// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_X64) #include "lithium-allocator-inl.h" #include "x64/lithium-x64.h" #include "x64/lithium-codegen-x64.h" namespace v8 { namespace internal { #define DEFINE_COMPILE(type) \ void L##type::CompileToNative(LCodeGen* generator) { \ generator->Do##type(this); \ } LITHIUM_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE) #undef DEFINE_COMPILE LOsrEntry::LOsrEntry() { for (int i = 0; i < Register::kNumAllocatableRegisters; ++i) { register_spills_[i] = NULL; } for (int i = 0; i < DoubleRegister::kNumAllocatableRegisters; ++i) { double_register_spills_[i] = NULL; } } void LOsrEntry::MarkSpilledRegister(int allocation_index, LOperand* spill_operand) { ASSERT(spill_operand->IsStackSlot()); ASSERT(register_spills_[allocation_index] == NULL); register_spills_[allocation_index] = spill_operand; } void LOsrEntry::MarkSpilledDoubleRegister(int allocation_index, LOperand* spill_operand) { ASSERT(spill_operand->IsDoubleStackSlot()); ASSERT(double_register_spills_[allocation_index] == NULL); double_register_spills_[allocation_index] = spill_operand; } #ifdef DEBUG void LInstruction::VerifyCall() { // Call instructions can use only fixed registers as // temporaries and outputs because all registers // are blocked by the calling convention. // Inputs must use a fixed register. ASSERT(Output() == NULL || LUnallocated::cast(Output())->HasFixedPolicy() || !LUnallocated::cast(Output())->HasRegisterPolicy()); for (UseIterator it(this); it.HasNext(); it.Advance()) { LOperand* operand = it.Next(); ASSERT(LUnallocated::cast(operand)->HasFixedPolicy() || !LUnallocated::cast(operand)->HasRegisterPolicy()); } for (TempIterator it(this); it.HasNext(); it.Advance()) { LOperand* operand = it.Next(); ASSERT(LUnallocated::cast(operand)->HasFixedPolicy() || !LUnallocated::cast(operand)->HasRegisterPolicy()); } } #endif void LInstruction::PrintTo(StringStream* stream) { stream->Add("%s ", this->Mnemonic()); PrintOutputOperandTo(stream); PrintDataTo(stream); if (HasEnvironment()) { stream->Add(" "); environment()->PrintTo(stream); } if (HasPointerMap()) { stream->Add(" "); pointer_map()->PrintTo(stream); } } template<int R, int I, int T> void LTemplateInstruction<R, I, T>::PrintDataTo(StringStream* stream) { stream->Add("= "); inputs_.PrintOperandsTo(stream); } template<int R, int I, int T> void LTemplateInstruction<R, I, T>::PrintOutputOperandTo(StringStream* stream) { results_.PrintOperandsTo(stream); } template<typename T, int N> void OperandContainer<T, N>::PrintOperandsTo(StringStream* stream) { for (int i = 0; i < N; i++) { if (i > 0) stream->Add(" "); elems_[i]->PrintTo(stream); } } void LLabel::PrintDataTo(StringStream* stream) { LGap::PrintDataTo(stream); LLabel* rep = replacement(); if (rep != NULL) { stream->Add(" Dead block replaced with B%d", rep->block_id()); } } bool LGap::IsRedundant() const { for (int i = 0; i < 4; i++) { if (parallel_moves_[i] != NULL && !parallel_moves_[i]->IsRedundant()) { return false; } } return true; } void LGap::PrintDataTo(StringStream* stream) { for (int i = 0; i < 4; i++) { stream->Add("("); if (parallel_moves_[i] != NULL) { parallel_moves_[i]->PrintDataTo(stream); } stream->Add(") "); } } const char* LArithmeticD::Mnemonic() const { switch (op()) { case Token::ADD: return "add-d"; case Token::SUB: return "sub-d"; case Token::MUL: return "mul-d"; case Token::DIV: return "div-d"; case Token::MOD: return "mod-d"; default: UNREACHABLE(); return NULL; } } const char* LArithmeticT::Mnemonic() const { switch (op()) { case Token::ADD: return "add-t"; case