// Copyright 2011 Google Inc. // // This code is licensed under the same terms as WebM: // Software License Agreement: http://www.webmproject.org/license/software/ // Additional IP Rights Grant: http://www.webmproject.org/license/additional/ // ----------------------------------------------------------------------------- // // Header syntax writing // // Author: Skal (pascal.massimino@gmail.com) #include <assert.h> #include <math.h> #include "vp8enci.h" #if defined(__cplusplus) || defined(c_plusplus) extern "C" { #endif #define KSIGNATURE 0x9d012a #define KHEADER_SIZE 10 #define KRIFF_SIZE 20 #define KSIZE_OFFSET (KRIFF_SIZE - 8) #define MAX_PARTITION0_SIZE (1 << 19) // max size of mode partition #define MAX_PARTITION_SIZE (1 << 24) // max size for token partition //----------------------------------------------------------------------------- // Writers for header's various pieces (in order of appearance) // Main keyframe header static void PutLE32(uint8_t* const data, uint32_t val) { data[0] = (val >> 0) & 0xff; data[1] = (val >> 8) & 0xff; data[2] = (val >> 16) & 0xff; data[3] = (val >> 24) & 0xff; } static int PutHeader(int profile, size_t size0, size_t total_size, WebPPicture* const pic) { uint8_t buf[KHEADER_SIZE]; uint8_t RIFF[KRIFF_SIZE] = { 'R', 'I', 'F', 'F', 0, 0, 0, 0, 'W', 'E', 'B', 'P', 'V', 'P', '8', ' ' }; uint32_t bits; if (size0 >= MAX_PARTITION0_SIZE) { // partition #0 is too big to fit return WebPEncodingSetError(pic, VP8_ENC_ERROR_PARTITION0_OVERFLOW); } PutLE32(RIFF + 4, total_size + KSIZE_OFFSET); PutLE32(RIFF + 16, total_size); if (!pic->writer(RIFF, sizeof(RIFF), pic)) { return WebPEncodingSetError(pic, VP8_ENC_ERROR_BAD_WRITE); } bits = 0 // keyframe (1b) | (profile << 1) // profile (3b) | (1 << 4) // visible (1b) | (size0 << 5); // partition length (19b) buf[0] = bits & 0xff; buf[1] = (bits >> 8) & 0xff; buf[2] = (bits >> 16) & 0xff; // signature buf[3] = (KSIGNATURE >> 16) & 0xff; buf[4] = (KSIGNATURE >> 8) & 0xff; buf[5] = (KSIGNATURE >> 0) & 0xff; // dimensions buf[6] = pic->width & 0xff; buf[7] = pic->width >> 8; buf[8] = pic->height & 0xff; buf[9] = pic->height >> 8; return pic->writer(buf, sizeof(buf), pic); } // Segmentation header static void PutSegmentHeader(VP8BitWriter* const bw, const VP8Encoder* const enc) { const VP8SegmentHeader* const hdr = &enc->segment_hdr_; const VP8Proba* const proba = &enc->proba_; if (VP8PutBitUniform(bw, (hdr->num_segments_ > 1))) { // We always 'update' the quant and filter strength values const int update_data = 1; int s; VP8PutBitUniform(bw, hdr->update_map_); if (VP8PutBitUniform(bw, update_data)) { // we always use absolute values, not relative ones VP8PutBitUniform(bw, 1); // (segment_feature_mode = 1. Paragraph 9.3.) for (s = 0; s < NUM_MB_SEGMENTS; ++s) { VP8PutSignedValue(bw, enc->dqm_[s].quant_, 7); } for (s = 0; s < NUM_MB_SEGMENTS; ++s) { VP8PutSignedValue(bw, enc->dqm_[s].fstrength_, 6); } } if (hdr->update_map_) { for (s = 0; s < 3; ++s) { if (VP8PutBitUniform(bw, (proba->segments_[s] != 255u))) { VP8PutValue(bw, proba->segments_[s], 8); } } } } } // Filtering parameters header static void PutFilterHeader(VP8BitWriter* const bw, const VP8FilterHeader* const hdr) { const int use_lf_delta = (hdr->i4x4_lf_delta_ != 0); VP8PutBitUniform(bw, hdr->simple_); VP8PutValue(bw, hdr->level_, 6); VP8PutValue(bw, hdr->sharpness_, 3); if (VP8PutBitUniform(bw, use_lf_delta)) { // '0' is the default value for i4x4_lf_delta_ at frame #0. const int need_update = (hdr->i4x4_lf_delta_ != 0); if (VP8PutBitUniform(bw, need_update)) { // we don't use ref_lf_delta => emit four 0 bits VP8PutValue(bw, 0, 4); // we use mode_lf_delta for i4x4 VP8PutSignedValue(bw, hdr->i4x4_lf_delta_, 6); VP8PutValue(bw, 0, 3); // all others unused } } } // Nominal quantization parameters static void PutQuant(VP8BitWriter* const bw, const VP8Encoder* const enc) { VP8PutValue(bw, enc->base_quant_, 7); VP8PutSignedValue(bw, enc->dq_y1_dc_, 4); VP8PutSignedValue(bw, enc->dq_y2_dc_, 4); VP8PutSignedValue(bw, enc->dq_y2_ac_, 4); VP8PutSignedValue(bw, enc->dq_uv_dc_, 4); VP8PutSignedValue(bw, enc->dq_uv_ac_, 4); } // Partition sizes static int EmitPartitionsSize(const VP8Encoder* const enc, WebPPicture* const pic) { uint8_t buf[3 * (MAX_NUM_PARTITIONS - 1)]; int p; for (p = 0; p < enc->num_parts_ - 1; ++p) { const size_t