/* * Copyright (C) 2005, 2006, 2007, 2008 Apple Inc. All rights reserved. * Copyright (C) 2008 David Levin <levin@chromium.org> * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. * */ #ifndef WTF_HashTable_h #define WTF_HashTable_h #include "FastMalloc.h" #include "HashTraits.h" #include "ValueCheck.h" #include <wtf/Assertions.h> #include <wtf/Threading.h> namespace WTF { #define DUMP_HASHTABLE_STATS 0 // Enables internal WTF consistency checks that are invoked automatically. Non-WTF callers can call checkTableConsistency() even if internal checks are disabled. #define CHECK_HASHTABLE_CONSISTENCY 0 #ifdef NDEBUG #define CHECK_HASHTABLE_ITERATORS 0 #define CHECK_HASHTABLE_USE_AFTER_DESTRUCTION 0 #else #define CHECK_HASHTABLE_ITERATORS 1 #define CHECK_HASHTABLE_USE_AFTER_DESTRUCTION 1 #endif #if DUMP_HASHTABLE_STATS struct HashTableStats { ~HashTableStats(); // All of the variables are accessed in ~HashTableStats when the static struct is destroyed. // The following variables are all atomically incremented when modified. static int numAccesses; static int numRehashes; static int numRemoves; static int numReinserts; // The following variables are only modified in the recordCollisionAtCount method within a mutex. static int maxCollisions; static int numCollisions; static int collisionGraph[4096]; static void recordCollisionAtCount(int count); }; #endif template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> class HashTable; template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> class HashTableIterator; template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> class HashTableConstIterator; template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> void addIterator(const HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>*, HashTableConstIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>*); template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> void removeIterator(HashTableConstIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>*); #if !CHECK_HASHTABLE_ITERATORS template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> inline void addIterator(const HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>*, HashTableConstIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>*) { } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> inline void removeIterator(HashTableConstIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>*) { } #endif typedef enum { HashItemKnownGood } HashItemKnownGoodTag; template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> class HashTableConstIterator { private: typedef HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits> HashTableType; typedef HashTableIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits> iterator; typedef HashTableConstIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits> const_iterator; typedef Value ValueType; typedef const ValueType& ReferenceType; typedef const ValueType* PointerType; friend class HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>; friend class HashTableIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>; void skipEmptyBuckets() { while (m_position != m_endPosition && HashTableType::isEmptyOrDeletedBucket(*m_position)) ++m_position; } HashTableConstIterator(const HashTableType* table, PointerType position, PointerType endPosition) : m_position(position), m_endPosition(endPosition) { addIterator(table, this); skipEmptyBuckets(); } HashTableConstIterator(const HashTableType* table, PointerType position, PointerType endPosition, HashItemKnownGoodTag) : m_position(position), m_endPosition(endPosition) { addIterator(table, this); } public: HashTableConstIterator() { addIterator(0, this); } // default copy, assignment and destructor are OK if CHECK_HASHTABLE_ITERATORS is 0 #if CHECK_HASHTABLE_ITERATORS ~HashTableConstIterator() { removeIterator(this); } HashTableConstIterator(const const_iterator& other) : m_position(other.m_position), m_endPosition(other.m_endPosition) { addIterator(other.m_table, this); } const_iterator& operator=(const const_iterator& other) { m_position = other.m_position; m_endPosition = other.m_endPosition; removeIterator(this); addIterator(other.m_table, this); return *this; } #endif PointerType get() const { checkValidity(); return m_position; } ReferenceType operator*() const { return *get(); } PointerType operator->() const { return get(); } const_iterator& operator++() { checkValidity(); ASSERT(m_position != m_endPosition); ++m_position; skipEmptyBuckets(); return *this; } // postfix ++ intentionally omitted // Comparison. bool operator==(const const_iterator& other) const { checkValidity(other); return m_position == other.m_position; } bool operator!