/* * Copyright (C) 2008 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef MacroAssemblerX86_64_h #define MacroAssemblerX86_64_h #if ENABLE(ASSEMBLER) && CPU(X86_64) #include "MacroAssemblerX86Common.h" #define REPTACH_OFFSET_CALL_R11 3 namespace JSC { class MacroAssemblerX86_64 : public MacroAssemblerX86Common { protected: static const X86Registers::RegisterID scratchRegister = X86Registers::r11; public: static const Scale ScalePtr = TimesEight; using MacroAssemblerX86Common::add32; using MacroAssemblerX86Common::and32; using MacroAssemblerX86Common::or32; using MacroAssemblerX86Common::sub32; using MacroAssemblerX86Common::load32; using MacroAssemblerX86Common::store32; using MacroAssemblerX86Common::call; using MacroAssemblerX86Common::addDouble; using MacroAssemblerX86Common::loadDouble; using MacroAssemblerX86Common::convertInt32ToDouble; void add32(TrustedImm32 imm, AbsoluteAddress address) { move(TrustedImmPtr(address.m_ptr), scratchRegister); add32(imm, Address(scratchRegister)); } void and32(TrustedImm32 imm, AbsoluteAddress address) { move(TrustedImmPtr(address.m_ptr), scratchRegister); and32(imm, Address(scratchRegister)); } void or32(TrustedImm32 imm, AbsoluteAddress address) { move(TrustedImmPtr(address.m_ptr), scratchRegister); or32(imm, Address(scratchRegister)); } void sub32(TrustedImm32 imm, AbsoluteAddress address) { move(TrustedImmPtr(address.m_ptr), scratchRegister); sub32(imm, Address(scratchRegister)); } void load32(void* address, RegisterID dest) { if (dest == X86Registers::eax) m_assembler.movl_mEAX(address); else { move(X86Registers::eax, dest); m_assembler.movl_mEAX(address); swap(X86Registers::eax, dest); } } void loadDouble(const void* address, FPRegisterID dest) { move(TrustedImmPtr(address), scratchRegister); loadDouble(scratchRegister, dest); } void addDouble(AbsoluteAddress address, FPRegisterID dest) { move(TrustedImmPtr(address.m_ptr), scratchRegister); m_assembler.addsd_mr(0, scratchRegister, dest); } void convertInt32ToDouble(TrustedImm32 imm, FPRegisterID dest) { move(imm, scratchRegister); m_assembler.cvtsi2sd_rr(scratchRegister, dest); } void store32(TrustedImm32 imm, void* address) { move(X86Registers::eax, scratchRegister); move(imm, X86Registers::eax); m_assembler.movl_EAXm(address); move(scratchRegister, X86Registers::eax); } Call call() { DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister); Call result = Call(m_assembler.call(scratchRegister), Call::Linkable); ASSERT(differenceBetween(label, result) == REPTACH_OFFSET_CALL_R11); return result; } Call tailRecursiveCall() { DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister); Jump newJump = Jump(m_assembler.jmp_r(scratchRegister)); ASSERT(differenceBetween(label, newJump) == REPTACH_OFFSET_CALL_R11); return Call::fromTailJump(newJump); } Call makeTailRecursiveCall(Jump oldJump) { oldJump.link(this); DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister); Jump newJump = Jump(m_assembler.jmp_r(scratchRegister)); ASSERT(differenceBetween(label, newJump) == REPTACH_OFFSET_CALL_R11); return Call::fromTailJump(newJump); } void addPtr(RegisterID src, RegisterID dest) { m_assembler.addq_rr(src, dest); } void addPtr(TrustedImm32 imm, RegisterID srcDest) { m_assembler.addq_ir(imm.m_value, srcDest); } void addPtr(TrustedImmPtr imm, RegisterID dest) { move(imm, scratchRegister); m_assembler.addq_rr(scratchRegister, dest); } void addPtr(TrustedImm32 imm, RegisterID src, RegisterID dest) { m_assembler.leaq_mr(imm.m_value, src, dest); } void addPtr(TrustedImm32 imm, Address address) { m_assembler.addq_im(imm.m_value, address.offset, address.base); } void addPtr(TrustedImm32 imm, AbsoluteAddress address) { move(TrustedImmPtr(address.m_ptr), scratchRegister); addPtr(imm, Address(scratchRegister)); } void andPtr(RegisterID src, RegisterID dest) { m_assembler.andq_rr(src, dest); } void andPtr(TrustedImm32 imm, RegisterID srcDest) { m_assembler.andq_ir(imm.m_value, srcDest); } void