/* * Copyright (C) 2009, 2010 University of Szeged * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY UNIVERSITY OF SZEGED ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UNIVERSITY OF SZEGED OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef ARMAssembler_h #define ARMAssembler_h #if ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL) #include "AssemblerBufferWithConstantPool.h" #include <wtf/Assertions.h> namespace JSC { typedef uint32_t ARMWord; namespace ARMRegisters { typedef enum { r0 = 0, r1, r2, r3, S0 = r3, r4, r5, r6, r7, r8, S1 = r8, r9, r10, r11, r12, r13, sp = r13, r14, lr = r14, r15, pc = r15 } RegisterID; typedef enum { d0, d1, d2, d3, SD0 = d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13, d14, d15, d16, d17, d18, d19, d20, d21, d22, d23, d24, d25, d26, d27, d28, d29, d30, d31 } FPRegisterID; } // namespace ARMRegisters class ARMAssembler { public: typedef ARMRegisters::RegisterID RegisterID; typedef ARMRegisters::FPRegisterID FPRegisterID; typedef AssemblerBufferWithConstantPool<2048, 4, 4, ARMAssembler> ARMBuffer; typedef SegmentedVector<int, 64> Jumps; ARMAssembler() { } // ARM conditional constants typedef enum { EQ = 0x00000000, // Zero NE = 0x10000000, // Non-zero CS = 0x20000000, CC = 0x30000000, MI = 0x40000000, PL = 0x50000000, VS = 0x60000000, VC = 0x70000000, HI = 0x80000000, LS = 0x90000000, GE = 0xa0000000, LT = 0xb0000000, GT = 0xc0000000, LE = 0xd0000000, AL = 0xe0000000 } Condition; // ARM instruction constants enum { AND = (0x0 << 21), EOR = (0x1 << 21), SUB = (0x2 << 21), RSB = (0x3 << 21), ADD = (0x4 << 21), ADC = (0x5 << 21), SBC = (0x6 << 21), RSC = (0x7 << 21), TST = (0x8 << 21), TEQ = (0x9 << 21), CMP = (0xa << 21), CMN = (0xb << 21), ORR = (0xc << 21), MOV = (0xd << 21), BIC = (0xe << 21), MVN = (0xf << 21), MUL = 0x00000090, MULL = 0x00c00090, VADD_F64 = 0x0e300b00, VDIV_F64 = 0x0e800b00, VSUB_F64 = 0x0e300b40, VMUL_F64 = 0x0e200b00, VCMP_F64 = 0x0eb40b40, VSQRT_F64 = 0x0eb10bc0, DTR = 0x05000000, LDRH = 0x00100090, STRH = 0x00000090, STMDB = 0x09200000, LDMIA = 0x08b00000, FDTR = 0x0d000b00, B = 0x0a000000, BL = 0x0b000000, #if WTF_ARM_ARCH_AT_LEAST(5) || defined(__ARM_ARCH_4T__) BX = 0x012fff10, #endif VMOV_VFP = 0x0e000a10, VMOV_ARM = 0x0e100a10, VCVT_F64_S32 = 0x0eb80bc0, VCVT_S32_F64 = 0x0ebd0b40, VCVTR_S32_F64 = 0x0ebd0bc0, VMRS_APSR = 0x0ef1fa10, #if WTF_ARM_ARCH_AT_LEAST(5) CLZ = 0x016f0f10, BKPT = 0xe1200070, BLX = 0x012fff30, #endif #if WTF_ARM_ARCH_AT_LEAST(7) MOVW = 0x03000000, MOVT = 0x03400000, #endif }; enum { OP2_IMM = (1 << 25), OP2_IMMh = (1 << 22), OP2_INV_IMM = (1 << 26), SET_CC = (1 << 20), OP2_OFSREG = (1 << 25), DT_UP = (1 << 23), DT_BYTE = (1 << 22), DT_WB = (1 << 21), // This flag is inlcuded in LDR and STR DT_PRE = (1 << 24), HDT_UH = (1 << 5), DT_LOAD = (1 << 20), }; // Masks of ARM instructions enum { BRANCH_MASK = 0x00ffffff, NONARM = 0xf0000000, SDT_MASK = 0x0c000000, SDT_OFFSET_MASK = 0xfff, }; enum { BOFFSET_MIN = -0x00800000, BOFFSET_MAX = 0x007fffff, SDT = 0x04000000, }; enum { padForAlign8 = 0x00, padForAlign16 = 0x0000, padForAlign32 = 0xe12fff7f // 'bkpt 0xffff' instruction. }; static const ARMWord INVALID_IMM = 0xf0000000; static const ARMWord InvalidBranchTarget = 0xffffffff; static const int DefaultPrefetching = 2; class JmpSrc { friend class ARMAssembler; public: JmpSrc() : m_offset(-1) { } private: JmpSrc(int