=(const const_iterator& other) const { checkValidity(other); return m_position != other.m_position; } private: void checkValidity() const { #if CHECK_HASHTABLE_ITERATORS ASSERT(m_table); #endif } #if CHECK_HASHTABLE_ITERATORS void checkValidity(const const_iterator& other) const { ASSERT(m_table); ASSERT_UNUSED(other, other.m_table); ASSERT(m_table == other.m_table); } #else void checkValidity(const const_iterator&) const { } #endif PointerType m_position; PointerType m_endPosition; #if CHECK_HASHTABLE_ITERATORS public: // Any modifications of the m_next or m_previous of an iterator that is in a linked list of a HashTable::m_iterator, // should be guarded with m_table->m_mutex. mutable const HashTableType* m_table; mutable const_iterator* m_next; mutable const_iterator* m_previous; #endif }; template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> class HashTableIterator { private: typedef HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits> HashTableType; typedef HashTableIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits> iterator; typedef HashTableConstIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits> const_iterator; typedef Value ValueType; typedef ValueType& ReferenceType; typedef ValueType* PointerType; friend class HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>; HashTableIterator(HashTableType* table, PointerType pos, PointerType end) : m_iterator(table, pos, end) { } HashTableIterator(HashTableType* table, PointerType pos, PointerType end, HashItemKnownGoodTag tag) : m_iterator(table, pos, end, tag) { } public: HashTableIterator() { } // default copy, assignment and destructor are OK PointerType get() const { return const_cast<PointerType>(m_iterator.get()); } ReferenceType operator*() const { return *get(); } PointerType operator->() const { return get(); } iterator& operator++() { ++m_iterator; return *this; } // postfix ++ intentionally omitted // Comparison. bool operator==(const iterator& other) const { return m_iterator == other.m_iterator; } bool operator!=(const iterator& other) const { return m_iterator != other.m_iterator; } operator const_iterator() const { return m_iterator; } private: const_iterator m_iterator; }; using std::swap; // Work around MSVC's standard library, whose swap for pairs does not swap by component. template<typename T> inline void hashTableSwap(T& a, T& b) { swap(a, b); } // Swap pairs by component, in case of pair members that specialize swap. template<typename T, typename U> inline void hashTableSwap(pair<T, U>& a, pair<T, U>& b) { swap(a.first, b.first); swap(a.second, b.second); } template<typename T, bool useSwap> struct Mover; template<typename T> struct Mover<T, true> { static void move(T& from, T& to) { hashTableSwap(from, to); } }; template<typename T> struct Mover<T, false> { static void move(T& from, T& to) { to = from; } }; template<typename Key, typename Value, typename HashFunctions> class IdentityHashTranslator { public: static unsigned hash(const Key& key) { return HashFunctions::hash(key); } static bool equal(const Key& a, const Key& b) { return HashFunctions::equal(a, b); } static void translate(Value& location, const Key&, const Value& value) { location = value; } }; template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> class HashTable { public: typedef HashTableIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits> iterator; typedef HashTableConstIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits> const_iterator; typedef Traits ValueTraits; typedef Key KeyType; typedef Value ValueType; typedef