Token::SUB: return "sub-t"; case Token::MUL: return "mul-t"; case Token::MOD: return "mod-t"; case Token::DIV: return "div-t"; case Token::BIT_AND: return "bit-and-t"; case Token::BIT_OR: return "bit-or-t"; case Token::BIT_XOR: return "bit-xor-t"; case Token::SHL: return "sal-t"; case Token::SAR: return "sar-t"; case Token::SHR: return "shr-t"; default: UNREACHABLE(); return NULL; } } void LGoto::PrintDataTo(StringStream* stream) { stream->Add("B%d", block_id()); } void LBranch::PrintDataTo(StringStream* stream) { stream->Add("B%d | B%d on ", true_block_id(), false_block_id()); InputAt(0)->PrintTo(stream); } void LCmpIDAndBranch::PrintDataTo(StringStream* stream) { stream->Add("if "); InputAt(0)->PrintTo(stream); stream->Add(" %s ", Token::String(op())); InputAt(1)->PrintTo(stream); stream->Add(" then B%d else B%d", true_block_id(), false_block_id()); } void LIsNullAndBranch::PrintDataTo(StringStream* stream) { stream->Add("if "); InputAt(0)->PrintTo(stream); stream->Add(is_strict() ? " === null" : " == null"); stream->Add(" then B%d else B%d", true_block_id(), false_block_id()); } void LIsObjectAndBranch::PrintDataTo(StringStream* stream) { stream->Add("if is_object("); InputAt(0)->PrintTo(stream); stream->Add(") then B%d else B%d", true_block_id(), false_block_id()); } void LIsSmiAndBranch::PrintDataTo(StringStream* stream) { stream->Add("if is_smi("); InputAt(0)->PrintTo(stream); stream->Add(") then B%d else B%d", true_block_id(), false_block_id()); } void LHasInstanceTypeAndBranch::PrintDataTo(StringStream* stream) { stream->Add("if has_instance_type("); InputAt(0)->PrintTo(stream); stream->Add(") then B%d else B%d", true_block_id(), false_block_id()); } void LHasCachedArrayIndexAndBranch::PrintDataTo(StringStream* stream) { stream->Add("if has_cached_array_index("); InputAt(0)->PrintTo(stream); stream->Add(") then B%d else B%d", true_block_id(), false_block_id()); } void LClassOfTestAndBranch::PrintDataTo(StringStream* stream) { stream->Add("if class_of_test("); InputAt(0)->PrintTo(stream); stream->Add(", \"%o\") then B%d else B%d", *hydrogen()->class_name(), true_block_id(), false_block_id()); } void LTypeofIs::PrintDataTo(StringStream* stream) { InputAt(0)->PrintTo(stream); stream->Add(" == \"%s\"", *hydrogen()->type_literal()->ToCString()); } void LTypeofIsAndBranch::PrintDataTo(StringStream* stream) { stream->Add("if typeof "); InputAt(0)->PrintTo(stream); stream->Add(" == \"%s\" then B%d else B%d", *hydrogen()->type_literal()->ToCString(), true_block_id(), false_block_id()); } void LCallConstantFunction::PrintDataTo(StringStream* stream) { stream->Add("#%d / ", arity()); } void LUnaryMathOperation::PrintDataTo(StringStream* stream) { stream->Add("/%s ", hydrogen()->OpName()); InputAt(0)->PrintTo(stream); } void LLoadContextSlot::PrintDataTo(StringStream* stream) { InputAt(0)->PrintTo(stream); stream->Add("[%d]", slot_index()); } void LStoreContextSlot::PrintDataTo(StringStream* stream) { InputAt(0)->PrintTo(stream); stream->Add("[%d] <- ", slot_index()); InputAt(1)->PrintTo(stream); } void LCallKeyed::PrintDataTo(StringStream* stream) { stream->Add("[rcx] #%d / ", arity()); } void LCallNamed::PrintDataTo(StringStream* stream) { SmartPointer<char> name_string = name()->ToCString(); stream->Add("%s #%d / ", *name_string, arity()); } void LCallGlobal::PrintDataTo(StringStream* stream) { SmartPointer<char> name_string = name()->ToCString(); stream->Add("%s #%d / ", *name_string, arity()); } void LCallKnownGlobal::PrintDataTo(StringStream* stream) { stream->Add("#%d / ", arity()); } void