offset) : m_offset(offset) { } int m_offset; }; class JmpDst { friend class ARMAssembler; public: JmpDst() : m_offset(-1) , m_used(false) { } bool isUsed() const { return m_used; } bool isSet() const { return (m_offset != -1); } void used() { m_used = true; } private: JmpDst(int offset) : m_offset(offset) , m_used(false) { ASSERT(m_offset == offset); } signed int m_offset : 31; int m_used : 1; }; // Instruction formating void emitInst(ARMWord op, int rd, int rn, ARMWord op2) { ASSERT(((op2 & ~OP2_IMM) <= 0xfff) || (((op2 & ~OP2_IMMh) <= 0xfff))); m_buffer.putInt(op | RN(rn) | RD(rd) | op2); } void emitDoublePrecisionInst(ARMWord op, int dd, int dn, int dm) { ASSERT((dd >= 0 && dd <= 31) && (dn >= 0 && dn <= 31) && (dm >= 0 && dm <= 31)); m_buffer.putInt(op | ((dd & 0xf) << 12) | ((dd & 0x10) << (22 - 4)) | ((dn & 0xf) << 16) | ((dn & 0x10) << (7 - 4)) | (dm & 0xf) | ((dm & 0x10) << (5 - 4))); } void emitSinglePrecisionInst(ARMWord op, int sd, int sn, int sm) { ASSERT((sd >= 0 && sd <= 31) && (sn >= 0 && sn <= 31) && (sm >= 0 && sm <= 31)); m_buffer.putInt(op | ((sd >> 1) << 12) | ((sd & 0x1) << 22) | ((sn >> 1) << 16) | ((sn & 0x1) << 7) | (sm >> 1) | ((sm & 0x1) << 5)); } void and_r(int rd, int rn, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | AND, rd, rn, op2); } void ands_r(int rd, int rn, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | AND | SET_CC, rd, rn, op2); } void eor_r(int rd, int rn, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | EOR, rd, rn, op2); } void eors_r(int rd, int rn, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | EOR | SET_CC, rd, rn, op2); } void sub_r(int rd, int rn, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | SUB, rd, rn, op2); } void subs_r(int rd, int rn, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | SUB | SET_CC, rd, rn, op2); } void rsb_r(int rd, int rn, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | RSB, rd, rn, op2); } void rsbs_r(int rd, int rn, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | RSB | SET_CC, rd, rn, op2); } void add_r(int rd, int rn, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | ADD, rd, rn, op2); } void adds_r(int rd, int rn, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | ADD | SET_CC, rd, rn, op2); } void adc_r(int rd, int rn, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | ADC, rd, rn, op2); } void adcs_r(int rd, int rn, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | ADC | SET_CC, rd, rn, op2); } void sbc_r(int rd, int rn, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | SBC, rd, rn, op2); } void sbcs_r(int rd, int rn, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | SBC | SET_CC, rd, rn, op2); } void rsc_r(int rd, int rn, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | RSC, rd, rn, op2); } void rscs_r(int rd, int rn, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | RSC | SET_CC, rd, rn, op2); } void tst_r(int rn, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | TST | SET_CC, 0, rn, op2); } void teq_r(int rn, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | TEQ | SET_CC, 0, rn, op2); } void cmp_r(int rn, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | CMP | SET_CC, 0, rn, op2); } void cmn_r(int rn, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | CMN | SET_CC, 0, rn, op2); } void orr_r(int rd, int rn, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | ORR, rd, rn, op2); } void