orPtr(RegisterID src, RegisterID dest) { m_assembler.orq_rr(src, dest); } void orPtr(TrustedImmPtr imm, RegisterID dest) { move(imm, scratchRegister); m_assembler.orq_rr(scratchRegister, dest); } void orPtr(TrustedImm32 imm, RegisterID dest) { m_assembler.orq_ir(imm.m_value, dest); } void orPtr(RegisterID op1, RegisterID op2, RegisterID dest) { if (op1 == op2) move(op1, dest); else if (op1 == dest) orPtr(op2, dest); else { move(op2, dest); orPtr(op1, dest); } } void orPtr(TrustedImm32 imm, RegisterID src, RegisterID dest) { move(src, dest); orPtr(imm, dest); } void subPtr(RegisterID src, RegisterID dest) { m_assembler.subq_rr(src, dest); } void subPtr(TrustedImm32 imm, RegisterID dest) { m_assembler.subq_ir(imm.m_value, dest); } void subPtr(TrustedImmPtr imm, RegisterID dest) { move(imm, scratchRegister); m_assembler.subq_rr(scratchRegister, dest); } void xorPtr(RegisterID src, RegisterID dest) { m_assembler.xorq_rr(src, dest); } void xorPtr(TrustedImm32 imm, RegisterID srcDest) { m_assembler.xorq_ir(imm.m_value, srcDest); } void loadPtr(ImplicitAddress address, RegisterID dest) { m_assembler.movq_mr(address.offset, address.base, dest); } void loadPtr(BaseIndex address, RegisterID dest) { m_assembler.movq_mr(address.offset, address.base, address.index, address.scale, dest); } void loadPtr(const void* address, RegisterID dest) { if (dest == X86Registers::eax) m_assembler.movq_mEAX(address); else { move(X86Registers::eax, dest); m_assembler.movq_mEAX(address); swap(X86Registers::eax, dest); } } DataLabel32 loadPtrWithAddressOffsetPatch(Address address, RegisterID dest) { m_assembler.movq_mr_disp32(address.offset, address.base, dest); return DataLabel32(this); } void storePtr(RegisterID src, ImplicitAddress address) { m_assembler.movq_rm(src, address.offset, address.base); } void storePtr(RegisterID src, BaseIndex address) { m_assembler.movq_rm(src, address.offset, address.base, address.index, address.scale); } void storePtr(RegisterID src, void* address) { if (src == X86Registers::eax) m_assembler.movq_EAXm(address); else { swap(X86Registers::eax, src); m_assembler.movq_EAXm(address); swap(X86Registers::eax, src); } } void storePtr(TrustedImmPtr imm, ImplicitAddress address) { move(imm, scratchRegister); storePtr(scratchRegister, address); } DataLabel32 storePtrWithAddressOffsetPatch(RegisterID src, Address address) { m_assembler.movq_rm_disp32(src, address.offset, address.base); return DataLabel32(this); } void movePtrToDouble(RegisterID src, FPRegisterID dest) { m_assembler.movq_rr(src, dest); } void moveDoubleToPtr(FPRegisterID src, RegisterID dest) { m_assembler.movq_rr(src, dest); } void setPtr(Condition cond, RegisterID left, TrustedImm32 right, RegisterID dest) { if (((cond == Equal) || (cond == NotEqual)) && !right.m_value) m_assembler.testq_rr(left, left); else m_assembler.cmpq_ir(right.m_value, left); m_assembler.setCC_r(x86Condition(cond), dest); m_assembler.movzbl_rr(dest, dest); } Jump branchPtr(Condition cond, RegisterID left, RegisterID right) { m_assembler.cmpq_rr(right, left); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchPtr(Condition cond, RegisterID left, TrustedImmPtr right) { move(right, scratchRegister); return branchPtr(cond, left, scratchRegister); } Jump branchPtr(Condition cond, RegisterID left, Address right) { m_assembler.cmpq_mr(right.offset, right.base, left); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchPtr(Condition cond, AbsoluteAddress left, RegisterID right) { move(TrustedImmPtr(left.m_ptr), scratchRegister); return branchPtr(cond, Address(scratchRegister), right); } Jump branchPtr(Condition cond, Address left, RegisterID right) { m_assembler.cmpq_rm(right, left.offset, left.base); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchPtr(Condition cond, Address left, TrustedImmPtr right) { move(right, scratchRegister); return branchPtr(cond, left, scratchRegister); } Jump branchTestPtr(Condition cond, RegisterID