/* * Copyright (C) 2011 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef DFGJITCompiler_h #define DFGJITCompiler_h #if ENABLE(DFG_JIT) #include <assembler/MacroAssembler.h> #include <bytecode/CodeBlock.h> #include <dfg/DFGGraph.h> #include <jit/JITCode.h> namespace JSC { class AbstractSamplingCounter; class CodeBlock; class JSGlobalData; namespace DFG { class JITCodeGenerator; class NonSpeculativeJIT; class SpeculativeJIT; class SpeculationRecovery; struct EntryLocation; struct SpeculationCheck; // Abstracted sequential numbering of available machine registers (as opposed to MacroAssembler::RegisterID, // which are non-sequential, and not abstracted from the register numbering used by the underlying processor). enum GPRReg { gpr0, gpr1, gpr2, gpr3, gpr4, gpr5, numberOfGPRs, InvalidGPRReg = 0xFFFFFFFF }; enum FPRReg { fpr0, fpr1, fpr2, fpr3, fpr4, fpr5, numberOfFPRs, InvalidFPRReg = 0xFFFFFFFF }; // GPRReg/FPRReg are enum types to provide type checking at compile time, use these method to iterate. inline GPRReg next(GPRReg& reg) { ASSERT(reg < numberOfGPRs); return reg = static_cast<GPRReg>(reg + 1); } inline FPRReg next(FPRReg& reg) { ASSERT(reg < numberOfFPRs); return reg = static_cast<FPRReg>(reg + 1); } // === CallRecord === // // A record of a call out from JIT code to a helper function. // Every CallRecord contains a reference to the call instruction & the function // that it needs to be linked to. Calls that might throw an exception also record // the Jump taken on exception (unset if not present), and ExceptionInfo (presently // an unsigned, bytecode index) used to recover handler/source info. struct CallRecord { // Constructor for a call with no exception handler. CallRecord(MacroAssembler::Call call, FunctionPtr function) : m_call(call) , m_function(function) { } // Constructor for a call with an exception handler. CallRecord(MacroAssembler::Call call, FunctionPtr function, MacroAssembler::Jump exceptionCheck, ExceptionInfo exceptionInfo) : m_call(call) , m_function(function) , m_exceptionCheck(exceptionCheck) , m_exceptionInfo(exceptionInfo) { } MacroAssembler::Call m_call; FunctionPtr m_function; MacroAssembler::Jump m_exceptionCheck; ExceptionInfo m_exceptionInfo; }; // === JITCompiler === // // DFG::JITCompiler is responsible for generating JIT code from the dataflow graph. // It does so by delegating to the speculative & non-speculative JITs, which // generate to a MacroAssembler (which the JITCompiler owns through an inheritance // relationship). The JITCompiler holds references to information required during // compilation, and also records information used in linking (e.g. a list of all // call to be linked). class JITCompiler : public MacroAssembler { public: JITCompiler(JSGlobalData* globalData, Graph& dfg, CodeBlock* codeBlock) : m_globalData(globalData) , m_graph(dfg) , m_codeBlock(codeBlock) { } void compileFunction(JITCode& entry, MacroAssemblerCodePtr& entryWithArityCheck); // Accessors for properties. Graph& graph() { return m_graph; } CodeBlock* codeBlock() { return m_codeBlock; } JSGlobalData* globalData() { return m_globalData; } #if CPU(X86_64) // These registers match the old JIT. static const RegisterID timeoutCheckRegister = X86Registers::r12; static const RegisterID callFrameRegister = X86Registers::r13; static const RegisterID tagTypeNumberRegister = X86Registers::r14; static const RegisterID tagMaskRegister = X86Registers::r15; // Temporary registers (these correspond to the temporary GPRReg/FPRReg // registers i.e. regT0 and grp0 refer to the same thing, grp0 being // the abstracted, sequential name, and regT0 being the machine register // number in the instruction set, as provided by the MacroAssembler). static const RegisterID regT0 = X86Registers::eax; static const RegisterID regT1 = X86Registers::edx; static const RegisterID regT2 = X86Registers::ecx; static const RegisterID regT3 = X86Registers::ebx; static const RegisterID regT4 = X86Registers::edi; static const RegisterID regT5 = X86Registers::esi; static const FPRegisterID fpRegT0 = X86Registers::xmm0; static const FPRegisterID fpRegT1 = X86Registers::xmm1; static const FPRegisterID fpRegT2 = X86Registers::xmm2; static const FPRegisterID fpRegT3 = X86Registers::xmm3; static const FPRegisterID fpRegT4 = X86Registers::xmm4; static const FPRegisterID fpRegT5 = X86Registers::xmm5; // These constants provide both RegisterID & GPRReg style names for the // general purpose argument & return value register. static const GPRReg argumentGPR0 = gpr4; static const GPRReg argumentGPR1 = gpr5; static const GPRReg argumentGPR2 = gpr1; static const GPRReg argumentGPR3 = gpr2; static const RegisterID argumentRegister0 = regT4; static const RegisterID argumentRegister1 = regT5; static const RegisterID argumentRegister2 = regT1; static const RegisterID argumentRegister3 = regT2; static const GPRReg returnValueGPR = gpr0; static const RegisterID returnValueRegister = regT0; static const RegisterID returnValueRegister2 = regT1; // These constants provide both FPRegisterID & FPRReg style names for the // floating point argument & return value register. static const FPRReg