IdentityHashTranslator<Key, Value, HashFunctions> IdentityTranslatorType; HashTable(); ~HashTable() { invalidateIterators(); deallocateTable(m_table, m_tableSize); #if CHECK_HASHTABLE_USE_AFTER_DESTRUCTION m_table = (ValueType*)(uintptr_t)0xbbadbeef; #endif } HashTable(const HashTable&); void swap(HashTable&); HashTable& operator=(const HashTable&); iterator begin() { return makeIterator(m_table); } iterator end() { return makeKnownGoodIterator(m_table + m_tableSize); } const_iterator begin() const { return makeConstIterator(m_table); } const_iterator end() const { return makeKnownGoodConstIterator(m_table + m_tableSize); } int size() const { return m_keyCount; } int capacity() const { return m_tableSize; } bool isEmpty() const { return !m_keyCount; } pair<iterator, bool> add(const ValueType& value) { return add<KeyType, ValueType, IdentityTranslatorType>(Extractor::extract(value), value); } // A special version of add() that finds the object by hashing and comparing // with some other type, to avoid the cost of type conversion if the object is already // in the table. template<typename T, typename Extra, typename HashTranslator> pair<iterator, bool> add(const T& key, const Extra&); template<typename T, typename Extra, typename HashTranslator> pair<iterator, bool> addPassingHashCode(const T& key, const Extra&); iterator find(const KeyType& key) { return find<KeyType, IdentityTranslatorType>(key); } const_iterator find(const KeyType& key) const { return find<KeyType, IdentityTranslatorType>(key); } bool contains(const KeyType& key) const { return contains<KeyType, IdentityTranslatorType>(key); } template <typename T, typename HashTranslator> iterator find(const T&); template <typename T, typename HashTranslator> const_iterator find(const T&) const; template <typename T, typename HashTranslator> bool contains(const T&) const; void remove(const KeyType&); void remove(iterator); void removeWithoutEntryConsistencyCheck(iterator); void removeWithoutEntryConsistencyCheck(const_iterator); void clear(); static bool isEmptyBucket(const ValueType& value) { return Extractor::extract(value) == KeyTraits::emptyValue(); } static bool isDeletedBucket(const ValueType& value) { return KeyTraits::isDeletedValue(Extractor::extract(value)); } static bool isEmptyOrDeletedBucket(const ValueType& value) { return isEmptyBucket(value) || isDeletedBucket(value); } ValueType* lookup(const Key& key) { return lookup<Key, IdentityTranslatorType>(key); } template<typename T, typename HashTranslator> ValueType* lookup(const T&); #if !ASSERT_DISABLED void checkTableConsistency() const; #else static void checkTableConsistency() { } #endif #if CHECK_HASHTABLE_CONSISTENCY void internalCheckTableConsistency() const { checkTableConsistency(); } void internalCheckTableConsistencyExceptSize() const { checkTableConsistencyExceptSize(); } #else static void internalCheckTableConsistencyExceptSize() { } static void internalCheckTableConsistency() { } #endif private: static ValueType* allocateTable(int size); static void deallocateTable(ValueType* table, int size); typedef pair<ValueType*, bool> LookupType; typedef pair<LookupType, unsigned> FullLookupType; LookupType lookupForWriting(const Key& key) { return lookupForWriting<Key, IdentityTranslatorType>(key); }; template<typename T, typename HashTranslator> FullLookupType fullLookupForWriting(const T&); template<typename T, typename HashTranslator> LookupType lookupForWriting(const T&); template<typename T, typename HashTranslator> void checkKey(const T&); void removeAndInvalidateWithoutEntryConsistencyCheck(ValueType*); void removeAndInvalidate(ValueType*); void remove(ValueType*); bool shouldExpand() const { return (m_keyCount + m_deletedCount) * m_maxLoad >= m_tableSize; } bool mustRehashInPlace() const { return m_keyCount * m_minLoad < m_tableSize * 2; } bool shouldShrink() const { return m_keyCount * m_minLoad < m_tableSize && m_tableSize > m_minTableSize; } void expand(); void shrink() { rehash(m_tableSize / 2); } void rehash(int newTableSize); void reinsert(ValueType&); static void initializeBucket(ValueType& bucket) { new (&bucket) ValueType(Traits::emptyValue()); } static void deleteBucket(ValueType& bucket) { bucket.