/* * WPA Supplicant / Crypto wrapper for LibTomCrypt (for internal TLSv1) * Copyright (c) 2005-2006, Jouni Malinen <j@w1.fi> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Alternatively, this software may be distributed under the terms of BSD * license. * * See README and COPYING for more details. */ #include "includes.h" #include <tomcrypt.h> #include "common.h" #include "crypto.h" #ifndef mp_init_multi #define mp_init_multi ltc_init_multi #define mp_clear_multi ltc_deinit_multi #define mp_unsigned_bin_size(a) ltc_mp.unsigned_size(a) #define mp_to_unsigned_bin(a, b) ltc_mp.unsigned_write(a, b) #define mp_read_unsigned_bin(a, b, c) ltc_mp.unsigned_read(a, b, c) #define mp_exptmod(a,b,c,d) ltc_mp.exptmod(a,b,c,d) #endif int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { hash_state md; size_t i; md4_init(&md); for (i = 0; i < num_elem; i++) md4_process(&md, addr[i], len[i]); md4_done(&md, mac); return 0; } void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher) { u8 pkey[8], next, tmp; int i; symmetric_key skey; /* Add parity bits to the key */ next = 0; for (i = 0; i < 7; i++) { tmp = key[i]; pkey[i] = (tmp >> i) | next | 1; next = tmp << (7 - i); } pkey[i] = next | 1; des_setup(pkey, 8, 0, &skey); des_ecb_encrypt(clear, cypher, &skey); des_done(&skey); } int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { hash_state md; size_t i; md5_init(&md); for (i = 0; i < num_elem; i++) md5_process(&md, addr[i], len[i]); md5_done(&md, mac); return 0; } int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { hash_state md; size_t i; sha1_init(&md); for (i = 0; i < num_elem; i++) sha1_process(&md, addr[i], len[i]); sha1_done(&md, mac); return 0; } void * aes_encrypt_init(const u8 *key, size_t len) { symmetric_key *skey; skey = os_malloc(sizeof(*skey)); if (skey == NULL) return NULL; if (aes_setup(key, len, 0, skey) != CRYPT_OK) { os_free(skey); return NULL; } return skey; } void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt) { symmetric_key *skey = ctx; aes_ecb_encrypt(plain, crypt, skey); } void aes_encrypt_deinit(void *ctx) { symmetric_key *skey = ctx; aes_done(skey); os_free(skey); } void * aes_decrypt_init(const u8 *key, size_t len) { symmetric_key *skey; skey = os_malloc(sizeof(*skey)); if (skey == NULL) return NULL; if (aes_setup(key, len, 0, skey) != CRYPT_OK) { os_free(skey); return NULL; } return skey; } void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain) { symmetric_key *skey = ctx; aes_ecb_encrypt(plain, (u8 *) crypt, skey); } void aes_decrypt_deinit(void *ctx) { symmetric_key *skey = ctx; aes_done(skey); os_free(skey); } struct crypto_hash { enum crypto_hash_alg alg; int error; union { hash_state md; hmac_state hmac; } u; }; struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key, size_t key_len) { struct crypto_hash *ctx; ctx = os_zalloc(sizeof(*ctx)); if (ctx == NULL) return NULL; ctx->alg = alg; switch (alg) { case CRYPTO_HASH_ALG_MD5: if (md5_init(&ctx->u.md) != CRYPT_OK) goto fail; break; case CRYPTO_HASH_ALG_SHA1: if (sha1_init(&ctx->u.md) != CRYPT_OK) goto fail; break; case CRYPTO_HASH_ALG_HMAC_MD5: if (hmac_init(&ctx->u.hmac, find_hash("md5"), key, key_len) != CRYPT_OK) goto fail; break; case CRYPTO_HASH_ALG_HMAC_SHA1: if (hmac_init(&ctx->u.hmac, find_hash("sha1"), key, key_len) != CRYPT_OK) goto fail; break; default: goto fail; } return ctx; fail: os_free(ctx); return NULL; } void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len) { if (ctx == NULL || ctx->error) return; switch (ctx->alg) { case CRYPTO_HASH_ALG_MD5: ctx->error = md5_process(&ctx->u.md, data, len) != CRYPT_OK; break; case CRYPTO_HASH_ALG_SHA1: ctx->error = sha1_process(&ctx->u.md, data, len) != CRYPT_OK; break; case CRYPTO_HASH_ALG_HMAC_MD5: case CRYPTO_HASH_ALG_HMAC_SHA1: ctx->error = hmac_process(&ctx->u.hmac, data, len) != CRYPT_OK; break; } } int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len) { int ret = 0; unsigned long clen; if (ctx == NULL) return -2; if (mac == NULL || len == NULL) { os_free(ctx); return 0; } if (ctx->error) { os_free(ctx); return -2; } switch (ctx->alg) { case CRYPTO_HASH_ALG_MD5: if (*len < 16) { *len = 16; os_free(ctx); return -1; } *len = 16; if (md5_done(&ctx->u.md, mac) != CRYPT_OK) ret = -2; break; case CRYPTO_HASH_ALG_SHA1: if (*len < 20) { *len = 20; os_free(ctx); return -1; } *len = 20; if (sha1_done(&ctx->u.md, mac) != CRYPT_OK) ret = -2; break; case CRYPTO_HASH_ALG_HMAC_SHA1: if (*len < 20) { *len = 20; os_free(ctx); return -1; } /* continue */ case CRYPTO_HASH_ALG_HMAC_MD5: if (*len < 16) { *len = 16; os_free(ctx); return -1; } clen = *len; if (hmac_done(&ctx->u.hmac, mac, &clen) != CRYPT_OK) { os_free(ctx); return -1; } *len = clen; break; default: ret = -2; break; } os_free(ctx); return ret; } struct crypto_cipher { int rc4; union { symmetric_CBC cbc; struct { size_t used_bytes; u8 key[16]; size_t keylen; } rc4; } u; }; struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg, const u8 *iv, const u8 *key, size_t key_len) { struct crypto_cipher *ctx; int idx, res, rc4 = 0; switch (alg) { case CRYPTO_CIPHER_ALG_AES: idx = find_cipher("aes"); break; case CRYPTO_CIPHER_ALG_3DES: idx = find_cipher("3des"); break; case CRYPTO_CIPHER_ALG_DES: idx = find_cipher("des"); break; case CRYPTO_CIPHER_ALG_RC2: idx = find_cipher("rc2"); break; case CRYPTO_CIPHER_ALG_RC4: idx = -1; rc4 = 1; break; default: return NULL; } ctx = os_zalloc(sizeof(*ctx)); if (ctx == NULL) return NULL; if (rc4) { ctx->rc4 = 1; if (key_len > sizeof(ctx->u.rc4.key)) { os_free(ctx); return NULL; } ctx->u.rc4.keylen = key_len; os_memcpy(ctx->u.rc4.key, key, key_len); } else { res = cbc_start(idx, iv, key, key_len, 0, &ctx->u.cbc); if (res != CRYPT_OK) { wpa_printf(MSG_DEBUG, "LibTomCrypt: Cipher start " "failed: %s", error_to_string(res)); os_free(ctx); return NULL; } } return ctx; } int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain, u8 *crypt, size_t len) { int res; if (ctx->rc4) { if (plain != crypt) os_memcpy(crypt, plain, len); rc4_skip(ctx->u.rc4.key, ctx->u.rc4.keylen, ctx->u.rc4.used_bytes, crypt, len); ctx->u.rc4.used_bytes += len; return 0; } res = cbc_encrypt(plain, crypt, len, &ctx->u.cbc); if (res != CRYPT_OK) { wpa_printf(MSG_DEBUG, "LibTomCrypt: CBC encryption " "failed: %s", error_to_string(res)); return -1; } return 0; } int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt, u8 *plain, size_t len) { int res; if (ctx->rc4) { if (plain != crypt) os_memcpy(plain, crypt, len); rc4_skip(ctx->u.rc4.key, ctx->u.rc4.keylen, ctx->u.rc4.used_bytes, plain, len); ctx->u.rc4.used_bytes += len; return 0; } res = cbc_decrypt(crypt, plain, len, &ctx->u.cbc); if (res != CRYPT_OK) { wpa_printf(MSG_DEBUG, "LibTomCrypt: CBC decryption " "failed: %s", error_to_string(res)); return -1; } return 0; } void crypto_cipher_deinit(struct crypto_cipher *ctx) { if (!ctx->rc4) cbc_done(&ctx->u.cbc); os_free(ctx); } struct crypto_public_key { rsa_key rsa; }; struct crypto_private_key { rsa_key rsa; }; struct crypto_public_key * crypto_public_key_import(const u8 *key, size_t len) { int res; struct crypto_public_key *pk; pk = os_zalloc(sizeof(*pk)); if (pk == NULL) return NULL; res = rsa_import(key, len, &pk->rsa); if (res != CRYPT_OK) { wpa_printf(MSG_ERROR, "LibTomCrypt: Failed to import " "public key (res=%d '%s')", res, error_to_string(res)); os_free(pk); return NULL; } if (pk->rsa.type != PK_PUBLIC) { wpa_printf(MSG_ERROR, "LibTomCrypt: Public key was not of " "correct type"); rsa_free(&pk->rsa); os_free(pk); return NULL; } return pk; } struct crypto_private_key * crypto_private_key_import(const u8 *key, size_t len, const char *passwd) { int res; struct crypto_private_key *pk; pk = os_zalloc(sizeof(*pk)); if (pk == NULL) return NULL; res = rsa_import(key, len, &pk->rsa); if (res != CRYPT_OK) { wpa_printf(MSG_ERROR, "LibTomCrypt: Failed to import " "private key (res=%d '%s')", res, error_to_string(res)); os_free(pk); return NULL; } if (pk->rsa.type != PK_PRIVATE) { wpa_printf(MSG_ERROR, "LibTomCrypt: Private key was not of " "correct type"); rsa_free(&pk->rsa); os_free(pk); return NULL; } return pk; } struct crypto_public_key * crypto_public_key_from_cert(const u8 *buf, size_t len) { /* No X.509 support in LibTomCrypt */ return NULL; } static int pkcs1_generate_encryption_block(u8 block_type, size_t modlen, const u8 *in, size_t inlen, u8 *out, size_t *outlen) { size_t ps_len; u8 *pos; /* * PKCS #1 v1.5, 8.1: * * EB = 00 || BT || PS || 00 || D * BT = 00 or 01 for private-key operation; 02 for public-key operation * PS = k-3-||D||; at least eight octets * (BT=0: PS=0x00, BT=1: PS=0xff, BT=2: PS=pseudorandom non-zero) * k = length of modulus in octets (modlen) */ if (modlen < 12 || modlen > *outlen || inlen > modlen - 11) { wpa_printf(MSG_DEBUG, "PKCS #1: %s - Invalid buffer " "lengths (modlen=%lu outlen=%lu inlen=%lu)", __func__, (unsigned long) modlen, (unsigned long) *outlen, (unsigned long) inlen); return -1; } pos = out; *pos++ = 0x00; *pos++ = block_type; /* BT */ ps_len = modlen - inlen - 3; switch (block_type) { case 0: os_memset(pos, 0x00, ps_len); pos += ps_len; break; case 1: os_memset(pos, 0xff, ps_len); pos += ps_len; break; case 2: if (os_get_random(pos, ps_len) < 0) { wpa_printf(MSG_DEBUG, "PKCS #1: %s - Failed to get " "random data for PS", __func__); return -1; } while (ps_len--) { if (*pos == 0x00) *pos = 0x01; pos++; } break; default: wpa_printf(MSG_DEBUG, "PKCS #1: %s - Unsupported block type " "%d", __func__, block_type); return -1; } *pos++ = 0x00; os_memcpy(pos, in, inlen); /* D */ return 0; } static int crypto_rsa_encrypt_pkcs1(int block_type, rsa_key *key, int key_type, const u8 *in, size_t inlen, u8 *out, size_t *outlen) { unsigned long len, modlen; int res; modlen = mp_unsigned_bin_size(key->N); if (pkcs1_generate_encryption_block(block_type, modlen, in, inlen, out, outlen) < 