argumentFPR0 = fpr0; static const FPRReg argumentFPR1 = fpr1; static const FPRReg argumentFPR2 = fpr2; static const FPRReg argumentFPR3 = fpr3; static const FPRegisterID fpArgumentRegister0 = fpRegT0; static const FPRegisterID fpArgumentRegister1 = fpRegT1; static const FPRegisterID fpArgumentRegister2 = fpRegT2; static const FPRegisterID fpArgumentRegister3 = fpRegT3; static const FPRReg returnValueFPR = fpr0; static const FPRegisterID fpReturnValueRegister = fpRegT0; void preserveReturnAddressAfterCall(RegisterID reg) { pop(reg); } void restoreReturnAddressBeforeReturn(RegisterID reg) { push(reg); } void restoreReturnAddressBeforeReturn(Address address) { push(address); } void emitGetFromCallFrameHeaderPtr(RegisterFile::CallFrameHeaderEntry entry, RegisterID to) { loadPtr(Address(callFrameRegister, entry * sizeof(Register)), to); } void emitPutToCallFrameHeader(RegisterID from, RegisterFile::CallFrameHeaderEntry entry) { storePtr(from, Address(callFrameRegister, entry * sizeof(Register))); } void emitPutImmediateToCallFrameHeader(void* value, RegisterFile::CallFrameHeaderEntry entry) { storePtr(TrustedImmPtr(value), Address(callFrameRegister, entry * sizeof(Register))); } #endif Address addressForArgument(int32_t argument) { return Address(callFrameRegister, (argument - (m_codeBlock->m_numParameters + RegisterFile::CallFrameHeaderSize)) * sizeof(Register)); } static Address addressForGlobalVar(RegisterID global, int32_t varNumber) { return Address(global, varNumber * sizeof(Register)); } static Address addressFor(VirtualRegister virtualRegister) { return Address(callFrameRegister, virtualRegister * sizeof(Register)); } // These methods provide mapping from sequential register numbering (GPRReg/FPRReg) // to machine register numbering (RegisterID/FPRegisterID). static RegisterID gprToRegisterID(GPRReg reg) { ASSERT(reg < numberOfGPRs); static const RegisterID idForRegister[numberOfGPRs] = { regT0, regT1, regT2, regT3, regT4, regT5 }; return idForRegister[reg]; } static FPRegisterID fprToRegisterID(FPRReg reg) { ASSERT(reg < numberOfFPRs); static const FPRegisterID idForRegister[numberOfFPRs] = { fpRegT0, fpRegT1, fpRegT2, fpRegT3, fpRegT4, fpRegT5 }; return idForRegister[reg]; } // Add a call out from JIT code, without an exception check. void appendCall(const FunctionPtr& function) { m_calls.append(CallRecord(call(), function)); // FIXME: should be able to JIT_ASSERT here that globalData->exception is null on return back to JIT code. } // Add a call out from JIT code, with an exception check. void appendCallWithExceptionCheck(const FunctionPtr& function, unsigned exceptionInfo) { Call functionCall = call(); Jump exceptionCheck = branchTestPtr(NonZero, AbsoluteAddress(&globalData()->exception)); m_calls.append(CallRecord(functionCall, function, exceptionCheck, exceptionInfo)); } // Helper methods to check nodes for constants. bool isConstant(NodeIndex nodeIndex) { return graph()[nodeIndex].isConstant(); } bool isInt32Constant(NodeIndex nodeIndex) { return graph()[nodeIndex].op == Int32Constant; } bool isDoubleConstant(NodeIndex nodeIndex) { return graph()[nodeIndex].op == DoubleConstant; } bool isJSConstant(NodeIndex nodeIndex) { return graph()[nodeIndex].op == JSConstant; } // Helper methods get constant values from nodes. int32_t valueOfInt32Constant(NodeIndex nodeIndex) { ASSERT(isInt32Constant(nodeIndex)); return graph()[nodeIndex].int32Constant(); } double valueOfDoubleConstant(NodeIndex nodeIndex) { ASSERT(isDoubleConstant(nodeIndex)); return graph()[nodeIndex].numericConstant(); } JSValue valueOfJSConstant(NodeIndex nodeIndex) { ASSERT(isJSConstant(nodeIndex)); unsigned constantIndex = graph()[nodeIndex].constantNumber(); return codeBlock()->constantRegister(FirstConstantRegisterIndex + constantIndex).get(); } // These methods JIT generate dynamic, debug-only checks - akin to ASSERTs. #if DFG_JIT_ASSERT void jitAssertIsInt32(GPRReg); void jitAssertIsJSInt32(GPRReg); void jitAssertIsJSNumber(GPRReg); void jitAssertIsJSDouble(GPRReg); #else void jitAssertIsInt32(GPRReg) {} void jitAssertIsJSInt32(GPRReg) {} void jitAssertIsJSNumber(GPRReg) {} void jitAssertIsJSDouble(GPRReg) {} #endif #if ENABLE(SAMPLING_COUNTERS) // Debug profiling tool. void emitCount(AbstractSamplingCounter&, uint32_t increment = 1); #endif private: // These methods used in linking the speculative & non-speculative paths together. void fillNumericToDouble(NodeIndex, FPRReg, GPRReg temporary); void fillInt32ToInteger(NodeIndex, GPRReg); void fillToJS(NodeIndex, GPRReg); void jumpFromSpeculativeToNonSpeculative(const SpeculationCheck&, const EntryLocation&, SpeculationRecovery*); void linkSpeculationChecks(SpeculativeJIT&, NonSpeculativeJIT&); // The globalData, used to access constants such as the vPtrs. JSGlobalData* m_globalData; // The dataflow graph currently being generated. Graph& m_graph; // The codeBlock currently being generated, used to access information such as constant values, immediates. CodeBlock* m_codeBlock; // Vector of calls out from JIT code, including exception handler information. Vector<CallRecord> m_calls; }; } } // namespace JSC::DFG #endif #endif