LCallNew::PrintDataTo(StringStream* stream) { stream->Add("= "); InputAt(0)->PrintTo(stream); stream->Add(" #%d / ", arity()); } void LClassOfTest::PrintDataTo(StringStream* stream) { stream->Add("= class_of_test("); InputAt(0)->PrintTo(stream); stream->Add(", \"%o\")", *hydrogen()->class_name()); } void LAccessArgumentsAt::PrintDataTo(StringStream* stream) { arguments()->PrintTo(stream); stream->Add(" length "); length()->PrintTo(stream); stream->Add(" index "); index()->PrintTo(stream); } int LChunk::GetNextSpillIndex(bool is_double) { return spill_slot_count_++; } LOperand* LChunk::GetNextSpillSlot(bool is_double) { // All stack slots are Double stack slots on x64. // Alternatively, at some point, start using half-size // stack slots for int32 values. int index = GetNextSpillIndex(is_double); if (is_double) { return LDoubleStackSlot::Create(index); } else { return LStackSlot::Create(index); } } void LChunk::MarkEmptyBlocks() { HPhase phase("Mark empty blocks", this); for (int i = 0; i < graph()->blocks()->length(); ++i) { HBasicBlock* block = graph()->blocks()->at(i); int first = block->first_instruction_index(); int last = block->last_instruction_index(); LInstruction* first_instr = instructions()->at(first); LInstruction* last_instr = instructions()->at(last); LLabel* label = LLabel::cast(first_instr); if (last_instr->IsGoto()) { LGoto* goto_instr = LGoto::cast(last_instr); if (!goto_instr->include_stack_check() && label->IsRedundant() && !label->is_loop_header()) { bool can_eliminate = true; for (int i = first + 1; i < last && can_eliminate; ++i) { LInstruction* cur = instructions()->at(i); if (cur->IsGap()) { LGap* gap = LGap::cast(cur); if (!gap->IsRedundant()) { can_eliminate = false; } } else { can_eliminate = false; } } if (can_eliminate) { label->set_replacement(GetLabel(goto_instr->block_id())); } } } } } void LStoreNamedField::PrintDataTo(StringStream* stream) { object()->PrintTo(stream); stream->Add("."); stream->Add(*String::cast(*name())->ToCString()); stream->Add(" <- "); value()->PrintTo(stream); } void LStoreNamedGeneric::PrintDataTo(StringStream* stream) { object()->PrintTo(stream); stream->Add("."); stream->Add(*String::cast(*name())->ToCString()); stream->Add(" <- "); value()->PrintTo(stream); } void LStoreKeyedFastElement::PrintDataTo(StringStream* stream) { object()->PrintTo(stream); stream->Add("["); key()->PrintTo(stream); stream->Add("] <- "); value()->PrintTo(stream); } void LStoreKeyedGeneric::PrintDataTo(StringStream* stream) { object()->PrintTo(stream); stream->Add("["); key()->PrintTo(stream); stream->Add("] <- "); value()->PrintTo(stream); } void LChunk::AddInstruction(LInstruction* instr, HBasicBlock* block) { LGap* gap = new LGap(block); int index = -1; if (instr->IsControl()) { instructions_.Add(gap); index = instructions_.length(); instructions_.Add(instr); } else { index = instructions_.length(); instructions_.Add(instr); instructions_.Add(gap); } if (instr->HasPointerMap()) { pointer_maps_.Add(instr->pointer_map()); instr->pointer_map()->set_lithium_position(index); } } LConstantOperand* LChunk::DefineConstantOperand(HConstant* constant) { return LConstantOperand::Create(constant->id()); } int LChunk::GetParameterStackSlot(int index) const { // The receiver is at index 0, the first parameter at index 1, so we // shift all parameter indexes down by the number of parameters, and // make sure they end up negative so they are distinguishable from // spill slots. int result = index - info()->scope()->num_parameters() - 1; ASSERT(result < 0); return result; } // A parameter relative to ebp