reg, RegisterID mask) { m_assembler.testq_rr(reg, mask); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchTestPtr(Condition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1)) { // if we are only interested in the low seven bits, this can be tested with a testb if (mask.m_value == -1) m_assembler.testq_rr(reg, reg); else if ((mask.m_value & ~0x7f) == 0) m_assembler.testb_i8r(mask.m_value, reg); else m_assembler.testq_i32r(mask.m_value, reg); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchTestPtr(Condition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1)) { loadPtr(address.m_ptr, scratchRegister); return branchTestPtr(cond, scratchRegister, mask); } Jump branchTestPtr(Condition cond, Address address, TrustedImm32 mask = TrustedImm32(-1)) { if (mask.m_value == -1) m_assembler.cmpq_im(0, address.offset, address.base); else m_assembler.testq_i32m(mask.m_value, address.offset, address.base); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchTestPtr(Condition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1)) { if (mask.m_value == -1) m_assembler.cmpq_im(0, address.offset, address.base, address.index, address.scale); else m_assembler.testq_i32m(mask.m_value, address.offset, address.base, address.index, address.scale); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchAddPtr(Condition cond, RegisterID src, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Zero) || (cond == NonZero)); addPtr(src, dest); return Jump(m_assembler.jCC(x86Condition(cond))); } Jump branchSubPtr(Condition cond, TrustedImm32 imm, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Zero) || (cond == NonZero)); subPtr(imm, dest); return Jump(m_assembler.jCC(x86Condition(cond))); } DataLabelPtr moveWithPatch(TrustedImmPtr initialValue, RegisterID dest) { m_assembler.movq_i64r(initialValue.asIntptr(), dest); return DataLabelPtr(this); } Jump branchPtrWithPatch(Condition cond, RegisterID left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0)) { dataLabel = moveWithPatch(initialRightValue, scratchRegister); return branchPtr(cond, left, scratchRegister); } Jump branchPtrWithPatch(Condition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0)) { dataLabel = moveWithPatch(initialRightValue, scratchRegister); return branchPtr(cond, left, scratchRegister); } DataLabelPtr storePtrWithPatch(TrustedImmPtr initialValue, ImplicitAddress address) { DataLabelPtr label = moveWithPatch(initialValue, scratchRegister); storePtr(scratchRegister, address); return label; } using MacroAssemblerX86Common::branchTest8; Jump branchTest8(Condition cond, ExtendedAddress address, TrustedImm32 mask = TrustedImm32(-1)) { TrustedImmPtr addr(reinterpret_cast<void*>(address.offset)); MacroAssemblerX86Common::move(addr, scratchRegister); return MacroAssemblerX86Common::branchTest8(cond, BaseIndex(scratchRegister, address.base, TimesOne), mask); } bool supportsFloatingPoint() const { return true; } // See comment on MacroAssemblerARMv7::supportsFloatingPointTruncate() bool supportsFloatingPointTruncate() const { return true; } bool supportsFloatingPointSqrt() const { return true; } private: friend class LinkBuffer; friend class RepatchBuffer; static void linkCall(void* code, Call call, FunctionPtr function) { if (!call.isFlagSet(Call::Near)) X86Assembler::linkPointer(code, X86Assembler::labelFor(call.m_jmp, -REPTACH_OFFSET_CALL_R11), function.value()); else X86Assembler::linkCall(code, call.m_jmp, function.value()); } static void repatchCall(CodeLocationCall call, CodeLocationLabel destination) { X86Assembler::repatchPointer(call.dataLabelPtrAtOffset(-REPTACH_OFFSET_CALL_R11).dataLocation(), destination.executableAddress()); } static void repatchCall(CodeLocationCall call, FunctionPtr destination) { X86Assembler::repatchPointer(call.dataLabelPtrAtOffset(-REPTACH_OFFSET_CALL_R11).dataLocation(), destination.executableAddress()); } }; } // namespace JSC #endif // ENABLE(ASSEMBLER) #endif // MacroAssemblerX86_64_h