel= scratches.obtain(); int dh = scratches.obtain(); int u = scratches.obtain(); int k = scratches.obtain(); int temp = scratches.obtain(); int dl = scratches.obtain(); int mask = scratches.obtain(); MOV(AL, 0, mask, imm(0xFF)); ORR(AL, 0, mask, mask, imm(0xFF0000)); // RB -> U * V int offset = pixel; CONTEXT_LOAD(offset, generated_vars.rt); CONTEXT_LOAD(u, generated_vars.lb); ADD(AL, 0, offset, offset, u); LDR(AL, pixel, txPtr.reg, reg_scale_pre(offset)); SMULBB(AL, u, U, V); AND(AL, 0, temp, mask, pixel); if (adjust) { if (round) ADD(AL, 0, u, u, imm(1<<(adjust-1))); MOV(AL, 0, u, reg_imm(u, LSR, adjust)); } MUL(AL, 0, dh, temp, u); AND(AL, 0, temp, mask, reg_imm(pixel, LSR, 8)); MUL(AL, 0, dl, temp, u); RSB(AL, 0, k, u, imm(0x100)); // LB -> (1-U) * V CONTEXT_LOAD(offset, generated_vars.lb); RSB(AL, 0, U, U, imm(1<<FRAC_BITS)); LDR(AL, pixel, txPtr.reg, reg_scale_pre(offset)); SMULBB(AL, u, U, V); AND(AL, 0, temp, mask, pixel); if (adjust) { if (round) ADD(AL, 0, u, u, imm(1<<(adjust-1))); MOV(AL, 0, u, reg_imm(u, LSR, adjust)); } MLA(AL, 0, dh, temp, u, dh); AND(AL, 0, temp, mask, reg_imm(pixel, LSR, 8)); MLA(AL, 0, dl, temp, u, dl); SUB(AL, 0, k, k, u); // LT -> (1-U)*(1-V) RSB(AL, 0, V, V, imm(1<<FRAC_BITS)); LDR(AL, pixel, txPtr.reg); SMULBB(AL, u, U, V); AND(AL, 0, temp, mask, pixel); if (adjust) { if (round) ADD(AL, 0, u, u, imm(1<<(adjust-1))); MOV(AL, 0, u, reg_imm(u, LSR, adjust)); } MLA(AL, 0, dh, temp, u, dh); AND(AL, 0, temp, mask, reg_imm(pixel, LSR, 8)); MLA(AL, 0, dl, temp, u, dl); // RT -> U*(1-V) CONTEXT_LOAD(offset, generated_vars.rt); LDR(AL, pixel, txPtr.reg, reg_scale_pre(offset)); SUB(AL, 0, u, k, u); AND(AL, 0, temp, mask, pixel); MLA(AL, 0, dh, temp, u, dh); AND(AL, 0, temp, mask, reg_imm(pixel, LSR, 8)); MLA(AL, 0, dl, temp, u, dl); AND(AL, 0, dh, mask, reg_imm(dh, LSR, 8)); AND(AL, 0, dl, dl, reg_imm(mask, LSL, 8)); ORR(AL, 0, texel.reg, dh, dl); } #endif void GGLAssembler::build_texture_environment( component_t& fragment, const fragment_parts_t& parts, int component, Scratch& regs) { const uint32_t component_mask = 1<<component; const bool multiTexture = mTextureMachine.activeUnits > 1; for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) { texture_unit_t& tmu = mTextureMachine.tmu[i]; if (tmu.mask & component_mask) { // replace or modulate with this texture if ((tmu.replaced & component_mask) == 0) { // not replaced by a later tmu... Scratch scratches(registerFile()); pixel_t texel(parts.texel[i]); if (multiTexture && tmu.swrap == GGL_NEEDS_WRAP_11 && tmu.twrap == GGL_NEEDS_WRAP_11) { texel.reg = scratches.obtain(); texel.flags |= CORRUPTIBLE; comment("fetch texel (multitexture 1:1)"); load(parts.coords[i].ptr, texel, WRITE_BACK); } component_t incoming(fragment); modify(fragment, regs); switch (tmu.env) { case GGL_REPLACE: extract(fragment, texel, component); break; case GGL_MODULATE: modulate(fragment, incoming, texel, component); break; case GGL_DECAL: decal(fragment, incoming, texel, component); break; case GGL_BLEND: blend(fragment, incoming, texel, component, i); break; case GGL_ADD: add(fragment, incoming, texel, component); break; } } } } } // --------------------------------------------------------------------------- void GGLAssembler::wrapping( int d, int coord, int size, int tx_wrap, int