/* * SHA-256 hash implementation and interface functions * Copyright (c) 2003-2007, Jouni Malinen <j@w1.fi> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Alternatively, this software may be distributed under the terms of BSD * license. * * See README and COPYING for more details. */ #include "includes.h" #include "common.h" #include "sha256.h" #include "crypto.h" /** * hmac_sha256_vector - HMAC-SHA256 over data vector (RFC 2104) * @key: Key for HMAC operations * @key_len: Length of the key in bytes * @num_elem: Number of elements in the data vector * @addr: Pointers to the data areas * @len: Lengths of the data blocks * @mac: Buffer for the hash (32 bytes) */ void hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { unsigned char k_pad[64]; /* padding - key XORd with ipad/opad */ unsigned char tk[32]; const u8 *_addr[6]; size_t _len[6], i; if (num_elem > 5) { /* * Fixed limit on the number of fragments to avoid having to * allocate memory (which could fail). */ return; } /* if key is longer than 64 bytes reset it to key = SHA256(key) */ if (key_len > 64) { sha256_vector(1, &key, &key_len, tk); key = tk; key_len = 32; } /* the HMAC_SHA256 transform looks like: * * SHA256(K XOR opad, SHA256(K XOR ipad, text)) * * where K is an n byte key * ipad is the byte 0x36 repeated 64 times * opad is the byte 0x5c repeated 64 times * and text is the data being protected */ /* start out by storing key in ipad */ os_memset(k_pad, 0, sizeof(k_pad)); os_memcpy(k_pad, key, key_len); /* XOR key with ipad values */ for (i = 0; i < 64; i++) k_pad[i] ^= 0x36; /* perform inner SHA256 */ _addr[0] = k_pad; _len[0] = 64; for (i = 0; i < num_elem; i++) { _addr[i + 1] = addr[i]; _len[i + 1] = len[i]; } sha256_vector(1 + num_elem, _addr, _len, mac); os_memset(k_pad, 0, sizeof(k_pad)); os_memcpy(k_pad, key, key_len); /* XOR key with opad values */ for (i = 0; i < 64; i++) k_pad[i] ^= 0x5c; /* perform outer SHA256 */ _addr[0] = k_pad; _len[0] = 64; _addr[1] = mac; _len[1] = SHA256_MAC_LEN; sha256_vector(2, _addr, _len, mac); } /** * hmac_sha256 - HMAC-SHA256 over data buffer (RFC 2104) * @key: Key for HMAC operations * @key_len: Length of the key in bytes * @data: Pointers to the data area * @data_len: Length of the data area * @mac: Buffer for the hash (20 bytes) */ void hmac_sha256(const u8 *key, size_t key_len, const u8 *data, size_t data_len, u8 *mac) { hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac); } /** * sha256_prf - SHA256-based Pseudo-Random Function (IEEE 802.11r, 8.5.1.5.2) * @key: Key for PRF * @key_len: Length of the key in bytes * @label: A unique label for each purpose of the PRF * @data: Extra data to bind into the key * @data_len: Length of the data * @buf: Buffer for the generated pseudo-random key * @buf_len: Number of bytes of key to generate * * This function is used to derive new, cryptographically separate keys from a * given key. */ void sha256_prf(const u8 *key, size_t key_len, const char *label, const u8 *data, size_t data_len, u8 *buf, size_t buf_len) { u16 counter = 1; size_t pos, plen; u8 hash[SHA256_MAC_LEN]; const u8 *addr[4]; size_t len[4]; u8 counter_le[2], length_le[2]; addr[0] = counter_le; len[0] = 2; addr[1] = (u8 *) label; len[1] = os_strlen(label); addr[2] = data; len[2] = data_len; addr[3] = length_le; len[3] = sizeof(length_le); WPA_PUT_LE16(length_le, buf_len * 8); pos = 0; while (pos < buf_len) { plen = buf_len - pos; WPA_PUT_LE16(counter_le, counter); if (plen >= SHA256_MAC_LEN) { hmac_sha256_vector(key, key_len, 4, addr, len, &buf[pos]); pos += SHA256_MAC_LEN; } else { hmac_sha256_vector(key, key_len, 4, addr, len, hash); os_memcpy(&buf[pos], hash, plen); break; } counter++; } } #ifdef INTERNAL_SHA256 struct sha256_state { u64 length; u32 state[8], curlen; u8 buf[64]; }; static void sha256_init(struct sha256_state *md); static int sha256_process(struct sha256_state *md, const unsigned char *in, unsigned long inlen); static int sha256_done(struct sha256_state *md, unsigned char *out); /** * sha256_vector - SHA256 hash for data vector * @num_elem: Number of elements in the data vector * @addr: Pointers to the data areas * @len: Lengths of the data blocks * @mac: Buffer for the hash */ void sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { struct sha256_state