/* libs/pixelflinger/buffer.cpp ** ** Copyright 2006, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #include <assert.h> #include "buffer.h" namespace android { // ---------------------------------------------------------------------------- static void read_pixel(const surface_t* s, context_t* c, uint32_t x, uint32_t y, pixel_t* pixel); static void write_pixel(const surface_t* s, context_t* c, uint32_t x, uint32_t y, const pixel_t* pixel); static void readRGB565(const surface_t* s, context_t* c, uint32_t x, uint32_t y, pixel_t* pixel); static void readABGR8888(const surface_t* s, context_t* c, uint32_t x, uint32_t y, pixel_t* pixel); static uint32_t logic_op(int op, uint32_t s, uint32_t d); static uint32_t extract(uint32_t v, int h, int l, int bits); static uint32_t expand(uint32_t v, int sbits, int dbits); static uint32_t downshift_component(uint32_t in, uint32_t v, int sh, int sl, int dh, int dl, int ch, int cl, int dither); // ---------------------------------------------------------------------------- void ggl_init_texture(context_t* c) { for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) { texture_t& t = c->state.texture[i]; t.s_coord = GGL_ONE_TO_ONE; t.t_coord = GGL_ONE_TO_ONE; t.s_wrap = GGL_REPEAT; t.t_wrap = GGL_REPEAT; t.min_filter = GGL_NEAREST; t.mag_filter = GGL_NEAREST; t.env = GGL_MODULATE; } c->activeTMU = &(c->state.texture[0]); } void ggl_set_surface(context_t* c, surface_t* dst, const GGLSurface* src) { dst->width = src->width; dst->height = src->height; dst->stride = src->stride; dst->data = src->data; dst->format = src->format; dst->dirty = 1; if (__builtin_expect(dst->stride < 0, false)) { const GGLFormat& pixelFormat(c->formats[dst->format]); const int32_t bpr = -dst->stride * pixelFormat.size; dst->data += bpr * (dst->height-1); } } static void pick_read_write(surface_t* s) { // Choose best reader/writers. switch (s->format) { case GGL_PIXEL_FORMAT_RGBA_8888: s->read = readABGR8888; break; case GGL_PIXEL_FORMAT_RGB_565: s->read = readRGB565; break; default: s->read = read_pixel; break; } s->write = write_pixel; } void ggl_pick_texture(context_t* c) { for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) { surface_t& s = c->state.texture[i].surface; if ((!c->state.texture[i].enable) || (!s.dirty)) continue; s.dirty = 0; pick_read_write(&s); generated_tex_vars_t& gen = c->generated_vars.texture[i]; gen.width = s.width; gen.height = s.height; gen.stride = s.stride; gen.data = int32_t(s.data); } } void ggl_pick_cb(context_t* c) { surface_t& s = c->state.buffers.color; if (s.dirty) { s.dirty = 0; pick_read_write(&s); } } // ---------------------------------------------------------------------------- void read_pixel(const surface_t* s, context_t* c, uint32_t x, uint32_t y, pixel_t* pixel) { assert((x < s->width) && (y < s->height)); const GGLFormat* f = &(c->formats[s->format]); int32_t index = x + (s->stride * y); uint8_t* const data = s->data + index * f->size; uint32_t v = 0; switch (f->size) { case 1: v = *data; break; case 2: v = *(uint16_t*)data; break; case 3: v = (data[2]<<16)|(data[1]<<8)|data[0]; break; case 4: v = GGL_RGBA_TO_HOST(*(uint32_t*)data); break; } for (int i=0 ; i<4 ; i++) { pixel->s[i] = f->c[i].h - f->c[i].l; if (pixel->s[i]) pixel->c[i] = extract(v, f->c[i].h, f->c[i].l, f->size*8); } } void readRGB565(const surface_t* s, context_t* c, uint32_t x, uint32_t y, pixel_t* pixel) { uint16_t v = *(reinterpret_cast<uint16_t*>(s->data) + (x + (s->stride * y))); pixel->c[0] = 0; pixel->c[1] = v>>11; pixel->c[2] = (v>>5)&0x3F; pixel->c[3] = v&0x1F; pixel->s[0] = 0; pixel->s[1] = 5; pixel->s[2] = 6; pixel->s[3] = 5; } void readABGR8888(const surface_t* s, context_t* c, uint32_t x, uint32_t y, pixel_t* pixel) { uint32_t v = *(reinterpret_cast<uint32_t*>(s->data) + (x + (s->stride * y))); v = GGL_RGBA_TO_HOST(v); pixel->c[0] = v>>24; // A pixel->c[1] = v&0xFF; // R pixel->c[2] = (v>>8)&0xFF; // G pixel->c[3] = (v>>16)&0xFF; // B pixel->s[0] = pixel->s[1] = pixel->s[2] = pixel->s[3] = 8; } void write_pixel(const surface_t* s, context_t* c, uint32_t x, uint32_t y, const pixel_t* pixel) { assert((x < s->width) && (y < s->height)); int dither = -1; if (c->state.enables & GGL_ENABLE_DITHER) { dither = c->ditherMatrix[ (x & GGL_DITHER_MASK) + ((y & GGL_DITHER_MASK)<<GGL_DITHER_ORDER_SHIFT) ]; } const GGLFormat* f = &(c->formats[s->format]); int32_t index = x + (s->stride * y); uint8_t* const data = s->data + index * f->size; uint32_t mask = 0; uint32_t v = 0; for (int i=0 ; i<4 ; i++) { const