tx_linear) { // notes: // if tx_linear is set, we need 4 extra bits of precision on the result // SMULL/UMULL is 3 cycles Scratch scratches(registerFile()); int c = coord; if (tx_wrap == GGL_NEEDS_WRAP_REPEAT) { // UMULL takes 4 cycles (interlocked), and we can get away with // 2 cycles using SMULWB, but we're loosing 16 bits of precision // out of 32 (this is not a problem because the iterator keeps // its full precision) // UMULL(AL, 0, size, d, c, size); // note: we can't use SMULTB because it's signed. MOV(AL, 0, d, reg_imm(c, LSR, 16-tx_linear)); SMULWB(AL, d, d, size); } else if (tx_wrap == GGL_NEEDS_WRAP_CLAMP_TO_EDGE) { if (tx_linear) { // 1 cycle MOV(AL, 0, d, reg_imm(coord, ASR, 16-tx_linear)); } else { // 4 cycles (common case) MOV(AL, 0, d, reg_imm(coord, ASR, 16)); BIC(AL, 0, d, d, reg_imm(d, ASR, 31)); CMP(AL, d, size); SUB(GE, 0, d, size, imm(1)); } } } // --------------------------------------------------------------------------- void GGLAssembler::modulate( component_t& dest, const component_t& incoming, const pixel_t& incomingTexel, int component) { Scratch locals(registerFile()); integer_t texel(locals.obtain(), 32, CORRUPTIBLE); extract(texel, incomingTexel, component); const int Nt = texel.size(); // Nt should always be less than 10 bits because it comes // from the TMU. int Ni = incoming.size(); // Ni could be big because it comes from previous MODULATEs if (Nt == 1) { // texel acts as a bit-mask // dest = incoming & ((texel << incoming.h)-texel) RSB(AL, 0, dest.reg, texel.reg, reg_imm(texel.reg, LSL, incoming.h)); AND(AL, 0, dest.reg, dest.reg, incoming.reg); dest.l = incoming.l; dest.h = incoming.h; dest.flags |= (incoming.flags & CLEAR_LO); } else if (Ni == 1) { MOV(AL, 0, dest.reg, reg_imm(incoming.reg, LSL, 31-incoming.h)); AND(AL, 0, dest.reg, texel.reg, reg_imm(dest.reg, ASR, 31)); dest.l = 0; dest.h = Nt; } else { int inReg = incoming.reg; int shift = incoming.l; if ((Nt + Ni) > 32) { // we will overflow, reduce the precision of Ni to 8 bits // (Note Nt cannot be more than 10 bits which happens with // 565 textures and GGL_LINEAR) shift += Ni-8; Ni = 8; } // modulate by the component with the lowest precision if (Nt >= Ni) { if (shift) { // XXX: we should be able to avoid this shift // when shift==16 && Nt<16 && Ni<16, in which // we could use SMULBT below. MOV(AL, 0, dest.reg, reg_imm(inReg, LSR, shift)); inReg = dest.reg; shift = 0; } // operation: (Cf*Ct)/((1<<Ni)-1) // approximated with: Cf*(Ct + Ct>>(Ni-1))>>Ni // this operation doesn't change texel's size ADD(AL, 0, dest.reg, inReg, reg_imm(inReg, LSR, Ni-1)); if (Nt<16 && Ni<16) SMULBB(AL, dest.reg, texel.reg, dest.reg); else MUL(AL, 0, dest.reg, texel.reg, dest.reg); dest.l = Ni; dest.h = Nt + Ni; } else { if (shift && (shift != 16)) { // if shift==16, we can use 16-bits mul instructions later MOV(AL, 0, dest.reg, reg_imm(inReg, LSR, shift)); inReg = dest.reg; shift = 0; } // operation: (Cf*Ct)/((1<<Nt)-1) // approximated with: Ct*(Cf + Cf>>(Nt-1))>>Nt // this operation doesn't change incoming's size Scratch scratches(registerFile()); int t = (texel.flags & CORRUPTIBLE) ? texel.reg : dest.reg; if (t == inReg) t = scratches.obtain(); ADD(AL, 0, t, texel.reg, reg_imm(texel.reg, LSR, Nt-1)); if (Nt<16 && Ni<16) { if (shift==16) SMULBT(AL, dest.reg, t, inReg); else SMULBB(AL, dest.reg, t, inReg); } else MUL(AL, 0, dest.reg, t, inReg); dest.l = Nt; dest.h = Nt + Ni; } // low bits are not valid dest.flags |= CLEAR_LO; // no need to keep more than 8 bits/component if (dest.size() > 8) dest.l = dest.h-8; } } void GGLAssembler::decal( component_t& dest, const component_t& incoming, const pixel_t& incomingTexel, int component) { // RGBA: // Cv = Cf*(1 - At) + Ct*At = Cf + (Ct - Cf)*At // Av = Af Scratch locals(registerFile()); integer_t texel(locals.obtain(), 32, CORRUPTIBLE); integer_t factor(locals.obtain(), 32, CORRUPTIBLE); extract(texel, incomingTexel, component); extract(factor, incomingTexel, GGLFormat::ALPHA); // no need to keep more than 8-bits for decal int Ni = incoming.size(); int shift = incoming.l; if (Ni > 8) { shift += Ni-8; Ni = 8; } integer_t incomingNorm(incoming.reg, Ni, incoming.flags); if (shift) { MOV(AL, 0, dest.reg, reg_imm(incomingNorm.reg, LSR, shift)); incomingNorm.reg = dest.reg; incomingNorm.flags |= CORRUPTIBLE; } ADD(AL, 0, factor.reg, factor.reg, reg_imm(factor.reg, LSR, factor.s-1)); build_blendOneMinusFF(dest, factor, incomingNorm, texel); } void GGLAssembler::blend( component_t& dest, const component_t& incoming, const pixel_t& incomingTexel, int component, int tmu) { // RGBA: // Cv = (1 - Ct)*Cf + Ct*Cc = Cf + (Cc - Cf)*Ct // Av = At*Af if (component == GGLFormat::ALPHA) { modulate(dest, incoming, incomingTexel, component); return; } Scratch locals(registerFile()); integer_t color(locals.obtain(), 8, CORRUPTIBLE); integer_t factor(locals.obtain(), 32, CORRUPTIBLE); LDRB(AL, color.reg, mBuilderContext.Rctx, immed12_pre(GGL_OFFSETOF(state.texture[tmu].env_color[component]))); extract(factor, incomingTexel, component); // no need to keep more than 8-bits for blend int Ni = incoming.size(); int shift = incoming.l; if (Ni > 8) { shift += Ni-8; Ni = 8; } integer_t incomingNorm(incoming.reg, Ni, incoming.flags); if (shift) { MOV(AL, 0, dest.reg, reg_imm(incomingNorm.reg, LSR, shift)); incomingNorm.reg = dest.reg; incomingNorm.flags |= CORRUPTIBLE; } ADD(AL, 0, factor.reg, factor.reg, reg_imm(factor.reg, LSR, factor.s-1)); build_blendOneMinusFF(dest, factor, incomingNorm, color); } void GGLAssembler::add( component_t& dest, const component_t& incoming, const pixel_t& incomingTexel, int component) { // RGBA: // Cv = Cf + Ct; Scratch locals(registerFile()); component_t incomingTemp(incoming); // use "dest" as a temporary for extracting the texel, unless "dest" // overlaps "incoming". integer_t texel(dest.reg, 32, CORRUPTIBLE); if (dest.reg == incomingTemp.reg) texel.reg = locals.obtain(); extract(texel, incomingTexel, component); if (texel.s < incomingTemp.size()) { expand(texel, texel, incomingTemp.size()); } else if (texel.s > incomingTemp.size()) { if (incomingTemp.flags & CORRUPTIBLE) { expand(incomingTemp, incomingTemp, texel.s); } else { incomingTemp.reg = locals.obtain(); expand(incomingTemp, incoming, texel.s); } } if (incomingTemp.l) { ADD(AL, 0, dest.reg, texel.reg, reg_imm(incomingTemp.reg, LSR, incomingTemp.l)); } else { ADD(AL, 0, dest.reg, texel.reg, incomingTemp.reg); } dest.l = 0; dest.h = texel.size(); component_sat(dest); } // ---------------------------------------------------------------------------- }; // namespace android