0) return -1; len = *outlen; res = rsa_exptmod(out, modlen, out, &len, key_type, key); if (res != CRYPT_OK) { wpa_printf(MSG_DEBUG, "LibTomCrypt: rsa_exptmod failed: %s", error_to_string(res)); return -1; } *outlen = len; return 0; } int crypto_public_key_encrypt_pkcs1_v15(struct crypto_public_key *key, const u8 *in, size_t inlen, u8 *out, size_t *outlen) { return crypto_rsa_encrypt_pkcs1(2, &key->rsa, PK_PUBLIC, in, inlen, out, outlen); } int crypto_private_key_sign_pkcs1(struct crypto_private_key *key, const u8 *in, size_t inlen, u8 *out, size_t *outlen) { return crypto_rsa_encrypt_pkcs1(1, &key->rsa, PK_PRIVATE, in, inlen, out, outlen); } void crypto_public_key_free(struct crypto_public_key *key) { if (key) { rsa_free(&key->rsa); os_free(key); } } void crypto_private_key_free(struct crypto_private_key *key) { if (key) { rsa_free(&key->rsa); os_free(key); } } int crypto_public_key_decrypt_pkcs1(struct crypto_public_key *key, const u8 *crypt, size_t crypt_len, u8 *plain, size_t *plain_len) { int res; unsigned long len; u8 *pos; len = *plain_len; res = rsa_exptmod(crypt, crypt_len, plain, &len, PK_PUBLIC, &key->rsa); if (res != CRYPT_OK) { wpa_printf(MSG_DEBUG, "LibTomCrypt: rsa_exptmod failed: %s", error_to_string(res)); return -1; } /* * PKCS #1 v1.5, 8.1: * * EB = 00 || BT || PS || 00 || D * BT = 01 * PS = k-3-||D|| times FF * k = length of modulus in octets */ if (len < 3 + 8 + 16 /* min hash len */ || plain[0] != 0x00 || plain[1] != 0x01 || plain[2] != 0xff) { wpa_printf(MSG_INFO, "LibTomCrypt: Invalid signature EB " "structure"); return -1; } pos = plain + 3; while (pos < plain + len && *pos == 0xff) pos++; if (pos - plain - 2 < 8) { /* PKCS #1 v1.5, 8.1: At least eight octets long PS */ wpa_printf(MSG_INFO, "LibTomCrypt: Too short signature " "padding"); return -1; } if (pos + 16 /* min hash len */ >= plain + len || *pos != 0x00) { wpa_printf(MSG_INFO, "LibTomCrypt: Invalid signature EB " "structure (2)"); return -1; } pos++; len -= pos - plain; /* Strip PKCS #1 header */ os_memmove(plain, pos, len); *plain_len = len; return 0; } int crypto_global_init(void) { ltc_mp = tfm_desc; /* TODO: only register algorithms that are really needed */ if (register_hash(&md4_desc) < 0 || register_hash(&md5_desc) < 0 || register_hash(&sha1_desc) < 0 || register_cipher(&aes_desc) < 0 || register_cipher(&des_desc) < 0 || register_cipher(&des3_desc) < 0) { wpa_printf(MSG_ERROR, "TLSv1: Failed to register " "hash/cipher functions"); return -1; } return 0; } void crypto_global_deinit(void) { } #ifdef CONFIG_MODEXP int crypto_mod_exp(const u8 *base, size_t base_len, const u8 *power, size_t power_len, const u8 *modulus, size_t modulus_len, u8 *result, size_t *result_len) { void *b, *p, *m, *r; if (mp_init_multi(&b, &p, &m, &r, NULL) != CRYPT_OK) return -1; if (mp_read_unsigned_bin(b, (u8 *) base, base_len) != CRYPT_OK || mp_read_unsigned_bin(p, (u8 *) power, power_len) != CRYPT_OK || mp_read_unsigned_bin(m, (u8 *) modulus, modulus_len) != CRYPT_OK) goto fail; if (mp_exptmod(b, p, m, r) != CRYPT_OK) goto fail; *result_len = mp_unsigned_bin_size(r); if (mp_to_unsigned_bin(r, result) != CRYPT_OK) goto fail; mp_clear_multi(b, p, m, r, NULL); return 0; fail: mp_clear_multi(b, p, m, r, NULL); return -1; } #endif /* CONFIG_MODEXP */