~ValueType(); Traits::constructDeletedValue(bucket); } FullLookupType makeLookupResult(ValueType* position, bool found, unsigned hash) { return FullLookupType(LookupType(position, found), hash); } iterator makeIterator(ValueType* pos) { return iterator(this, pos, m_table + m_tableSize); } const_iterator makeConstIterator(ValueType* pos) const { return const_iterator(this, pos, m_table + m_tableSize); } iterator makeKnownGoodIterator(ValueType* pos) { return iterator(this, pos, m_table + m_tableSize, HashItemKnownGood); } const_iterator makeKnownGoodConstIterator(ValueType* pos) const { return const_iterator(this, pos, m_table + m_tableSize, HashItemKnownGood); } #if !ASSERT_DISABLED void checkTableConsistencyExceptSize() const; #else static void checkTableConsistencyExceptSize() { } #endif #if CHECK_HASHTABLE_ITERATORS void invalidateIterators(); #else static void invalidateIterators() { } #endif static const int m_minTableSize = 64; static const int m_maxLoad = 2; static const int m_minLoad = 6; ValueType* m_table; int m_tableSize; int m_tableSizeMask; int m_keyCount; int m_deletedCount; #if CHECK_HASHTABLE_ITERATORS public: // All access to m_iterators should be guarded with m_mutex. mutable const_iterator* m_iterators; mutable Mutex m_mutex; #endif }; template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> inline HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::HashTable() : m_table(0) , m_tableSize(0) , m_tableSizeMask(0) , m_keyCount(0) , m_deletedCount(0) #if CHECK_HASHTABLE_ITERATORS , m_iterators(0) #endif { } static inline unsigned doubleHash(unsigned key) { key = ~key + (key >> 23); key ^= (key << 12); key ^= (key >> 7); key ^= (key << 2); key ^= (key >> 20); return key; } #if ASSERT_DISABLED template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> template<typename T, typename HashTranslator> inline void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::checkKey(const T&) { } #else template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> template<typename T, typename HashTranslator> void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::checkKey(const T& key) { if (!HashFunctions::safeToCompareToEmptyOrDeleted) return; ASSERT(!HashTranslator::equal(KeyTraits::emptyValue(), key)); ValueType deletedValue = Traits::emptyValue(); deletedValue.~ValueType(); Traits::constructDeletedValue(deletedValue); ASSERT(!HashTranslator::equal(Extractor::extract(deletedValue), key)); new (&deletedValue) ValueType(Traits::emptyValue()); } #endif template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> template<typename T, typename HashTranslator> inline Value* HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::lookup(const T& key) { checkKey<T, HashTranslator>(key); int k = 0; int sizeMask = m_tableSizeMask; ValueType* table = m_table; unsigned h = HashTranslator::hash(key); int i = h & sizeMask; if (!table) return 0; #if DUMP_HASHTABLE_STATS atomicIncrement(&HashTableStats::numAccesses); int probeCount = 0; #endif while (1) { ValueType* entry = table + i; // we count on the compiler to optimize out this branch if (HashFunctions::safeToCompareToEmptyOrDeleted) { if (HashTranslator::equal(Extractor::extract(*entry), key)) return entry; if (isEmptyBucket(*entry)) return 0; } else { if (isEmptyBucket(*entry)) return 0; if (!isDeletedBucket(*entry) && HashTranslator::equal(Extractor::extract(*entry), key)) return entry; } #if DUMP_HASHTABLE_STATS ++probeCount; HashTableStats::recordCollisionAtCount(probeCount); #endif if (k == 0) k = 1 | doubleHash(h); i = (i + k) & sizeMask; } } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> template<typename T, typename HashTranslator> inline typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::LookupType HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::lookupForWriting(const T& key) { ASSERT(m_table); checkKey<T, HashTranslator>(key); int k = 0; ValueType* table = m_table; int sizeMask = m_tableSizeMask; unsigned h = HashTranslator::hash(key); int i = h & sizeMask; #if DUMP_HASHTABLE_STATS atomicIncrement(&HashTableStats::numAccesses); int probeCount = 0; #endif ValueType* deletedEntry = 0; while (1) { ValueType* entry = table + i; // we count on the compiler to optimize out this branch if (HashFunctions::safeToCompareToEmptyOrDeleted) { if (isEmptyBucket(*entry)) return LookupType(deletedEntry ? deletedEntry : entry, false); if (HashTranslator::equal(Extractor::extract(*entry), key)) return LookupType(entry, true); if (isDeletedBucket(*entry)) deletedEntry = entry; } else { if (isEmptyBucket(*entry)) return LookupType(deletedEntry ? deletedEntry : entry, false); if (isDeletedBucket(*entry)) deletedEntry = entry; else if (HashTranslator::equal(Extractor::extract(*entry), key)) return LookupType(entry, true); } #if DUMP_HASHTABLE_STATS ++probeCount; HashTableStats::recordCollisionAtCount(probeCount); #endif if (k == 0) k = 1 | doubleHash(h); i = (i + k) & sizeMask; } } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> template<typename T, typename HashTranslator> inline typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::FullLookupType HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::fullLookupForWriting(const T& key) { ASSERT(m_table); checkKey<T, HashTranslator>(key); int k = 0; ValueType* table = m_table; int sizeMask = m_tableSizeMask; unsigned h = HashTranslator::hash(key); int i = h & sizeMask; #if DUMP_HASHTABLE_STATS atomicIncrement(&HashTableStats::numAccesses); int probeCount = 0; #endif ValueType* deletedEntry = 0; while (1) { ValueType* entry = table + i; // we count on the compiler to optimize out this branch if (HashFunctions::safeToCompareToEmptyOrDeleted) { if (isEmptyBucket(*entry)) return makeLookupResult(deletedEntry ? deletedEntry : entry, false, h); if (HashTranslator::equal(Extractor::extract(*entry), key)) return makeLookupResult(entry, true, h); if (isDeletedBucket(*entry)) deletedEntry = entry; } else { if (isEmptyBucket(*entry)) return makeLookupResult(deletedEntry ? deletedEntry : entry, false, h); if (isDeletedBucket(*entry)) deletedEntry = entry; else if (HashTranslator::equal(Extractor::extract(*entry), key)) return makeLookupResult(entry, true, h); } #if DUMP_HASHTABLE_STATS ++probeCount; HashTableStats::recordCollisionAtCount(probeCount); #endif if (k == 0) k = 1 | doubleHash(h); i = (i + k) & sizeMask; } } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> template<typename T, typename Extra, typename HashTranslator> inline pair<typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::iterator, bool> HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::add(const T& key, const Extra& extra) { checkKey<T, HashTranslator>(key); invalidateIterators(); if (!m_table) expand(); internalCheckTableConsistency(); ASSERT(m_table); int k = 0; ValueType* table = m_table; int sizeMask = m_tableSizeMask; unsigned h = HashTranslator::hash(key); int i = h & sizeMask; #if DUMP_HASHTABLE_STATS atomicIncrement(&HashTableStats::numAccesses); int probeCount = 0; #endif ValueType* deletedEntry = 0; ValueType* entry; while (1) { entry = table + i; // we count on the compiler to optimize out this branch if (HashFunctions::safeToCompareToEmptyOrDeleted) { if (isEmptyBucket(*entry)) break; if (HashTranslator::equal(Extractor::extract(*entry), key)) return std::make_pair(makeKnownGoodIterator(entry), false); if (isDeletedBucket(*entry)) deletedEntry = entry; } else { if (isEmptyBucket(*entry)) break; if (isDeletedBucket(*entry)) deletedEntry = entry; else if (HashTranslator::equal(Extractor::extract(*entry), key)) return std::make_pair(makeKnownGoodIterator(entry), false); } #if DUMP_HASHTABLE_STATS ++probeCount; HashTableStats::recordCollisionAtCount(probeCount); #endif if (k == 0) k = 1 | doubleHash(h); i = (i + k) & sizeMask; } if (deletedEntry) { initializeBucket(*deletedEntry); entry = deletedEntry; --m_deletedCount; } HashTranslator::translate(*entry, key, extra); ++m_keyCount; if (shouldExpand()) { // FIXME: This makes an extra copy on expand. Probably not that bad since // expand is rare, but would be better to have a version of expand that can // follow a pivot entry and return the new position. KeyType enteredKey = Extractor::extract(*entry); expand(); pair<iterator, bool> p = std::make_pair(find(enteredKey), true); ASSERT(p.first != end()); return p; } internalCheckTableConsistency(); return std::make_pair(makeKnownGoodIterator(entry), true); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> template<typename T, typename Extra, typename HashTranslator> inline pair<typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::iterator, bool> HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::addPassingHashCode(const T& key, const Extra& extra) { checkKey<T, HashTranslator>(key); invalidateIterators(); if (!m_table) expand(); internalCheckTableConsistency(); FullLookupType lookupResult = fullLookupForWriting<T, HashTranslator>(key); ValueType* entry = lookupResult.first.first; bool found = lookupResult.first.second; unsigned h = lookupResult.second; if (found) return std::make_pair(makeKnownGoodIterator(entry), false); if (isDeletedBucket(*entry)) { initializeBucket(*entry); --m_deletedCount; } HashTranslator::translate(*entry, key, extra, h); ++m_keyCount; if (shouldExpand()) { // FIXME: This makes an extra copy on expand. Probably not that bad since // expand is rare, but would be better to have a version of expand that can // follow a pivot entry and return the new position. KeyType enteredKey = Extractor::extract(*entry); expand(); pair<iterator, bool> p = std::make_pair(find(enteredKey), true); ASSERT(p.first != end()); return p; } internalCheckTableConsistency(); return std::make_pair(makeKnownGoodIterator(entry), true); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> inline void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::reinsert(ValueType& entry) { ASSERT(m_table); ASSERT(!lookupForWriting(Extractor::extract(entry)).second); ASSERT(!isDeletedBucket(*(lookupForWriting(Extractor::extract(entry)).first))); #if DUMP_HASHTABLE_STATS atomicIncrement(&HashTableStats::numReinserts); #endif Mover<ValueType, Traits::needsDestruction>::move(entry, *lookupForWriting(Extractor::extract(entry)).first); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> template <typename T, typename HashTranslator> typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::iterator HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::find(const T& key) { if (!m_table) return end(); ValueType* entry = lookup<T, HashTranslator>(key); if (!entry) return end(); return makeKnownGoodIterator(entry); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> template <typename T, typename HashTranslator> typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::const_iterator HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::find(const T& key) const { if (!m_table) return end(); ValueType* entry = const_cast<HashTable*>(this)->lookup<T, HashTranslator>(key); if (!entry) return end(); return makeKnownGoodConstIterator(entry); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> template <typename T, typename HashTranslator> bool HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::contains(const T& key) const { if (!m_table) return false; return const_cast<HashTable*>(this)->lookup<T, HashTranslator>(key); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::removeAndInvalidateWithoutEntryConsistencyCheck(ValueType* pos) { invalidateIterators(); remove(pos); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::removeAndInvalidate(ValueType* pos) { invalidateIterators(); internalCheckTableConsistency(); remove(pos); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::remove(ValueType* pos) { #if DUMP_HASHTABLE_STATS atomicIncrement(&HashTableStats::numRemoves); #endif deleteBucket(*pos); ++m_deletedCount; --m_keyCount; if (shouldShrink()) shrink(); internalCheckTableConsistency(); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> inline void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::remove(iterator it) { if (it == end()) return; removeAndInvalidate(const_cast<ValueType*>(it.m_iterator.m_position)); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> inline void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::removeWithoutEntryConsistencyCheck(iterator it) { if (it == end()) return; removeAndInvalidateWithoutEntryConsistencyCheck(const_cast<ValueType*>(it.m_iterator.m_position)); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> inline void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::removeWithoutEntryConsistencyCheck(const_iterator it) { if (it == end()) return; removeAndInvalidateWithoutEntryConsistencyCheck(const_cast<ValueType*>(it.m_position)); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> inline void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::remove(const KeyType& key) { remove(find(key)); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> Value* HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::allocateTable(int size) { // would use a template member function with explicit specializations here, but // gcc doesn't appear to support that if (Traits::emptyValueIsZero) return static_cast<ValueType*>(fastZeroedMalloc(size * sizeof(ValueType))); ValueType* result = static_cast<ValueType*>(fastMalloc(size * sizeof(ValueType))); for (int i = 0; i < size; i++) initializeBucket(result[i]); return result; } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::deallocateTable(ValueType* table, int size) { if (Traits::needsDestruction) { for (int i = 0; i < size; ++i) { if (!isDeletedBucket(table[i])) table[i].~ValueType(); } } fastFree(table); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::expand() { int newSize; if (m_tableSize == 0) newSize = m_minTableSize; else if (mustRehashInPlace()) newSize = m_tableSize; else newSize = m_tableSize * 2; rehash(newSize); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::rehash(int newTableSize) { internalCheckTableConsistencyExceptSize(); int oldTableSize = m_tableSize; ValueType* oldTable = m_table; #if DUMP_HASHTABLE_STATS if (oldTableSize != 0) atomicIncrement(&HashTableStats::numRehashes); #endif m_tableSize = newTableSize; m_tableSizeMask = newTableSize - 1; m_table = allocateTable(newTableSize); for (int i = 0; i != oldTableSize; ++i) if (!isEmptyOrDeletedBucket(oldTable[i])) reinsert(oldTable[i]); m_deletedCount = 0; deallocateTable(oldTable, oldTableSize); internalCheckTableConsistency(); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::clear() { invalidateIterators(); deallocateTable(m_table, m_tableSize); m_table = 0; m_tableSize = 0; m_tableSizeMask = 0; m_keyCount = 0; } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::HashTable(const HashTable& other) : m_table(0) , m_tableSize(0) , m_tableSizeMask(0) , m_keyCount(0) , m_deletedCount(0) #if CHECK_HASHTABLE_ITERATORS , m_iterators(0) #endif { // Copy the hash table the dumb way, by adding each element to the new table. // It might be more efficient to copy the table slots, but it's not clear that efficiency is needed. const_iterator end = other.end(); for (const_iterator it = other.begin(); it != end; ++it) add(*it); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::swap(HashTable& other) { invalidateIterators(); other.invalidateIterators(); ValueType* tmp_table = m_table; m_table = other.m_table; other.m_table = tmp_table; int tmp_tableSize = m_tableSize; m_tableSize = other.m_tableSize; other.m_tableSize = tmp_tableSize; int tmp_tableSizeMask = m_tableSizeMask; m_tableSizeMask = other.m_tableSizeMask; other.m_tableSizeMask = tmp_tableSizeMask; int tmp_keyCount = m_keyCount; m_keyCount = other.m_keyCount; other.m_keyCount = tmp_keyCount; int tmp_deletedCount = m_deletedCount; m_deletedCount = other.m_deletedCount; other.m_deletedCount = tmp_deletedCount; } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>& HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::operator=(const HashTable& other) { HashTable tmp(other); swap(tmp); return *this; } #if !ASSERT_DISABLED template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::checkTableConsistency() const { checkTableConsistencyExceptSize(); ASSERT(!m_table || !shouldExpand()); ASSERT(!shouldShrink()); } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::checkTableConsistencyExceptSize() const { if (!m_table) return; int count = 0; int deletedCount = 0; for (int j = 0; j < m_tableSize; ++j) { ValueType* entry = m_table + j; if (isEmptyBucket(*entry)) continue; if (isDeletedBucket(*entry)) { ++deletedCount; continue; } const_iterator it = find(Extractor::extract(*entry)); ASSERT(entry == it.m_position); ++count; ValueCheck<Key>::checkConsistency(it->first); } ASSERT(count == m_keyCount); ASSERT(deletedCount == m_deletedCount); ASSERT(m_tableSize >= m_minTableSize); ASSERT(m_tableSizeMask); ASSERT(m_tableSize == m_tableSizeMask + 1); } #endif // ASSERT_DISABLED #if CHECK_HASHTABLE_ITERATORS template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>::invalidateIterators() { MutexLocker lock(m_mutex); const_iterator* next; for (const_iterator* p = m_iterators; p; p = next) { next = p->m_next; p->m_table = 0; p->m_next = 0; p->m_previous = 0; } m_iterators = 0; } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> void addIterator(const HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>* table, HashTableConstIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>* it) { it->m_table = table; it->m_previous = 0; // Insert iterator at head of doubly-linked list of iterators. if (!table) { it->m_next = 0; } else { MutexLocker lock(table->m_mutex); ASSERT(table->m_iterators != it); it->m_next = table->m_iterators; table->m_iterators = it; if (it->m_next) { ASSERT(!it->m_next->m_previous); it->m_next->m_previous = it; } } } template<typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits> void removeIterator(HashTableConstIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits>* it) { typedef HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits> HashTableType; typedef HashTableConstIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits> const_iterator; // Delete iterator from doubly-linked list of iterators. if (!it->m_table) { ASSERT(!it->m_next); ASSERT(!it->m_previous); } else { MutexLocker lock(it->m_table->m_mutex); if (it->m_next) { ASSERT(it->m_next->m_previous == it); it->m_next->m_previous = it->m_previous; } if (it->m_previous) { ASSERT(it->m_table->m_iterators != it); ASSERT(it->m_previous->m_next == it); it->m_previous->m_next = it->m_next; } else { ASSERT(it->m_table->m_iterators == it); it->m_table->m_iterators = it->m_next; } } it->m_table = 0; it->m_next = 0; it->m_previous = 0; } #endif // CHECK_HASHTABLE_ITERATORS // iterator adapters template<typename HashTableType, typename ValueType> struct HashTableConstIteratorAdapter { HashTableConstIteratorAdapter(const typename HashTableType::const_iterator& impl) : m_impl(impl) {} const ValueType* get() const { return (const ValueType*)m_impl.get(); } const ValueType& operator*() const { return *get(); } const ValueType* operator->() const { return get(); } HashTableConstIteratorAdapter& operator++() { ++m_impl; return *this; } // postfix ++ intentionally omitted typename HashTableType::const_iterator m_impl; }; template<typename HashTableType, typename ValueType> struct HashTableIteratorAdapter { HashTableIteratorAdapter(const typename HashTableType::iterator& impl) : m_impl(impl) {} ValueType* get() const { return (ValueType*)m_impl.get(); } ValueType& operator*() const { return *get(); } ValueType* operator->() const { return get(); } HashTableIteratorAdapter& operator++() { ++m_impl; return *this; } // postfix ++ intentionally omitted operator HashTableConstIteratorAdapter<HashTableType, ValueType>() { typename HashTableType::const_iterator i = m_impl; return i; } typename HashTableType::iterator m_impl; }; template<typename T, typename U> inline bool operator==(const HashTableConstIteratorAdapter<T, U>& a, const HashTableConstIteratorAdapter<T, U>& b) { return a.m_impl == b.m_impl; } template<typename T, typename U> inline bool operator!=(const HashTableConstIteratorAdapter<T, U>& a, const HashTableConstIteratorAdapter<T, U>& b) { return a.m_impl != b.m_impl; } template<typename T, typename U> inline bool operator==(const HashTableIteratorAdapter<T, U>& a, const HashTableIteratorAdapter<T, U>& b) { return a.m_impl == b.m_impl; } template<typename T, typename U> inline bool operator!=(const HashTableIteratorAdapter<T, U>& a, const HashTableIteratorAdapter<T, U>& b) { return a.m_impl != b.m_impl; } } // namespace WTF #include "HashIterators.h" #endif // WTF_HashTable_h