part_size = VP8BitWriterSize(enc->parts_ + p); if (part_size >= MAX_PARTITION_SIZE) { return WebPEncodingSetError(pic, VP8_ENC_ERROR_PARTITION_OVERFLOW); } buf[3 * p + 0] = (part_size >> 0) & 0xff; buf[3 * p + 1] = (part_size >> 8) & 0xff; buf[3 * p + 2] = (part_size >> 16) & 0xff; } return p ? pic->writer(buf, 3 * p, pic) : 1; } //----------------------------------------------------------------------------- #ifdef WEBP_EXPERIMENTAL_FEATURES #define KTRAILER_SIZE 8 static void PutLE24(uint8_t* buf, size_t value) { buf[0] = (value >> 0) & 0xff; buf[1] = (value >> 8) & 0xff; buf[2] = (value >> 16) & 0xff; } static int WriteExtensions(VP8Encoder* const enc) { uint8_t buffer[KTRAILER_SIZE]; VP8BitWriter* const bw = &enc->bw_; WebPPicture* const pic = enc->pic_; // Layer (bytes 0..3) PutLE24(buffer + 0, enc->layer_data_size_); buffer[3] = enc->pic_->colorspace & WEBP_CSP_UV_MASK; if (enc->layer_data_size_ > 0) { assert(enc->use_layer_); // append layer data to last partition if (!VP8BitWriterAppend(&enc->parts_[enc->num_parts_ - 1], enc->layer_data_, enc->layer_data_size_)) { return WebPEncodingSetError(pic, VP8_ENC_ERROR_BITSTREAM_OUT_OF_MEMORY); } } // Alpha (bytes 4..6) PutLE24(buffer + 4, enc->alpha_data_size_); if (enc->alpha_data_size_ > 0) { assert(enc->has_alpha_); if (!VP8BitWriterAppend(bw, enc->alpha_data_, enc->alpha_data_size_)) { return WebPEncodingSetError(pic, VP8_ENC_ERROR_BITSTREAM_OUT_OF_MEMORY); } } buffer[KTRAILER_SIZE - 1] = 0x01; // marker if (!VP8BitWriterAppend(bw, buffer, KTRAILER_SIZE)) { return WebPEncodingSetError(pic, VP8_ENC_ERROR_BITSTREAM_OUT_OF_MEMORY); } return 1; } #endif /* WEBP_EXPERIMENTAL_FEATURES */ //----------------------------------------------------------------------------- static size_t GeneratePartition0(VP8Encoder* const enc) { VP8BitWriter* const bw = &enc->bw_; const int mb_size = enc->mb_w_ * enc->mb_h_; uint64_t pos1, pos2, pos3; #ifdef WEBP_EXPERIMENTAL_FEATURES const int need_extensions = enc->has_alpha_ || enc->use_layer_; #endif pos1 = VP8BitWriterPos(bw); VP8BitWriterInit(bw, mb_size * 7 / 8); // ~7 bits per macroblock #ifdef WEBP_EXPERIMENTAL_FEATURES VP8PutBitUniform(bw, need_extensions); // extensions #else VP8PutBitUniform(bw, 0); // colorspace #endif VP8PutBitUniform(bw, 0); // clamp type PutSegmentHeader(bw, enc); PutFilterHeader(bw, &enc->filter_hdr_); VP8PutValue(bw, enc->config_->partitions, 2); PutQuant(bw, enc); VP8PutBitUniform(bw, 0); // no proba update VP8WriteProbas(bw, &enc->proba_); pos2 = VP8BitWriterPos(bw); VP8CodeIntraModes(enc); VP8BitWriterFinish(bw); #ifdef WEBP_EXPERIMENTAL_FEATURES if (need_extensions && !WriteExtensions(enc)) { return 0; } #endif pos3 = VP8BitWriterPos(bw); if (enc->pic_->stats) { enc->pic_->stats->header_bytes[0] = (int)((pos2 - pos1 + 7) >> 3); enc->pic_->stats->header_bytes[1] = (int)((pos3 - pos2 + 7) >> 3); enc->pic_->stats->alpha_data_size = enc->alpha_data_size_; enc->pic_->stats->layer_data_size = enc->layer_data_size_; } return !bw->error_; } int VP8EncWrite(VP8Encoder* const enc) { WebPPicture* const pic = enc->pic_; VP8BitWriter* const bw = &enc->bw_; int ok = 0; size_t coded_size, pad; int p; // Partition #0 with header and partition sizes ok = GeneratePartition0(enc); // Compute total size (for the RIFF header) coded_size = KHEADER_SIZE + VP8BitWriterSize(bw) + 3 * (enc->num_parts_ - 1); for (p = 0; p < enc->num_parts_; ++p) { coded_size += VP8BitWriterSize(enc->parts_ + p); } pad = coded_size & 1; coded_size += pad; // Emit headers and partition #0 { const uint8_t* const part0 = VP8BitWriterBuf(bw); const size_t size0 = VP8BitWriterSize(bw); ok = ok && PutHeader(enc->profile_, size0, coded_size, pic) && pic->writer(part0, size0, pic) && EmitPartitionsSize(enc, pic); free((void*)part0); } // Token partitions for (p = 0; p < enc->num_parts_; ++p) { const uint8_t* const buf = VP8BitWriterBuf(enc->parts_ + p); const size_t size = VP8BitWriterSize(enc->parts_ + p); if (size) ok = ok && pic->writer(buf, size, pic); free((void*)buf); } // Padding byte if (ok && pad) { const uint8_t pad_byte[1] = { 0 }; ok = pic->writer(pad_byte, 1, pic); } enc->coded_size_ = coded_size + KRIFF_SIZE; return ok; } //----------------------------------------------------------------------------- #if defined(__cplusplus) || defined(c_plusplus) } // extern "C" #endif