in the arguments stub. int LChunk::ParameterAt(int index) { ASSERT(-1 <= index); // -1 is the receiver. return (1 + info()->scope()->num_parameters() - index) * kPointerSize; } LGap* LChunk::GetGapAt(int index) const { return LGap::cast(instructions_[index]); } bool LChunk::IsGapAt(int index) const { return instructions_[index]->IsGap(); } int LChunk::NearestGapPos(int index) const { while (!IsGapAt(index)) index--; return index; } void LChunk::AddGapMove(int index, LOperand* from, LOperand* to) { GetGapAt(index)->GetOrCreateParallelMove(LGap::START)->AddMove(from, to); } Handle<Object> LChunk::LookupLiteral(LConstantOperand* operand) const { return HConstant::cast(graph_->LookupValue(operand->index()))->handle(); } Representation LChunk::LookupLiteralRepresentation( LConstantOperand* operand) const { return graph_->LookupValue(operand->index())->representation(); } LChunk* LChunkBuilder::Build() { ASSERT(is_unused()); chunk_ = new LChunk(info(), graph()); HPhase phase("Building chunk", chunk_); status_ = BUILDING; const ZoneList<HBasicBlock*>* blocks = graph()->blocks(); for (int i = 0; i < blocks->length(); i++) { HBasicBlock* next = NULL; if (i < blocks->length() - 1) next = blocks->at(i + 1); DoBasicBlock(blocks->at(i), next); if (is_aborted()) return NULL; } status_ = DONE; return chunk_; } void LChunkBuilder::Abort(const char* format, ...) { if (FLAG_trace_bailout) { SmartPointer<char> name(info()->shared_info()->DebugName()->ToCString()); PrintF("Aborting LChunk building in @\"%s\": ", *name); va_list arguments; va_start(arguments, format); OS::VPrint(format, arguments); va_end(arguments); PrintF("\n"); } status_ = ABORTED; } LRegister* LChunkBuilder::ToOperand(Register reg) { return LRegister::Create(Register::ToAllocationIndex(reg)); } LUnallocated* LChunkBuilder::ToUnallocated(Register reg) { return new LUnallocated(LUnallocated::FIXED_REGISTER, Register::ToAllocationIndex(reg)); } LUnallocated* LChunkBuilder::ToUnallocated(XMMRegister reg) { return new LUnallocated(LUnallocated::FIXED_DOUBLE_REGISTER, XMMRegister::ToAllocationIndex(reg)); } LOperand* LChunkBuilder::UseFixed(HValue* value, Register fixed_register) { return Use(value, ToUnallocated(fixed_register)); } LOperand* LChunkBuilder::UseFixedDouble(HValue* value, XMMRegister reg) { return Use(value, ToUnallocated(reg)); } LOperand* LChunkBuilder::UseRegister(HValue* value) { return Use(value, new LUnallocated(LUnallocated::MUST_HAVE_REGISTER)); } LOperand* LChunkBuilder::UseRegisterAtStart(HValue* value) { return Use(value, new LUnallocated(LUnallocated::MUST_HAVE_REGISTER, LUnallocated::USED_AT_START)); } LOperand* LChunkBuilder::UseTempRegister(HValue* value) { return Use(value, new LUnallocated(LUnallocated::WRITABLE_REGISTER)); } LOperand* LChunkBuilder::Use(HValue* value) { return Use(value, new LUnallocated(LUnallocated::NONE)); } LOperand* LChunkBuilder::UseAtStart(HValue* value) { return Use(value, new LUnallocated(LUnallocated::NONE, LUnallocated::USED_AT_START)); } LOperand* LChunkBuilder::UseOrConstant(HValue* value) { return value->IsConstant() ? chunk_->DefineConstantOperand(HConstant::cast(value)) : Use(value); } LOperand* LChunkBuilder::UseOrConstantAtStart(HValue* value) { return value->IsConstant() ? chunk_->DefineConstantOperand(HConstant::cast(value)) : UseAtStart(value); } LOperand* LChunkBuilder::UseRegisterOrConstant(HValue* value) { return value->IsConstant() ? chunk_->DefineConstantOperand(HConstant::cast(value)) : UseRegister(value); } LOperand* LChunkBuilder::UseRegisterOrConstantAtStart(HValue* value) { return