orrs_r(int rd, int rn, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | ORR | SET_CC, rd, rn, op2); } void mov_r(int rd, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | MOV, rd, ARMRegisters::r0, op2); } #if WTF_ARM_ARCH_AT_LEAST(7) void movw_r(int rd, ARMWord op2, Condition cc = AL) { ASSERT((op2 | 0xf0fff) == 0xf0fff); m_buffer.putInt(static_cast<ARMWord>(cc) | MOVW | RD(rd) | op2); } void movt_r(int rd, ARMWord op2, Condition cc = AL) { ASSERT((op2 | 0xf0fff) == 0xf0fff); m_buffer.putInt(static_cast<ARMWord>(cc) | MOVT | RD(rd) | op2); } #endif void movs_r(int rd, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | MOV | SET_CC, rd, ARMRegisters::r0, op2); } void bic_r(int rd, int rn, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | BIC, rd, rn, op2); } void bics_r(int rd, int rn, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | BIC | SET_CC, rd, rn, op2); } void mvn_r(int rd, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | MVN, rd, ARMRegisters::r0, op2); } void mvns_r(int rd, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | MVN | SET_CC, rd, ARMRegisters::r0, op2); } void mul_r(int rd, int rn, int rm, Condition cc = AL) { m_buffer.putInt(static_cast<ARMWord>(cc) | MUL | RN(rd) | RS(rn) | RM(rm)); } void muls_r(int rd, int rn, int rm, Condition cc = AL) { m_buffer.putInt(static_cast<ARMWord>(cc) | MUL | SET_CC | RN(rd) | RS(rn) | RM(rm)); } void mull_r(int rdhi, int rdlo, int rn, int rm, Condition cc = AL) { m_buffer.putInt(static_cast<ARMWord>(cc) | MULL | RN(rdhi) | RD(rdlo) | RS(rn) | RM(rm)); } void vadd_f64_r(int dd, int dn, int dm, Condition cc = AL) { emitDoublePrecisionInst(static_cast<ARMWord>(cc) | VADD_F64, dd, dn, dm); } void vdiv_f64_r(int dd, int dn, int dm, Condition cc = AL) { emitDoublePrecisionInst(static_cast<ARMWord>(cc) | VDIV_F64, dd, dn, dm); } void vsub_f64_r(int dd, int dn, int dm, Condition cc = AL) { emitDoublePrecisionInst(static_cast<ARMWord>(cc) | VSUB_F64, dd, dn, dm); } void vmul_f64_r(int dd, int dn, int dm, Condition cc = AL) { emitDoublePrecisionInst(static_cast<ARMWord>(cc) | VMUL_F64, dd, dn, dm); } void vcmp_f64_r(int dd, int dm, Condition cc = AL) { emitDoublePrecisionInst(static_cast<ARMWord>(cc) | VCMP_F64, dd, 0, dm); } void vsqrt_f64_r(int dd, int dm, Condition cc = AL) { emitDoublePrecisionInst(static_cast<ARMWord>(cc) | VSQRT_F64, dd, 0, dm); } void ldr_imm(int rd, ARMWord imm, Condition cc = AL) { m_buffer.putIntWithConstantInt(static_cast<ARMWord>(cc) | DTR | DT_LOAD | DT_UP | RN(ARMRegisters::pc) | RD(rd), imm, true); } void ldr_un_imm(int rd, ARMWord imm, Condition cc = AL) { m_buffer.putIntWithConstantInt(static_cast<ARMWord>(cc) | DTR | DT_LOAD | DT_UP | RN(ARMRegisters::pc) | RD(rd), imm); } void dtr_u(bool isLoad, int rd, int rb, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | DTR | (isLoad ? DT_LOAD : 0) | DT_UP, rd, rb, op2); } void dtr_ur(bool isLoad, int rd, int rb, int rm, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | DTR | (isLoad ? DT_LOAD : 0) | DT_UP | OP2_OFSREG, rd, rb, rm); } void dtr_d(bool isLoad, int rd, int rb, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | DTR | (isLoad ? DT_LOAD : 0), rd, rb, op2); } void dtr_dr(bool isLoad, int rd, int rb, int rm, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | DTR | (isLoad ? DT_LOAD : 0) | OP2_OFSREG, rd, rb, rm); } void