// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include <stdlib.h> #include "v8.h" #include "cctest.h" using namespace v8::internal; static void VerifyRegionMarking(Address page_start) { Page* p = Page::FromAddress(page_start); p->SetRegionMarks(Page::kAllRegionsCleanMarks); for (Address addr = p->ObjectAreaStart(); addr < p->ObjectAreaEnd(); addr += kPointerSize) { CHECK(!Page::FromAddress(addr)->IsRegionDirty(addr)); } for (Address addr = p->ObjectAreaStart(); addr < p->ObjectAreaEnd(); addr += kPointerSize) { Page::FromAddress(addr)->MarkRegionDirty(addr); } for (Address addr = p->ObjectAreaStart(); addr < p->ObjectAreaEnd(); addr += kPointerSize) { CHECK(Page::FromAddress(addr)->IsRegionDirty(addr)); } } TEST(Page) { byte* mem = NewArray<byte>(2*Page::kPageSize); CHECK(mem != NULL); Address start = reinterpret_cast<Address>(mem); Address page_start = RoundUp(start, Page::kPageSize); Page* p = Page::FromAddress(page_start); // Initialized Page has heap pointer, normally set by memory_allocator. p->heap_ = HEAP; CHECK(p->address() == page_start); CHECK(p->is_valid()); p->opaque_header = 0; p->SetIsLargeObjectPage(false); CHECK(!p->next_page()->is_valid()); CHECK(p->ObjectAreaStart() == page_start + Page::kObjectStartOffset); CHECK(p->ObjectAreaEnd() == page_start + Page::kPageSize); CHECK(p->Offset(page_start + Page::kObjectStartOffset) == Page::kObjectStartOffset); CHECK(p->Offset(page_start + Page::kPageSize) == Page::kPageSize); CHECK(p->OffsetToAddress(Page::kObjectStartOffset) == p->ObjectAreaStart()); CHECK(p->OffsetToAddress(Page::kPageSize) == p->ObjectAreaEnd()); // test region marking VerifyRegionMarking(page_start); DeleteArray(mem); } namespace v8 { namespace internal { // Temporarily sets a given allocator in an isolate. class TestMemoryAllocatorScope { public: TestMemoryAllocatorScope(Isolate* isolate, MemoryAllocator* allocator) : isolate_(isolate), old_allocator_(isolate->memory_allocator_) { isolate->memory_allocator_ = allocator; } ~TestMemoryAllocatorScope() { isolate_->memory_allocator_ = old_allocator_; } private: Isolate* isolate_; MemoryAllocator* old_allocator_; DISALLOW_COPY_AND_ASSIGN(TestMemoryAllocatorScope); }; } } // namespace v8::internal TEST(MemoryAllocator) { OS::Setup(); Isolate* isolate = Isolate::Current(); isolate->InitializeLoggingAndCounters(); Heap* heap = isolate->heap(); CHECK(heap->ConfigureHeapDefault()); MemoryAllocator* memory_allocator = new MemoryAllocator(isolate); CHECK(memory_allocator->Setup(heap->MaxReserved(), heap->MaxExecutableSize())); TestMemoryAllocatorScope test_scope(isolate, memory_allocator); OldSpace faked_space(heap, heap->MaxReserved(), OLD_POINTER_SPACE, NOT_EXECUTABLE); int total_pages = 0; int requested = MemoryAllocator::kPagesPerChunk; int allocated; // If we request n pages, we should get n or n - 1. Page* first_page = memory_allocator->AllocatePages( requested, &allocated, &faked_space); CHECK(first_page->is_valid()); CHECK(allocated == requested || allocated == requested - 1); total_pages += allocated; Page* last_page = first_page; for (Page* p = first_page; p->is_valid(); p = p->next_page()) { CHECK(memory_allocator->IsPageInSpace(p, &faked_space)); last_page = p; } // Again, we should get n or n - 1 pages. Page* others = memory_allocator->AllocatePages( requested, &allocated, &faked_space); CHECK(others->is_valid()); CHECK(allocated == requested || allocated == requested - 1); total_pages += allocated; memory_allocator->SetNextPage(last_page, others); int page_count = 0; for (Page* p = first_page; p->is_valid(); p = p->next_page()) { CHECK(memory_allocator->IsPageInSpace(p, &faked_space)); page_count++; } CHECK(total_pages == page_count); Page* second_page = first_page->next_page(); CHECK(second_page->is_valid()); // Freeing pages at the first chunk starting at or after the second page // should free the entire second chunk. It will return the page it was passed // (since the second page was in the first chunk). Page* free_return = memory_allocator->FreePages(second_page); CHECK(free_return == second_page); memory_allocator->SetNextPage(first_page, free_return); // Freeing pages in the first chunk starting at the first page should free // the first chunk and return an invalid page. Page* invalid_page = memory_allocator->FreePages(first_page); CHECK(!invalid_page->is_valid()); memory_allocator->TearDown(); delete memory_allocator; } TEST(NewSpace) { OS::Setup(); Isolate* isolate = Isolate::Current(); isolate->InitializeLoggingAndCounters(); Heap* heap = isolate->heap(); CHECK(heap->ConfigureHeapDefault()); MemoryAllocator* memory_allocator = new MemoryAllocator(isolate); CHECK(memory_allocator->Setup(heap->MaxReserved(), heap->MaxExecutableSize())); TestMemoryAllocatorScope test_scope(isolate, memory_allocator); NewSpace new_space(heap); void* chunk = memory_allocator->ReserveInitialChunk(4 * heap->ReservedSemiSpaceSize()); CHECK(chunk != NULL); Address start = RoundUp(static_cast<Address>(chunk), 2 * heap->ReservedSemiSpaceSize()); CHECK(new_space.Setup(start, 2 * heap->ReservedSemiSpaceSize())); CHECK(new_space.HasBeenSetup()); while (new_space.Available() >= Page::kMaxHeapObjectSize) { Object* obj = new_space.AllocateRaw(Page::kMaxHeapObjectSize)->ToObjectUnchecked(); CHECK(new_space.Contains(HeapObject::cast(obj))); } new_space.TearDown(); memory_allocator->TearDown(); delete memory_allocator; } TEST(OldSpace) { OS::Setup(); Isolate* isolate = Isolate::Current(); isolate->InitializeLoggingAndCounters(); Heap* heap = isolate->heap(); CHECK(heap->ConfigureHeapDefault()); MemoryAllocator* memory_allocator = new MemoryAllocator(isolate); CHECK(memory_allocator->Setup(heap->MaxReserved(), heap->MaxExecutableSize())); TestMemoryAllocatorScope test_scope(isolate, memory_allocator); OldSpace* s = new OldSpace(heap, heap->MaxOldGenerationSize(), OLD_POINTER_SPACE, NOT_EXECUTABLE); CHECK(s != NULL); void* chunk = memory_allocator->ReserveInitialChunk( 4 * heap->ReservedSemiSpaceSize()); CHECK(chunk != NULL); Address start = static_cast<Address>(chunk); size_t size = RoundUp(start, 2 * heap->ReservedSemiSpaceSize()) - start; CHECK(s->Setup(start, size)); while (s->Available() > 0) { s->AllocateRaw(Page::kMaxHeapObjectSize)->ToObjectUnchecked(); } s->TearDown(); delete s; memory_allocator->TearDown(); delete memory_allocator; } TEST(LargeObjectSpace) { v8::V8::Initialize(); LargeObjectSpace* lo = HEAP->lo_space(); CHECK(lo != NULL); Map* faked_map = reinterpret_cast<Map*>(HeapObject::FromAddress(0)); int lo_size = Page::kPageSize; Object* obj = lo->AllocateRaw(lo_size)->ToObjectUnchecked(); CHECK(obj->IsHeapObject()); HeapObject* ho = HeapObject::cast(obj); ho->set_map(faked_map); CHECK(lo->Contains(HeapObject::cast(obj))); CHECK(lo->FindObject(ho->address()) == obj); CHECK(lo->Contains(ho)); while (true) { intptr_t available = lo->Available(); { MaybeObject* maybe_obj = lo->AllocateRaw(lo_size); if (!maybe_obj->ToObject(&obj)) break; } HeapObject::cast(obj)->set_map(faked_map); CHECK(lo->Available() < available); }; CHECK(!lo->IsEmpty()); CHECK(lo->AllocateRaw(lo_size)->IsFailure()); }