value->IsConstant() ? chunk_->DefineConstantOperand(HConstant::cast(value)) : UseRegisterAtStart(value); } LOperand* LChunkBuilder::UseAny(HValue* value) { return value->IsConstant() ? chunk_->DefineConstantOperand(HConstant::cast(value)) : Use(value, new LUnallocated(LUnallocated::ANY)); } LOperand* LChunkBuilder::Use(HValue* value, LUnallocated* operand) { if (value->EmitAtUses()) { HInstruction* instr = HInstruction::cast(value); VisitInstruction(instr); } allocator_->RecordUse(value, operand); return operand; } template<int I, int T> LInstruction* LChunkBuilder::Define(LTemplateInstruction<1, I, T>* instr, LUnallocated* result) { allocator_->RecordDefinition(current_instruction_, result); instr->set_result(result); return instr; } template<int I, int T> LInstruction* LChunkBuilder::Define(LTemplateInstruction<1, I, T>* instr) { return Define(instr, new LUnallocated(LUnallocated::NONE)); } template<int I, int T> LInstruction* LChunkBuilder::DefineAsRegister( LTemplateInstruction<1, I, T>* instr) { return Define(instr, new LUnallocated(LUnallocated::MUST_HAVE_REGISTER)); } template<int I, int T> LInstruction* LChunkBuilder::DefineAsSpilled( LTemplateInstruction<1, I, T>* instr, int index) { return Define(instr, new LUnallocated(LUnallocated::FIXED_SLOT, index)); } template<int I, int T> LInstruction* LChunkBuilder::DefineSameAsFirst( LTemplateInstruction<1, I, T>* instr) { return Define(instr, new LUnallocated(LUnallocated::SAME_AS_FIRST_INPUT)); } template<int I, int T> LInstruction* LChunkBuilder::DefineFixed(LTemplateInstruction<1, I, T>* instr, Register reg) { return Define(instr, ToUnallocated(reg)); } template<int I, int T> LInstruction* LChunkBuilder::DefineFixedDouble( LTemplateInstruction<1, I, T>* instr, XMMRegister reg) { return Define(instr, ToUnallocated(reg)); } LInstruction* LChunkBuilder::AssignEnvironment(LInstruction* instr) { HEnvironment* hydrogen_env = current_block_->last_environment(); instr->set_environment(CreateEnvironment(hydrogen_env)); return instr; } LInstruction* LChunkBuilder::SetInstructionPendingDeoptimizationEnvironment( LInstruction* instr, int ast_id) { ASSERT(instruction_pending_deoptimization_environment_ == NULL); ASSERT(pending_deoptimization_ast_id_ == AstNode::kNoNumber); instruction_pending_deoptimization_environment_ = instr; pending_deoptimization_ast_id_ = ast_id; return instr; } void LChunkBuilder::ClearInstructionPendingDeoptimizationEnvironment() { instruction_pending_deoptimization_environment_ = NULL; pending_deoptimization_ast_id_ = AstNode::kNoNumber; } LInstruction* LChunkBuilder::MarkAsCall(LInstruction* instr, HInstruction* hinstr, CanDeoptimize can_deoptimize) { #ifdef DEBUG instr->VerifyCall(); #endif instr->MarkAsCall(); instr = AssignPointerMap(instr); if (hinstr->HasSideEffects()) { ASSERT(hinstr->next()->IsSimulate()); HSimulate* sim = HSimulate::cast(hinstr->next()); instr = SetInstructionPendingDeoptimizationEnvironment( instr, sim->ast_id()); } // If instruction does not have side-effects lazy deoptimization // after the call will try to deoptimize to the point before the call. // Thus we still need to attach environment to this call even if // call sequence can not deoptimize eagerly. bool needs_environment = (can_deoptimize == CAN_DEOPTIMIZE_EAGERLY) || !hinstr->HasSideEffects(); if (needs_environment && !instr->HasEnvironment()) { instr = AssignEnvironment(instr); } return instr; } LInstruction* LChunkBuilder::MarkAsSaveDoubles(LInstruction* instr) { instr->MarkAsSaveDoubles(); return