ldrh_r(int rd, int rn, int rm, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | LDRH | HDT_UH | DT_UP | DT_PRE, rd, rn, rm); } void ldrh_d(int rd, int rb, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | LDRH | HDT_UH | DT_PRE, rd, rb, op2); } void ldrh_u(int rd, int rb, ARMWord op2, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | LDRH | HDT_UH | DT_UP | DT_PRE, rd, rb, op2); } void strh_r(int rn, int rm, int rd, Condition cc = AL) { emitInst(static_cast<ARMWord>(cc) | STRH | HDT_UH | DT_UP | DT_PRE, rd, rn, rm); } void fdtr_u(bool isLoad, int rd, int rb, ARMWord op2, Condition cc = AL) { ASSERT(op2 <= 0xff); emitInst(static_cast<ARMWord>(cc) | FDTR | DT_UP | (isLoad ? DT_LOAD : 0), rd, rb, op2); } void fdtr_d(bool isLoad, int rd, int rb, ARMWord op2, Condition cc = AL) { ASSERT(op2 <= 0xff); emitInst(static_cast<ARMWord>(cc) | FDTR | (isLoad ? DT_LOAD : 0), rd, rb, op2); } void push_r(int reg, Condition cc = AL) { ASSERT(ARMWord(reg) <= 0xf); m_buffer.putInt(cc | DTR | DT_WB | RN(ARMRegisters::sp) | RD(reg) | 0x4); } void pop_r(int reg, Condition cc = AL) { ASSERT(ARMWord(reg) <= 0xf); m_buffer.putInt(cc | (DTR ^ DT_PRE) | DT_LOAD | DT_UP | RN(ARMRegisters::sp) | RD(reg) | 0x4); } inline void poke_r(int reg, Condition cc = AL) { dtr_d(false, ARMRegisters::sp, 0, reg, cc); } inline void peek_r(int reg, Condition cc = AL) { dtr_u(true, reg, ARMRegisters::sp, 0, cc); } void vmov_vfp_r(int sn, int rt, Condition cc = AL) { ASSERT(rt <= 15); emitSinglePrecisionInst(static_cast<ARMWord>(cc) | VMOV_VFP, rt << 1, sn, 0); } void vmov_arm_r(int rt, int sn, Condition cc = AL) { ASSERT(rt <= 15); emitSinglePrecisionInst(static_cast<ARMWord>(cc) | VMOV_ARM, rt << 1, sn, 0); } void vcvt_f64_s32_r(int dd, int sm, Condition cc = AL) { ASSERT(!(sm & 0x1)); // sm must be divisible by 2 emitDoublePrecisionInst(static_cast<ARMWord>(cc) | VCVT_F64_S32, dd, 0, (sm >> 1)); } void vcvt_s32_f64_r(int sd, int dm, Condition cc = AL) { ASSERT(!(sd & 0x1)); // sd must be divisible by 2 emitDoublePrecisionInst(static_cast<ARMWord>(cc) | VCVT_S32_F64, (sd >> 1), 0, dm); } void vcvtr_s32_f64_r(int sd, int dm, Condition cc = AL) { ASSERT(!(sd & 0x1)); // sd must be divisible by 2 emitDoublePrecisionInst(static_cast<ARMWord>(cc) | VCVTR_S32_F64, (sd >> 1), 0, dm); } void vmrs_apsr(Condition cc = AL) { m_buffer.putInt(static_cast<ARMWord>(cc) | VMRS_APSR); } #if WTF_ARM_ARCH_AT_LEAST(5) void clz_r(int rd, int rm, Condition cc = AL) { m_buffer.putInt(static_cast<ARMWord>(cc) | CLZ | RD(rd) | RM(rm)); } #endif void bkpt(ARMWord value) { #if WTF_ARM_ARCH_AT_LEAST(5) m_buffer.putInt(BKPT | ((value & 0xff0) << 4) | (value & 0xf)); #else // Cannot access to Zero memory address dtr_dr(true, ARMRegisters::S0, ARMRegisters::S0, ARMRegisters::S0); #endif } void bx(int rm, Condition cc = AL) { #if WTF_ARM_ARCH_AT_LEAST(5) || defined(__ARM_ARCH_4T__) emitInst(static_cast<ARMWord>(cc) | BX, 0, 0, RM(rm)); #else mov_r(ARMRegisters::pc, RM(rm), cc); #endif } JmpSrc blx(int rm, Condition cc = AL) { #if WTF_ARM_ARCH_AT_LEAST(5) emitInst(static_cast<ARMWord>(cc) | BLX, 0, 0, RM(rm)); #else ASSERT(rm != 14); ensureSpace(2 * sizeof(ARMWord), 0); mov_r(ARMRegisters::lr, ARMRegisters::pc, cc); bx(rm, cc); #endif return JmpSrc(m_buffer.uncheckedSize()); } static ARMWord lsl(int reg, ARMWord value) { ASSERT(reg <= ARMRegisters::pc); ASSERT(value <= 