/* * EAP peer method: EAP-AKA (RFC 4187) * Copyright (c) 2004-2006, Jouni Malinen <j@w1.fi> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Alternatively, this software may be distributed under the terms of BSD * license. * * See README and COPYING for more details. */ #include "includes.h" #include "common.h" #include "eap_i.h" #include "crypto.h" #include "pcsc_funcs.h" #include "eap_sim_common.h" struct eap_aka_data { u8 ik[EAP_AKA_IK_LEN], ck[EAP_AKA_CK_LEN], res[EAP_AKA_RES_MAX_LEN]; size_t res_len; u8 nonce_s[EAP_SIM_NONCE_S_LEN]; u8 mk[EAP_SIM_MK_LEN]; u8 k_aut[EAP_SIM_K_AUT_LEN]; u8 k_encr[EAP_SIM_K_ENCR_LEN]; u8 msk[EAP_SIM_KEYING_DATA_LEN]; u8 emsk[EAP_EMSK_LEN]; u8 rand[EAP_AKA_RAND_LEN], autn[EAP_AKA_AUTN_LEN]; u8 auts[EAP_AKA_AUTS_LEN]; int num_id_req, num_notification; u8 *pseudonym; size_t pseudonym_len; u8 *reauth_id; size_t reauth_id_len; int reauth; unsigned int counter, counter_too_small; u8 *last_eap_identity; size_t last_eap_identity_len; enum { CONTINUE, SUCCESS, FAILURE } state; }; static void * eap_aka_init(struct eap_sm *sm) { struct eap_aka_data *data; data = os_zalloc(sizeof(*data)); if (data == NULL) return NULL; data->state = CONTINUE; return data; } static void eap_aka_deinit(struct eap_sm *sm, void *priv) { struct eap_aka_data *data = priv; if (data) { os_free(data->pseudonym); os_free(data->reauth_id); os_free(data->last_eap_identity); os_free(data); } } static int eap_aka_umts_auth(struct eap_sm *sm, struct eap_aka_data *data) { wpa_printf(MSG_DEBUG, "EAP-AKA: UMTS authentication algorithm"); #ifdef PCSC_FUNCS return scard_umts_auth(sm->scard_ctx, data->rand, data->autn, data->res, &data->res_len, data->ik, data->ck, data->auts); #else /* PCSC_FUNCS */ /* These hardcoded Kc and SRES values are used for testing. * Could consider making them configurable. */ os_memset(data->res, '2', EAP_AKA_RES_MAX_LEN); data->res_len = EAP_AKA_RES_MAX_LEN; os_memset(data->ik, '3', EAP_AKA_IK_LEN); os_memset(data->ck, '4', EAP_AKA_CK_LEN); { u8 autn[EAP_AKA_AUTN_LEN]; os_memset(autn, '1', EAP_AKA_AUTN_LEN); if (os_memcmp(autn, data->autn, EAP_AKA_AUTN_LEN) != 0) { wpa_printf(MSG_WARNING, "EAP-AKA: AUTN did not match " "with expected value"); return -1; } } #if 0 { static int test_resync = 1; if (test_resync) { /* Test Resynchronization */ test_resync = 0; return -2; } } #endif return 0; #endif /* PCSC_FUNCS */ } #define CLEAR_PSEUDONYM 0x01 #define CLEAR_REAUTH_ID 0x02 #define CLEAR_EAP_ID 0x04 static void eap_aka_clear_identities(struct eap_aka_data *data, int id) { wpa_printf(MSG_DEBUG, "EAP-AKA: forgetting old%s%s%s", id & CLEAR_PSEUDONYM ? " pseudonym" : "", id & CLEAR_REAUTH_ID ? " reauth_id" : "", id & CLEAR_EAP_ID ? " eap_id" : ""); if (id & CLEAR_PSEUDONYM) { os_free(data->pseudonym); data->pseudonym = NULL; data->pseudonym_len = 0; } if (id & CLEAR_REAUTH_ID) { os_free(data->reauth_id); data->reauth_id = NULL; data->reauth_id_len = 0; } if (id & CLEAR_EAP_ID) { os_free(data->last_eap_identity); data->last_eap_identity = NULL; data->last_eap_identity_len = 0; } } static int eap_aka_learn_ids(struct eap_aka_data *data, struct eap_sim_attrs *attr) { if (attr->next_pseudonym) { os_free(data->pseudonym); data->pseudonym = os_malloc(attr->next_pseudonym_len); if (data->pseudonym == NULL) { wpa_printf(MSG_INFO, "EAP-AKA: (encr) No memory for " "next pseudonym"); return -1; } os_memcpy(data->pseudonym, attr->next_pseudonym, attr->next_pseudonym_len); data->pseudonym_len = attr->next_pseudonym_len; wpa_hexdump_ascii(MSG_DEBUG, "EAP-AKA: (encr) AT_NEXT_PSEUDONYM", data->pseudonym, data->pseudonym_len); } if (attr->next_reauth_id) { os_free(data->reauth_id); data->reauth_id = os_malloc(attr->next_reauth_id_len); if (data->reauth_id == NULL) { wpa_printf(MSG_INFO, "EAP-AKA: (encr) No memory for " "next reauth_id"); return -1; } os_memcpy(data->reauth_id, attr->next_reauth_id, attr->next_reauth_id_len); data->reauth_id_len = attr->next_reauth_id_len; wpa_hexdump_ascii(MSG_DEBUG, "EAP-AKA: (encr) AT_NEXT_REAUTH_ID", data->reauth_id, data->reauth_id_len); } return 0; } static u8 * eap_aka_client_error(struct eap_aka_data *data, const struct eap_hdr *req, size_t *respDataLen, int err) { struct eap_sim_msg *msg; data->state = FAILURE; data->num_id_req = 0; data->num_notification = 0; msg = eap_sim_msg_init(EAP_CODE_RESPONSE, req->identifier, EAP_TYPE_AKA, EAP_AKA_SUBTYPE_CLIENT_ERROR); eap_sim_msg_add(msg, EAP_SIM_AT_CLIENT_ERROR_CODE, err, NULL, 0); return eap_sim_msg_finish(msg, respDataLen, NULL, NULL, 0); } static u8 * eap_aka_authentication_reject(struct eap_aka_data *data, const struct eap_hdr *req, size_t *respDataLen) { struct eap_sim_msg *msg; data->state = FAILURE; data->num_id_req = 0; data->num_notification = 0; wpa_printf(MSG_DEBUG, "Generating EAP-AKA Authentication-Reject " "(id=%d)", req->identifier); msg = eap_sim_msg_init(EAP_CODE_RESPONSE, req->identifier, EAP_TYPE_AKA, EAP_AKA_SUBTYPE_AUTHENTICATION_REJECT); return eap_sim_msg_finish(msg, respDataLen, NULL, NULL, 0); } static u8 * eap_aka_synchronization_failure(struct eap_aka_data *data, const struct eap_hdr *req, size_t *respDataLen) { struct eap_sim_msg *msg; data->num_id_req = 0; data->num_notification = 0; wpa_printf(MSG_DEBUG, "Generating EAP-AKA Synchronization-Failure " "(id=%d)", req->identifier); msg = eap_sim_msg_init(EAP_CODE_RESPONSE, req->identifier, EAP_TYPE_AKA, EAP_AKA_SUBTYPE_SYNCHRONIZATION_FAILURE); wpa_printf(MSG_DEBUG, " AT_AUTS"); eap_sim_msg_add_full(msg, EAP_SIM_AT_AUTS, data->auts, EAP_AKA_AUTS_LEN); return eap_sim_msg_finish(msg, respDataLen, NULL, NULL, 0); } static u8 * eap_aka_response_identity(struct eap_sm *sm, struct eap_aka_data *data, const struct eap_hdr *req, size_t *respDataLen, enum eap_sim_id_req id_req) { const u8 *identity = NULL; size_t identity_len = 0; struct eap_sim_msg *msg; data->reauth = 0; if (id_req == ANY_ID && data->reauth_id) { identity = data->reauth_id; identity_len = data->reauth_id_len; data->reauth = 1; } else if ((id_req == ANY_ID || id_req == FULLAUTH_ID) && data->pseudonym) { identity = data->pseudonym; identity_len = data->pseudonym_len; eap_aka_clear_identities(data, CLEAR_REAUTH_ID); } else if (id_req != NO_ID_REQ) { identity = eap_get_config_identity(sm, &identity_len); if (identity) { eap_aka_clear_identities(data, CLEAR_PSEUDONYM | CLEAR_REAUTH_ID); } } if (id_req != NO_ID_REQ) eap_aka_clear_identities(data, CLEAR_EAP_ID); wpa_printf(MSG_DEBUG, "Generating EAP-AKA Identity (id=%d)", req->identifier); msg = eap_sim_msg_init(EAP_CODE_RESPONSE, req->identifier, EAP_TYPE_AKA, EAP_AKA_SUBTYPE_IDENTITY); if (identity) { wpa_hexdump_ascii(MSG_DEBUG, " AT_IDENTITY", identity, identity_len); eap_sim_msg_add(msg, EAP_SIM_AT_IDENTITY, identity_len, identity, identity_len); } return eap_sim_msg_finish(msg, respDataLen, NULL, NULL, 0); } static u8 * eap_aka_response_challenge(struct eap_aka_data *data, const struct eap_hdr *req, size_t *respDataLen) { struct eap_sim_msg *msg; wpa_printf(MSG_DEBUG, "Generating EAP-AKA Challenge (id=%d)", req->identifier); msg = eap_sim_msg_init(EAP_CODE_RESPONSE, req->identifier, EAP_TYPE_AKA, EAP_AKA_SUBTYPE_CHALLENGE); wpa_printf(MSG_DEBUG, " AT_RES"); eap_sim_msg_add(msg, EAP_SIM_AT_RES, data->res_len * 8, data->res, data->res_len); wpa_printf(MSG_DEBUG, " AT_MAC"); eap_sim_msg_add_mac(msg, EAP_SIM_AT_MAC); return eap_sim_msg_finish(msg, respDataLen, data->k_aut, (u8 *) "", 0); } static u8 * eap_aka_response_reauth(struct eap_aka_data *data, const struct eap_hdr *req, size_t *respDataLen, int counter_too_small, const u8 *nonce_s) { struct eap_sim_msg *msg; unsigned int counter; wpa_printf(MSG_DEBUG, "Generating EAP-AKA Reauthentication (id=%d)", req->identifier); msg = eap_sim_msg_init(EAP_CODE_RESPONSE, req->identifier, EAP_TYPE_AKA, EAP_AKA_SUBTYPE_REAUTHENTICATION); wpa_printf(MSG_DEBUG, " AT_IV"); wpa_printf(MSG_DEBUG, " AT_ENCR_DATA"); eap_sim_msg_add_encr_start(msg, EAP_SIM_AT_IV, EAP_SIM_AT_ENCR_DATA); if (counter_too_small) { wpa_printf(MSG_DEBUG, " *AT_COUNTER_TOO_SMALL"); eap_sim_msg_add(msg, EAP_SIM_AT_COUNTER_TOO_SMALL, 0, NULL, 0); counter = data->counter_too_small; } else counter = data->counter; wpa_printf(MSG_DEBUG, " *AT_COUNTER %d", counter); eap_sim_msg_add(msg, EAP_SIM_AT_COUNTER, counter, NULL, 0); if (eap_sim_msg_add_encr_end(msg, data->k_encr, EAP_SIM_AT_PADDING)) { wpa_printf(MSG_WARNING, "EAP-AKA: Failed to encrypt " "AT_ENCR_DATA"); eap_sim_msg_free(msg); return NULL; } wpa_printf(MSG_DEBUG, " AT_MAC"); eap_sim_msg_add_mac(msg, EAP_SIM_AT_MAC); return eap_sim_msg_finish(msg, respDataLen, data->k_aut, nonce_s, EAP_SIM_NONCE_S_LEN); } static u8 * eap_aka_response_notification(struct eap_aka_data *data, const struct eap_hdr *req, size_t *respDataLen, u16 notification) { struct eap_sim_msg *msg; u8 *k_aut = (notification & 0x4000) == 0 ? data->k_aut : NULL; wpa_printf(MSG_DEBUG, "Generating EAP-AKA Notification (id=%d)", req->identifier); msg = eap_sim_msg_init(EAP_CODE_RESPONSE, req->identifier, EAP_TYPE_AKA, EAP_AKA_SUBTYPE_NOTIFICATION); if (k_aut && data->reauth) { wpa_printf(MSG_DEBUG, " AT_IV"); wpa_printf(MSG_DEBUG, " AT_ENCR_DATA"); eap_sim_msg_add_encr_start(msg, EAP_SIM_AT_IV, EAP_SIM_AT_ENCR_DATA); wpa_printf(MSG_DEBUG, " *AT_COUNTER %d", data->counter); eap_sim_msg_add(msg, EAP_SIM_AT_COUNTER, data->counter, NULL, 0); if (eap_sim_msg_add_encr_end(msg, data->k_encr, EAP_SIM_AT_PADDING)) { wpa_printf(MSG_WARNING, "EAP-AKA: Failed to encrypt " "AT_ENCR_DATA"); eap_sim_msg_free(msg); return NULL; } } if (k_aut) { wpa_printf(MSG_DEBUG, " AT_MAC"); eap_sim_msg_add_mac(msg, EAP_SIM_AT_MAC); } return eap_sim_msg_finish(msg, respDataLen, k_aut, (u8 *) "", 0); } static u8 * eap_aka_process_identity(struct eap_sm *sm, struct eap_aka_data *data, const struct eap_hdr *req, size_t *respDataLen, struct eap_sim_attrs *attr) { int id_error; wpa_printf(MSG_DEBUG, "EAP-AKA: subtype Identity"); id_error = 0; switch (attr->id_req) { case NO_ID_REQ: break; case ANY_ID: if (data->num_id_req > 0) id_error++; data->num_id_req++; break; case FULLAUTH_ID: if (data->num_id_req > 1) id_error++; data->num_id_req++; break; case PERMANENT_ID: if (data->num_id_req > 2) id_error++; data->num_id_req++; break; } if (id_error) { wpa_printf(MSG_INFO, "EAP-AKA: Too many ID requests " "used within one authentication"); return eap_aka_client_error(data, req, respDataLen, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } return eap_aka_response_identity(sm, data, req, respDataLen, attr->id_req); } static u8 * eap_aka_process_challenge(struct eap_sm *sm, struct eap_aka_data *data, const struct eap_hdr *req, size_t reqDataLen, size_t *respDataLen, struct eap_sim_attrs *attr) { const u8 *identity; size_t identity_len; int res; struct eap_sim_attrs eattr; wpa_printf(MSG_DEBUG, "EAP-AKA: subtype Challenge"); data->reauth = 0; if (!attr->mac || !attr->rand || !attr->autn) { wpa_printf(MSG_WARNING, "EAP-AKA: Challenge message " "did not include%s%s%s", !attr->mac ? " AT_MAC" : "", !attr->rand ? " AT_RAND" : "", !attr->autn ? " AT_AUTN" : ""); return eap_aka_client_error(data, req, respDataLen, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } os_memcpy(data->rand, attr->rand, EAP_AKA_RAND_LEN); os_memcpy(data->autn, attr->autn, EAP_AKA_AUTN_LEN); res = eap_aka_umts_auth(sm, data); if (res == -1) { wpa_printf(MSG_WARNING, "EAP-AKA: UMTS authentication " "failed (AUTN)"); return eap_aka_authentication_reject(data, req, respDataLen); } else if (res == -2) { wpa_printf(MSG_WARNING, "EAP-AKA: UMTS authentication " "failed (AUTN seq# -> AUTS)"); return eap_aka_synchronization_failure(data, req, respDataLen); } else if (res) { wpa_printf(MSG_WARNING, "EAP-AKA: UMTS authentication failed"); return eap_aka_client_error(data, req, respDataLen, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } if (data->last_eap_identity) { identity = data->last_eap_identity; identity_len = data->last_eap_identity_len; } else if (data->pseudonym) { identity = data->pseudonym; identity_len = data->pseudonym_len; } else identity = eap_get_config_identity(sm, &identity_len); wpa_hexdump_ascii(MSG_DEBUG, "EAP-AKA: Selected