int component_mask = 1 << i; if (f->components>=GGL_LUMINANCE && (i==GGLFormat::GREEN || i==GGLFormat::BLUE)) { // destinations L formats don't have G or B continue; } const int l = f->c[i].l; const int h = f->c[i].h; if (h && (c->state.mask.color & component_mask)) { mask |= (((1<<(h-l))-1)<<l); uint32_t u = pixel->c[i]; int32_t pixelSize = pixel->s[i]; if (pixelSize < (h-l)) { u = expand(u, pixelSize, h-l); pixelSize = h-l; } v = downshift_component(v, u, pixelSize, 0, h, l, 0, 0, dither); } } if ((c->state.mask.color != 0xF) || (c->state.enables & GGL_ENABLE_LOGIC_OP)) { uint32_t d = 0; switch (f->size) { case 1: d = *data; break; case 2: d = *(uint16_t*)data; break; case 3: d = (data[2]<<16)|(data[1]<<8)|data[0]; break; case 4: d = GGL_RGBA_TO_HOST(*(uint32_t*)data); break; } if (c->state.enables & GGL_ENABLE_LOGIC_OP) { v = logic_op(c->state.logic_op.opcode, v, d); v &= mask; } v |= (d & ~mask); } switch (f->size) { case 1: *data = v; break; case 2: *(uint16_t*)data = v; break; case 3: data[0] = v; data[1] = v>>8; data[2] = v>>16; break; case 4: *(uint32_t*)data = GGL_HOST_TO_RGBA(v); break; } } static uint32_t logic_op(int op, uint32_t s, uint32_t d) { switch(op) { case GGL_CLEAR: return 0; case GGL_AND: return s & d; case GGL_AND_REVERSE: return s & ~d; case GGL_COPY: return s; case GGL_AND_INVERTED: return ~s & d; case GGL_NOOP: return d; case GGL_XOR: return s ^ d; case GGL_OR: return s | d; case GGL_NOR: return ~(s | d); case GGL_EQUIV: return ~(s ^ d); case GGL_INVERT: return ~d; case GGL_OR_REVERSE: return s | ~d; case GGL_COPY_INVERTED: return ~s; case GGL_OR_INVERTED: return ~s | d; case GGL_NAND: return ~(s & d); case GGL_SET: return ~0; }; return s; } uint32_t ggl_expand(uint32_t v, int sbits, int dbits) { return expand(v, sbits, dbits); } uint32_t ggl_pack_color(context_t* c, int32_t format, GGLcolor r, GGLcolor g, GGLcolor b, GGLcolor a) { const GGLFormat* f = &(c->formats[format]); uint32_t p = 0; const int32_t hbits = GGL_COLOR_BITS; const int32_t lbits = GGL_COLOR_BITS - 8; p = downshift_component(p, r, hbits, lbits, f->rh, f->rl, 0, 1, -1); p = downshift_component(p, g, hbits, lbits, f->gh, f->gl, 0, 1, -1); p = downshift_component(p, b, hbits, lbits, f->bh, f->bl, 0, 1, -1); p = downshift_component(p, a, hbits, lbits, f->ah, f->al, 0, 1, -1); switch (f->size) { case 1: p |= p << 8; // fallthrough case 2: p |= p << 16; } return p; } // ---------------------------------------------------------------------------- // extract a component from a word uint32_t extract(uint32_t v, int h, int l, int bits) { assert(h); if (l) { v >>= l; } if (h != bits) { v &= (1<<(h-l))-1; } return v; } // expand a component from sbits to dbits uint32_t expand(uint32_t v, int sbits, int dbits) { if (dbits > sbits) { assert(sbits); if (sbits==1) { v = (v<<dbits) - v; } else { if (dbits % sbits) { v <<= (dbits-sbits); dbits -= sbits; do { v |= v>>sbits; dbits -= sbits; sbits *= 2; } while (dbits>0); } else { dbits -= sbits; do { v |= v<<sbits; dbits -= sbits; if (sbits*2 < dbits) { sbits *= 2; } } while (dbits > 0); } } } return v; } // downsample a component from sbits to dbits // and shift / construct the pixel uint32_t downshift_component( uint32_t in, uint32_t v, int sh, int sl, // src int dh, int dl, // dst int ch, int cl, // clear int dither) { const int sbits = sh-sl; const int dbits = dh-dl; assert(sbits>=dbits); if (sbits>dbits) { if (dither>=0) { v -= (v>>dbits); // fix up const int shift = (GGL_DITHER_BITS - (sbits-dbits)); if (shift >= 0) v += (dither >> shift) << sl; else v += (dither << (-shift)) << sl; } else { // don't do that right now, so we can reproduce the same // artifacts we get on ARM (Where we don't do this) // -> this is not really needed if we don't dither //if (dBits > 1) { // result already OK if dBits==1 // v -= (v>>dbits); // fix up // v += 1 << ((sbits-dbits)-1); // rounding //} } } // we need to clear the high bits of the source if (ch) { v <<= 32-sh; sl += 32-sh; sh = 32; } if (dl) { if (cl || (sbits>dbits)) { v >>= sh-dbits; sl = 0; sh = dbits; in |= v<<dl; } else { // sbits==dbits and we don't need to clean the lower bits // so we just have to shift the component to the right location int shift = dh-sh; in |= v<<shift; } } else { // destination starts at bit 0 // ie: sh-dh == sh-dbits int shift = sh-dh; if (shift > 0) in |= v>>shift; else if (shift < 0) in |= v<<shift; else in |= v; } return in; } // ---------------------------------------------------------------------------- }; // namespace android