ctx; size_t i; sha256_init(&ctx); for (i = 0; i < num_elem; i++) sha256_process(&ctx, addr[i], len[i]); sha256_done(&ctx, mac); } /* ===== start - public domain SHA256 implementation ===== */ /* This is based on SHA256 implementation in LibTomCrypt that was released into * public domain by Tom St Denis. */ /* the K array */ static const unsigned long K[64] = { 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL }; /* Various logical functions */ #define RORc(x, y) \ ( ((((unsigned long) (x) & 0xFFFFFFFFUL) >> (unsigned long) ((y) & 31)) | \ ((unsigned long) (x) << (unsigned long) (32 - ((y) & 31)))) & 0xFFFFFFFFUL) #define Ch(x,y,z) (z ^ (x & (y ^ z))) #define Maj(x,y,z) (((x | y) & z) | (x & y)) #define S(x, n) RORc((x), (n)) #define R(x, n) (((x)&0xFFFFFFFFUL)>>(n)) #define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22)) #define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25)) #define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3)) #define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10)) #ifndef MIN #define MIN(x, y) (((x) < (y)) ? (x) : (y)) #endif /* compress 512-bits */ static int sha256_compress(struct sha256_state *md, unsigned char *buf) { u32 S[8], W[64], t0, t1; u32 t; int i; /* copy state into S */ for (i = 0; i < 8; i++) { S[i] = md->state[i]; } /* copy the state into 512-bits into W[0..15] */ for (i = 0; i < 16; i++) W[i] = WPA_GET_BE32(buf + (4 * i)); /* fill W[16..63] */ for (i = 16; i < 64; i++) { W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16]; } /* Compress */ #define RND(a,b,c,d,e,f,g,h,i) \ t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \ t1 = Sigma0(a) + Maj(a, b, c); \ d += t0; \ h = t0 + t1; for (i = 0; i < 64; ++i) { RND(S[0], S[1], S[2], S[3], S[4], S[5], S[6], S[7], i); t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4]; S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t; } /* feedback */ for (i = 0; i < 8; i++) { md->state[i] = md->state[i] + S[i]; } return 0; } /* Initialize the hash state */ static void sha256_init(struct sha256_state *md) { md->curlen = 0; md->length = 0; md->state[0] = 0x6A09E667UL; md->state[1] = 0xBB67AE85UL; md->state[2] = 0x3C6EF372UL; md->state[3] = 0xA54FF53AUL; md->state[4] = 0x510E527FUL; md->state[5] = 0x9B05688CUL; md->state[6] = 0x1F83D9ABUL; md->state[7] = 0x5BE0CD19UL; } /** Process a block of memory though the hash @param md The hash state @param in The data to hash @param inlen The length of the data (octets) @return CRYPT_OK if successful */ static int sha256_process(struct sha256_state *md, const unsigned char *in, unsigned long inlen) { unsigned long n; #define block_size 64 if (md->curlen > sizeof(md->buf)) return -1; while (inlen > 0) { if (md->curlen == 0 && inlen >= block_size) { if (sha256_compress(md, (unsigned char *) in) < 0) return -1; md->length += block_size * 8; in += block_size; inlen -= block_size; } else { n = MIN(inlen, (block_size - md->curlen)); os_memcpy(md->buf + md->curlen, in, n); md->curlen += n; in += n; inlen -= n; if (md->curlen == block_size) { if (sha256_compress(md, md->buf) < 0) return -1; md->length += 8 * block_size; md->curlen = 0; } } } return 0; } /** Terminate the hash to get the digest @param md The hash state @param out [out] The destination of the hash (32 bytes) @return CRYPT_OK if successful */ static int sha256_done(struct sha256_state *md, unsigned char *out) { int i; if (md->curlen >= sizeof(md->buf)) return -1; /* increase the length of the message */ md->length += md->curlen * 8; /* append the '1' bit */ md->buf[md->curlen++] = (unsigned char) 0x80; /* if the length is currently above 56 bytes we append zeros * then compress. Then we can fall back to padding zeros and length * encoding like normal. */ if (md->curlen > 56) { while (md->curlen < 64) { md->buf[md->curlen++] = (unsigned char) 0; } sha256_compress(md, md->buf); md->curlen = 0; } /* pad upto 56 bytes of zeroes */ while (md->curlen < 56) { md->buf[md->curlen++] = (unsigned char) 0; } /* store length */ WPA_PUT_BE64(md->buf + 56, md->length); sha256_compress(md, md->buf); /* copy output */ for (i = 0; i < 8; i++) WPA_PUT_BE32(out + (4 * i), md->state[i]); return 0; } /* ===== end - public domain SHA256 implementation ===== */ #endif /* INTERNAL_SHA256 */