identity for MK " "derivation", identity, identity_len); eap_aka_derive_mk(identity, identity_len, data->ik, data->ck, data->mk); eap_sim_derive_keys(data->mk, data->k_encr, data->k_aut, data->msk, data->emsk); if (eap_sim_verify_mac(data->k_aut, (const u8 *) req, reqDataLen, attr->mac, (u8 *) "", 0)) { wpa_printf(MSG_WARNING, "EAP-AKA: Challenge message " "used invalid AT_MAC"); return eap_aka_client_error(data, req, respDataLen, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } /* Old reauthentication and pseudonym identities must not be used * anymore. In other words, if no new identities are received, full * authentication will be used on next reauthentication. */ eap_aka_clear_identities(data, CLEAR_PSEUDONYM | CLEAR_REAUTH_ID | CLEAR_EAP_ID); if (attr->encr_data) { u8 *decrypted; decrypted = eap_sim_parse_encr(data->k_encr, attr->encr_data, attr->encr_data_len, attr->iv, &eattr, 0); if (decrypted == NULL) { return eap_aka_client_error( data, req, respDataLen, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } eap_aka_learn_ids(data, &eattr); os_free(decrypted); } if (data->state != FAILURE) data->state = SUCCESS; data->num_id_req = 0; data->num_notification = 0; /* RFC 4187 specifies that counter is initialized to one after * fullauth, but initializing it to zero makes it easier to implement * reauth verification. */ data->counter = 0; return eap_aka_response_challenge(data, req, respDataLen); } static int eap_aka_process_notification_reauth(struct eap_aka_data *data, struct eap_sim_attrs *attr) { struct eap_sim_attrs eattr; u8 *decrypted; if (attr->encr_data == NULL || attr->iv == NULL) { wpa_printf(MSG_WARNING, "EAP-AKA: Notification message after " "reauth did not include encrypted data"); return -1; } decrypted = eap_sim_parse_encr(data->k_encr, attr->encr_data, attr->encr_data_len, attr->iv, &eattr, 0); if (decrypted == NULL) { wpa_printf(MSG_WARNING, "EAP-AKA: Failed to parse encrypted " "data from notification message"); return -1; } if (eattr.counter < 0 || (size_t) eattr.counter != data->counter) { wpa_printf(MSG_WARNING, "EAP-AKA: Counter in notification " "message does not match with counter in reauth " "message"); os_free(decrypted); return -1; } os_free(decrypted); return 0; } static int eap_aka_process_notification_auth(struct eap_aka_data *data, const struct eap_hdr *req, size_t reqDataLen, struct eap_sim_attrs *attr) { if (attr->mac == NULL) { wpa_printf(MSG_INFO, "EAP-AKA: no AT_MAC in after_auth " "Notification message"); return -1; } if (eap_sim_verify_mac(data->k_aut, (const u8 *) req, reqDataLen, attr->mac, (u8 *) "", 0)) { wpa_printf(MSG_WARNING, "EAP-AKA: Notification message " "used invalid AT_MAC"); return -1; } if (data->reauth && eap_aka_process_notification_reauth(data, attr)) { wpa_printf(MSG_WARNING, "EAP-AKA: Invalid notification " "message after reauth"); return -1; } return 0; } static u8 * eap_aka_process_notification(struct eap_sm *sm, struct eap_aka_data *data, const struct eap_hdr *req, size_t reqDataLen, size_t *respDataLen, struct eap_sim_attrs *attr) { wpa_printf(MSG_DEBUG, "EAP-AKA: subtype Notification"); if (data->num_notification > 0) { wpa_printf(MSG_INFO, "EAP-AKA: too many notification " "rounds (only one allowed)"); return eap_aka_client_error(data, req, respDataLen, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } data->num_notification++; if (attr->notification == -1) { wpa_printf(MSG_INFO, "EAP-AKA: no AT_NOTIFICATION in " "Notification message"); return eap_aka_client_error(data, req, respDataLen, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } if ((attr->notification & 0x4000) == 0 && eap_aka_process_notification_auth(data, req, reqDataLen, attr)) { return eap_aka_client_error(data, req, respDataLen, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } eap_sim_report_notification(sm->msg_ctx, attr->notification, 1); if (attr->notification >= 0 && attr->notification < 32768) { data->state = FAILURE; } return eap_aka_response_notification(data, req, respDataLen, attr->notification); } static u8 * eap_aka_process_reauthentication(struct eap_sm *sm, struct eap_aka_data *data, const struct eap_hdr *req, size_t reqDataLen, size_t *respDataLen, struct eap_sim_attrs *attr) { struct eap_sim_attrs eattr; u8 *decrypted; wpa_printf(MSG_DEBUG, "EAP-AKA: subtype Reauthentication"); if (data->reauth_id == NULL) { wpa_printf(MSG_WARNING, "EAP-AKA: Server is trying " "reauthentication, but no reauth_id available"); return eap_aka_client_error(data, req, respDataLen, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } data->reauth = 1; if (eap_sim_verify_mac(data->k_aut, (const u8 *) req, reqDataLen, attr->mac, (u8 *) "", 0)) { wpa_printf(MSG_WARNING, "EAP-AKA: Reauthentication " "did not have valid AT_MAC"); return eap_aka_client_error(data, req, respDataLen, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } if (attr->encr_data == NULL || attr->iv == NULL) { wpa_printf(MSG_WARNING, "EAP-AKA: Reauthentication " "message did not include encrypted data"); return eap_aka_client_error(data, req, respDataLen, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } decrypted = eap_sim_parse_encr(data->k_encr, attr->encr_data, attr->encr_data_len, attr->iv, &eattr, 0); if (decrypted == NULL) { wpa_printf(MSG_WARNING, "EAP-AKA: Failed to parse encrypted " "data from reauthentication message"); return eap_aka_client_error(data, req, respDataLen, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } if (eattr.nonce_s == NULL || eattr.counter < 0) { wpa_printf(MSG_INFO, "EAP-AKA: (encr) No%s%s in reauth packet", !eattr.nonce_s ? " AT_NONCE_S" : "", eattr.counter < 0 ? " AT_COUNTER" : ""); os_free(decrypted); return eap_aka_client_error(data, req, respDataLen, EAP_AKA_UNABLE_TO_PROCESS_PACKET); } if (eattr.counter < 0 || (size_t) eattr.counter <= data->counter) { u8 *res; wpa_printf(MSG_INFO, "EAP-AKA: (encr) Invalid counter " "(%d <= %d)", eattr.counter, data->counter); data->counter_too_small = eattr.counter; eap_sim_derive_keys_reauth(eattr.counter, data->reauth_id, data->reauth_id_len, eattr.nonce_s, data->mk, NULL, NULL); /* Reply