instr; } LInstruction* LChunkBuilder::AssignPointerMap(LInstruction* instr) { ASSERT(!instr->HasPointerMap()); instr->set_pointer_map(new LPointerMap(position_)); return instr; } LUnallocated* LChunkBuilder::TempRegister() { LUnallocated* operand = new LUnallocated(LUnallocated::MUST_HAVE_REGISTER); allocator_->RecordTemporary(operand); return operand; } LOperand* LChunkBuilder::FixedTemp(Register reg) { LUnallocated* operand = ToUnallocated(reg); allocator_->RecordTemporary(operand); return operand; } LOperand* LChunkBuilder::FixedTemp(XMMRegister reg) { LUnallocated* operand = ToUnallocated(reg); allocator_->RecordTemporary(operand); return operand; } LInstruction* LChunkBuilder::DoBlockEntry(HBlockEntry* instr) { return new LLabel(instr->block()); } LInstruction* LChunkBuilder::DoDeoptimize(HDeoptimize* instr) { return AssignEnvironment(new LDeoptimize); } LInstruction* LChunkBuilder::DoBit(Token::Value op, HBitwiseBinaryOperation* instr) { if (instr->representation().IsInteger32()) { ASSERT(instr->left()->representation().IsInteger32()); ASSERT(instr->right()->representation().IsInteger32()); LOperand* left = UseRegisterAtStart(instr->LeastConstantOperand()); LOperand* right = UseOrConstantAtStart(instr->MostConstantOperand()); return DefineSameAsFirst(new LBitI(op, left, right)); } else { ASSERT(instr->representation().IsTagged()); ASSERT(instr->left()->representation().IsTagged()); ASSERT(instr->right()->representation().IsTagged()); LOperand* left = UseFixed(instr->left(), rdx); LOperand* right = UseFixed(instr->right(), rax); LArithmeticT* result = new LArithmeticT(op, left, right); return MarkAsCall(DefineFixed(result, rax), instr); } } LInstruction* LChunkBuilder::DoShift(Token::Value op, HBitwiseBinaryOperation* instr) { if (instr->representation().IsTagged()) { ASSERT(instr->left()->representation().IsTagged()); ASSERT(instr->right()->representation().IsTagged()); LOperand* left = UseFixed(instr->left(), rdx); LOperand* right = UseFixed(instr->right(), rax); LArithmeticT* result = new LArithmeticT(op, left, right); return MarkAsCall(DefineFixed(result, rax), instr); } ASSERT(instr->representation().IsInteger32()); ASSERT(instr->OperandAt(0)->representation().IsInteger32()); ASSERT(instr->OperandAt(1)->representation().IsInteger32()); LOperand* left = UseRegisterAtStart(instr->OperandAt(0)); HValue* right_value = instr->OperandAt(1); LOperand* right = NULL; int constant_value = 0; if (right_value->IsConstant()) { HConstant* constant = HConstant::cast(right_value); right = chunk_->DefineConstantOperand(constant); constant_value = constant->Integer32Value() & 0x1f; } else { right = UseFixed(right_value, rcx); } // Shift operations can only deoptimize if we do a logical shift // by 0 and the result cannot be truncated to int32. bool can_deopt = (op == Token::SHR && constant_value == 0); if (can_deopt) { bool can_truncate = true; for (int i = 0; i < instr->uses()->length(); i++) { if (!instr->uses()->at(i)->CheckFlag(HValue::kTruncatingToInt32)) { can_truncate = false; break; } } can_deopt = !can_truncate; } LShiftI* result = new LShiftI(op, left, right, can_deopt); return can_deopt ? AssignEnvironment(DefineSameAsFirst(result)) : DefineSameAsFirst(result); } LInstruction* LChunkBuilder::DoArithmeticD(Token::Value op, HArithmeticBinaryOperation* instr) { ASSERT(instr->representation().IsDouble()); ASSERT(instr->left()->representation().IsDouble()); ASSERT(instr->right()->representation().IsDouble()); ASSERT(op != Token::MOD); LOperand* left = UseRegisterAtStart(instr->left()); LOperand* right = UseRegisterAtStart(instr->right()); LArithmeticD* result = new