0x1f); return reg | (value << 7) | 0x00; } static ARMWord lsr(int reg, ARMWord value) { ASSERT(reg <= ARMRegisters::pc); ASSERT(value <= 0x1f); return reg | (value << 7) | 0x20; } static ARMWord asr(int reg, ARMWord value) { ASSERT(reg <= ARMRegisters::pc); ASSERT(value <= 0x1f); return reg | (value << 7) | 0x40; } static ARMWord lsl_r(int reg, int shiftReg) { ASSERT(reg <= ARMRegisters::pc); ASSERT(shiftReg <= ARMRegisters::pc); return reg | (shiftReg << 8) | 0x10; } static ARMWord lsr_r(int reg, int shiftReg) { ASSERT(reg <= ARMRegisters::pc); ASSERT(shiftReg <= ARMRegisters::pc); return reg | (shiftReg << 8) | 0x30; } static ARMWord asr_r(int reg, int shiftReg) { ASSERT(reg <= ARMRegisters::pc); ASSERT(shiftReg <= ARMRegisters::pc); return reg | (shiftReg << 8) | 0x50; } // General helpers int size() { return m_buffer.size(); } void ensureSpace(int insnSpace, int constSpace) { m_buffer.ensureSpace(insnSpace, constSpace); } int sizeOfConstantPool() { return m_buffer.sizeOfConstantPool(); } JmpDst label() { return JmpDst(m_buffer.size()); } JmpDst align(int alignment) { while (!m_buffer.isAligned(alignment)) mov_r(ARMRegisters::r0, ARMRegisters::r0); return label(); } JmpSrc loadBranchTarget(int rd, Condition cc = AL, int useConstantPool = 0) { ensureSpace(sizeof(ARMWord), sizeof(ARMWord)); m_jumps.append(m_buffer.uncheckedSize() | (useConstantPool & 0x1)); ldr_un_imm(rd, InvalidBranchTarget, cc); return JmpSrc(m_buffer.uncheckedSize()); } JmpSrc jmp(Condition cc = AL, int useConstantPool = 0) { return loadBranchTarget(ARMRegisters::pc, cc, useConstantPool); } void* executableCopy(ExecutablePool* allocator); #ifndef NDEBUG unsigned debugOffset() { return m_formatter.debugOffset(); } #endif // Patching helpers static ARMWord* getLdrImmAddress(ARMWord* insn) { #if WTF_ARM_ARCH_AT_LEAST(5) // Check for call if ((*insn & 0x0f7f0000) != 0x051f0000) { // Must be BLX ASSERT((*insn & 0x012fff30) == 0x012fff30); insn--; } #endif // Must be an ldr ..., [pc +/- imm] ASSERT((*insn & 0x0f7f0000) == 0x051f0000); ARMWord addr = reinterpret_cast<ARMWord>(insn) + DefaultPrefetching * sizeof(ARMWord); if (*insn & DT_UP) return reinterpret_cast<ARMWord*>(addr + (*insn & SDT_OFFSET_MASK)); return reinterpret_cast<ARMWord*>(addr - (*insn & SDT_OFFSET_MASK)); } static ARMWord* getLdrImmAddressOnPool(ARMWord* insn, uint32_t* constPool) { // Must be an ldr ..., [pc +/- imm] ASSERT((*insn & 0x0f7f0000) == 0x051f0000); if (*insn & 0x1) return reinterpret_cast<ARMWord*>(constPool + ((*insn & SDT_OFFSET_MASK) >> 1)); return getLdrImmAddress(insn); } static void patchPointerInternal(intptr_t from, void* to) { ARMWord* insn = reinterpret_cast<ARMWord*>(from); ARMWord* addr = getLdrImmAddress(insn); *addr = reinterpret_cast<ARMWord>(to); } static ARMWord patchConstantPoolLoad(ARMWord load, ARMWord value) { value = (value << 1) + 1; ASSERT(!(value & ~0xfff)); return (load & ~0xfff) | value; } static void patchConstantPoolLoad(void* loadAddr, void* constPoolAddr); // Patch pointers static void linkPointer(void* code, JmpDst from, void* to) { patchPointerInternal(reinterpret_cast<intptr_t>(code) + from.m_offset, to); } static void repatchInt32(void* from, int32_t to) { patchPointerInternal(reinterpret_cast<intptr_t>(from), reinterpret_cast<void*>(to)); } static void repatchPointer(void* from, void* to) { patchPointerInternal(reinterpret_cast<intptr_t>(from), to); } // Linkers