using Re-auth w/ AT_COUNTER_TOO_SMALL. The current * reauth_id must not be used to start a new reauthentication. * However, since it was used in the last EAP-Response-Identity * packet, it has to saved for the following fullauth to be * used in MK derivation. */ os_free(data->last_eap_identity); data->last_eap_identity = data->reauth_id; data->last_eap_identity_len = data->reauth_id_len; data->reauth_id = NULL; data->reauth_id_len = 0; res = eap_aka_response_reauth(data, req, respDataLen, 1, eattr.nonce_s); os_free(decrypted); return res; } data->counter = eattr.counter; os_memcpy(data->nonce_s, eattr.nonce_s, EAP_SIM_NONCE_S_LEN); wpa_hexdump(MSG_DEBUG, "EAP-AKA: (encr) AT_NONCE_S", data->nonce_s, EAP_SIM_NONCE_S_LEN); eap_sim_derive_keys_reauth(data->counter, data->reauth_id, data->reauth_id_len, data->nonce_s, data->mk, data->msk, data->emsk); eap_aka_clear_identities(data, CLEAR_REAUTH_ID | CLEAR_EAP_ID); eap_aka_learn_ids(data, &eattr); if (data->state != FAILURE) data->state = SUCCESS; data->num_id_req = 0; data->num_notification = 0; if (data->counter > EAP_AKA_MAX_FAST_REAUTHS) { wpa_printf(MSG_DEBUG, "EAP-AKA: Maximum number of " "fast reauths performed - force fullauth"); eap_aka_clear_identities(data, CLEAR_REAUTH_ID | CLEAR_EAP_ID); } os_free(decrypted); return eap_aka_response_reauth(data, req, respDataLen, 0, data->nonce_s); } static u8 * eap_aka_process(struct eap_sm *sm, void *priv, struct eap_method_ret *ret, const u8 *reqData, size_t reqDataLen, size_t *respDataLen) { struct eap_aka_data *data = priv; const struct eap_hdr *req; u8 subtype, *res; const u8 *pos; struct eap_sim_attrs attr; size_t len; wpa_hexdump(MSG_DEBUG, "EAP-AKA: EAP data", reqData, reqDataLen); if (eap_get_config_identity(sm, &len) == NULL) { wpa_printf(MSG_INFO, "EAP-AKA: Identity not configured"); eap_sm_request_identity(sm); ret->ignore = TRUE; return NULL; } pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_AKA, reqData, reqDataLen, &len); if (pos == NULL || len < 1) { ret->ignore = TRUE; return NULL; } req = (const struct eap_hdr *) reqData; len = be_to_host16(req->length); ret->ignore = FALSE; ret->methodState = METHOD_MAY_CONT; ret->decision = DECISION_FAIL; ret->allowNotifications = TRUE; subtype = *pos++; wpa_printf(MSG_DEBUG, "EAP-AKA: Subtype=%d", subtype); pos += 2; /* Reserved */ if (eap_sim_parse_attr(pos, reqData + len, &attr, 1, 0)) { res = eap_aka_client_error(data, req, respDataLen, EAP_AKA_UNABLE_TO_PROCESS_PACKET); goto done; } switch (subtype) { case EAP_AKA_SUBTYPE_IDENTITY: res = eap_aka_process_identity(sm, data, req, respDataLen, &attr); break; case EAP_AKA_SUBTYPE_CHALLENGE: res = eap_aka_process_challenge(sm, data, req, len, respDataLen, &attr); break; case EAP_AKA_SUBTYPE_NOTIFICATION: res = eap_aka_process_notification(sm, data, req, len, respDataLen, &attr); break; case EAP_AKA_SUBTYPE_REAUTHENTICATION: res = eap_aka_process_reauthentication(sm, data, req, len, respDataLen, &attr); break; case EAP_AKA_SUBTYPE_CLIENT_ERROR: wpa_printf(MSG_DEBUG, "EAP-AKA: subtype Client-Error"); res = eap_aka_client_error(data, req, respDataLen, EAP_AKA_UNABLE_TO_PROCESS_PACKET); break; default: wpa_printf(MSG_DEBUG, "EAP-AKA: Unknown subtype=%d", subtype); res = eap_aka_client_error(data, req, respDataLen, EAP_AKA_UNABLE_TO_PROCESS_PACKET); break; } done: if (data->state == FAILURE) { ret->decision = DECISION_FAIL; ret->methodState = METHOD_DONE; } else if (data->state == SUCCESS) { ret->decision = DECISION_COND_SUCC; /* * It is possible for the server to reply with AKA * Notification, so we must allow the method to continue and * not only accept EAP-Success at this point. */ ret->methodState = METHOD_MAY_CONT; } if (ret->methodState == METHOD_DONE) { ret->allowNotifications = FALSE; } return res; } static Boolean eap_aka_has_reauth_data(struct eap_sm *sm, void *priv) { struct eap_aka_data *data = priv; return data->pseudonym || data->reauth_id; } static void eap_aka_deinit_for_reauth(struct eap_sm *sm, void *priv) { struct eap_aka_data *data = priv; eap_aka_clear_identities(data, CLEAR_EAP_ID); } static void * eap_aka_init_for_reauth(struct eap_sm *sm, void *priv) { struct eap_aka_data *data = priv; data->num_id_req = 0; data->num_notification = 0; data->state = CONTINUE; return priv; } static const u8 * eap_aka_get_identity(struct eap_sm *sm, void *priv, size_t *len) { struct eap_aka_data *data = priv; if (data->reauth_id) { *len = data->reauth_id_len; return data->reauth_id; } if (data->pseudonym) { *len = data->pseudonym_len; return data->pseudonym; } return NULL; } static Boolean eap_aka_isKeyAvailable(struct eap_sm *sm, void *priv) { struct eap_aka_data *data = priv; return data->state == SUCCESS; } static u8 * eap_aka_getKey(struct eap_sm *sm, void *priv, size_t *len) { struct eap_aka_data *data = priv; u8 *key; if (data->state != SUCCESS) return NULL; key = os_malloc(EAP_SIM_KEYING_DATA_LEN); if (key == NULL) return NULL; *len = EAP_SIM_KEYING_DATA_LEN; os_memcpy(key, data->msk, EAP_SIM_KEYING_DATA_LEN); return key; } static u8 * eap_aka_get_emsk(struct eap_sm *sm, void *priv, size_t *len) { struct eap_aka_data *data = priv; u8 *key; if (data->state != SUCCESS) return NULL; key = os_malloc(EAP_EMSK_LEN); if (key == NULL) return NULL; *len = EAP_EMSK_LEN; os_memcpy(key, data->emsk, EAP_EMSK_LEN); return key; } int eap_peer_aka_register(void) { struct eap_method *eap; int ret; eap = eap_peer_method_alloc(EAP_PEER_METHOD_INTERFACE_VERSION, EAP_VENDOR_IETF, EAP_TYPE_AKA, "AKA"); if (eap == NULL) return -1; eap->init = eap_aka_init; eap->deinit = eap_aka_deinit; eap->process = eap_aka_process; eap->isKeyAvailable = eap_aka_isKeyAvailable; eap->getKey = eap_aka_getKey; eap->has_reauth_data = eap_aka_has_reauth_data; eap->deinit_for_reauth = eap_aka_deinit_for_reauth; eap->init_for_reauth = eap_aka_init_for_reauth; eap->get_identity = eap_aka_get_identity; eap->get_emsk = eap_aka_get_emsk; ret = eap_peer_method_register(eap); if (ret) eap_peer_method_free(eap); return ret; }