static intptr_t getAbsoluteJumpAddress(void* base, int offset = 0) { return reinterpret_cast<intptr_t>(base) + offset - sizeof(ARMWord); } void linkJump(JmpSrc from, JmpDst to) { ARMWord* insn = reinterpret_cast<ARMWord*>(getAbsoluteJumpAddress(m_buffer.data(), from.m_offset)); ARMWord* addr = getLdrImmAddressOnPool(insn, m_buffer.poolAddress()); *addr = static_cast<ARMWord>(to.m_offset); } static void linkJump(void* code, JmpSrc from, void* to) { patchPointerInternal(getAbsoluteJumpAddress(code, from.m_offset), to); } static void relinkJump(void* from, void* to) { patchPointerInternal(getAbsoluteJumpAddress(from), to); } static void linkCall(void* code, JmpSrc from, void* to) { patchPointerInternal(getAbsoluteJumpAddress(code, from.m_offset), to); } static void relinkCall(void* from, void* to) { patchPointerInternal(getAbsoluteJumpAddress(from), to); } // Address operations static void* getRelocatedAddress(void* code, JmpSrc jump) { return reinterpret_cast<void*>(reinterpret_cast<char*>(code) + jump.m_offset); } static void* getRelocatedAddress(void* code, JmpDst label) { return reinterpret_cast<void*>(reinterpret_cast<char*>(code) + label.m_offset); } // Address differences static int getDifferenceBetweenLabels(JmpDst from, JmpSrc to) { return to.m_offset - from.m_offset; } static int getDifferenceBetweenLabels(JmpDst from, JmpDst to) { return to.m_offset - from.m_offset; } static unsigned getCallReturnOffset(JmpSrc call) { return call.m_offset; } // Handle immediates static ARMWord getOp2Byte(ARMWord imm) { ASSERT(imm <= 0xff); return OP2_IMMh | (imm & 0x0f) | ((imm & 0xf0) << 4) ; } static ARMWord getOp2(ARMWord imm); #if WTF_ARM_ARCH_AT_LEAST(7) static ARMWord getImm16Op2(ARMWord imm) { if (imm <= 0xffff) return (imm & 0xf000) << 4 | (imm & 0xfff); return INVALID_IMM; } #endif ARMWord getImm(ARMWord imm, int tmpReg, bool invert = false); void moveImm(ARMWord imm, int dest); ARMWord encodeComplexImm(ARMWord imm, int dest); ARMWord getOffsetForHalfwordDataTransfer(ARMWord imm, int tmpReg) { // Encode immediate data in the instruction if it is possible if (imm <= 0xff) return getOp2Byte(imm); // Otherwise, store the data in a temporary register return encodeComplexImm(imm, tmpReg); } // Memory load/store helpers void dataTransfer32(bool isLoad, RegisterID srcDst, RegisterID base, int32_t offset, bool bytes = false); void baseIndexTransfer32(bool isLoad, RegisterID srcDst, RegisterID base, RegisterID index, int scale, int32_t offset); void doubleTransfer(bool isLoad, FPRegisterID srcDst, RegisterID base, int32_t offset); // Constant pool hnadlers static ARMWord placeConstantPoolBarrier(int offset) { offset = (offset - sizeof(ARMWord)) >> 2; ASSERT((offset <= BOFFSET_MAX && offset >= BOFFSET_MIN)); return AL | B | (offset & BRANCH_MASK); } private: ARMWord RM(int reg) { ASSERT(reg <= ARMRegisters::pc); return reg; } ARMWord RS(int reg) { ASSERT(reg <= ARMRegisters::pc); return reg << 8; } ARMWord RD(int reg) { ASSERT(reg <= ARMRegisters::pc); return reg << 12; } ARMWord RN(int reg) { ASSERT(reg <= ARMRegisters::pc); return reg << 16; } static ARMWord getConditionalField(ARMWord i) { return i & 0xf0000000; } int genInt(int reg, ARMWord imm, bool positive); ARMBuffer m_buffer; Jumps m_jumps; }; } // namespace JSC #endif // ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL) #endif // ARMAssembler_h