LArithmeticD(op, left, right); return DefineSameAsFirst(result); } LInstruction* LChunkBuilder::DoArithmeticT(Token::Value op, HArithmeticBinaryOperation* instr) { ASSERT(op == Token::ADD || op == Token::DIV || op == Token::MOD || op == Token::MUL || op == Token::SUB); HValue* left = instr->left(); HValue* right = instr->right(); ASSERT(left->representation().IsTagged()); ASSERT(right->representation().IsTagged()); LOperand* left_operand = UseFixed(left, rdx); LOperand* right_operand = UseFixed(right, rax); LArithmeticT* result = new LArithmeticT(op, left_operand, right_operand); return MarkAsCall(DefineFixed(result, rax), instr); } void LChunkBuilder::DoBasicBlock(HBasicBlock* block, HBasicBlock* next_block) { ASSERT(is_building()); current_block_ = block; next_block_ = next_block; if (block->IsStartBlock()) { block->UpdateEnvironment(graph_->start_environment()); argument_count_ = 0; } else if (block->predecessors()->length() == 1) { // We have a single predecessor => copy environment and outgoing // argument count from the predecessor. ASSERT(block->phis()->length() == 0); HBasicBlock* pred = block->predecessors()->at(0); HEnvironment* last_environment = pred->last_environment(); ASSERT(last_environment != NULL); // Only copy the environment, if it is later used again. if (pred->end()->SecondSuccessor() == NULL) { ASSERT(pred->end()->FirstSuccessor() == block); } else { if (pred->end()->FirstSuccessor()->block_id() > block->block_id() || pred->end()->SecondSuccessor()->block_id() > block->block_id()) { last_environment = last_environment->Copy(); } } block->UpdateEnvironment(last_environment); ASSERT(pred->argument_count() >= 0); argument_count_ = pred->argument_count(); } else { // We are at a state join => process phis. HBasicBlock* pred = block->predecessors()->at(0); // No need to copy the environment, it cannot be used later. HEnvironment* last_environment = pred->last_environment(); for (int i = 0; i < block->phis()->length(); ++i) { HPhi* phi = block->phis()->at(i); last_environment->SetValueAt(phi->merged_index(), phi); } for (int i = 0; i < block->deleted_phis()->length(); ++i) { last_environment->SetValueAt(block->deleted_phis()->at(i), graph_->GetConstantUndefined()); } block->UpdateEnvironment(last_environment); // Pick up the outgoing argument count of one of the predecessors. argument_count_ = pred->argument_count(); } HInstruction* current = block->first(); int start = chunk_->instructions()->length(); while (current != NULL && !is_aborted()) { // Code for constants in registers is generated lazily. if (!current->EmitAtUses()) { VisitInstruction(current); } current = current->next(); } int end = chunk_->instructions()->length() - 1; if (end >= start) { block->set_first_instruction_index(start); block->set_last_instruction_index(end); } block->set_argument_count(argument_count_); next_block_ = NULL; current_block_ = NULL; } void LChunkBuilder::VisitInstruction(HInstruction* current) { HInstruction* old_current = current_instruction_; current_instruction_ = current; if (current->has_position()) position_ = current->position(); LInstruction* instr = current->CompileToLithium(this); if (instr != NULL) { if (FLAG_stress_pointer_maps && !instr->HasPointerMap()) { instr = AssignPointerMap(instr); } if (FLAG_stress_environments && !instr->HasEnvironment()) { instr = AssignEnvironment(instr); } if (current->IsTest() && !instr->IsGoto()) { ASSERT(instr->IsControl()); HTest* test = HTest::cast(current); instr->set_hydrogen_value(test->value()); HBasicBlock* first = test->FirstSuccessor(); HBasicBlock* second = test->SecondSuccessor(); ASSERT(first != NULL && second != NULL); instr->SetBranchTargets(first->block_id(), second->block_id()); } else { instr->set_hydrogen_value(current); } chunk_->AddInstruction(instr, current_block_); } current_instruction_ = old_current; } LEnvironment* LChunkBuilder::CreateEnvironment(HEnvironment* hydrogen_env) { if (hydrogen_env == NULL) return NULL; LEnvironment* outer = CreateEnvironment(hydrogen_env->outer()); int ast_id = hydrogen_env->ast_id(); ASSERT(ast_id != AstNode::kNoNumber); int value_count = hydrogen_env->length(); LEnvironment* result = new LEnvironment(hydrogen_env->closure(), ast_id, hydrogen_env->parameter_count(), argument_count_, value_count, outer); int argument_index = 0; for (int i = 0; i < value_count; ++i) { HValue* value = hydrogen_env->values()->at(i); LOperand* op = NULL; if (value->IsArgumentsObject()) { op = NULL; } else if (value->IsPushArgument()) { op = new LArgument(argument_index++); } else { op = UseAny(value); } result->AddValue(op, value->representation()); } return result; } LInstruction* LChunkBuilder::DoGoto(HGoto* instr) { LGoto* result = new LGoto(instr->FirstSuccessor()->block_id(), instr->include_stack_check()); return (instr->include_stack_check()) ? AssignPointerMap(result) : result; } LInstruction* LChunkBuilder::DoTest(HTest* instr) { HValue* v = instr->value(); if (v->EmitAtUses()) { if (v->IsClassOfTest()) { HClassOfTest* compare = HClassOfTest::cast(v); ASSERT(compare->value()->representation().IsTagged()); return new LClassOfTestAndBranch(UseTempRegister(compare->value()), TempRegister()); } else if (v->IsCompare()) { HCompare* compare = HCompare::cast(v); Token::Value op = compare->token(); HValue* left = compare->left(); HValue* right = compare->right(); Representation r = compare->GetInputRepresentation(); if (r.IsInteger32()) { ASSERT(left->representation().IsInteger32()); ASSERT(right->representation().IsInteger32()); return new LCmpIDAndBranch(UseRegisterAtStart(left), UseOrConstantAtStart(right)); } else if (r.IsDouble()) { ASSERT(left->representation().IsDouble()); ASSERT(right->representation().IsDouble()); return new LCmpIDAndBranch(UseRegisterAtStart(left), UseRegisterAtStart(right)); } else { ASSERT(left->representation().IsTagged()); ASSERT(right->representation().IsTagged()); bool reversed = op == Token::GT || op == Token::LTE; LOperand* left_operand = UseFixed(left, reversed ? rax : rdx); LOperand* right_operand = UseFixed(right, reversed ? rdx : rax); LCmpTAndBranch* result = new LCmpTAndBranch(left_operand, right_operand); return MarkAsCall(result, instr); } } else if (v->IsIsSmi()) { HIsSmi* compare = HIsSmi::cast(v); ASSERT(compare->value()->representation().IsTagged()); return new LIsSmiAndBranch(Use(compare->value())); } else if (v->IsHasInstanceType()) { HHasInstanceType* compare = HHasInstanceType::cast(v); ASSERT(compare->value()->representation().IsTagged()); return new LHasInstanceTypeAndBranch( UseRegisterAtStart(compare->value())); } else if (v->IsHasCachedArrayIndex()) { HHasCachedArrayIndex* compare = HHasCachedArrayIndex::cast(v); ASSERT(compare->value()->representation().IsTagged()); return new LHasCachedArrayIndexAndBranch( UseRegisterAtStart(compare->value())); } else if (v->IsIsNull()) { HIsNull* compare = HIsNull::cast(v); ASSERT(compare->value()->representation().IsTagged()); // We only need a temp register for non-strict compare. LOperand* temp = compare->is_strict() ? NULL : TempRegister(); return new LIsNullAndBranch(UseRegisterAtStart(compare->value()), temp); } else if (v->IsIsObject()) { HIsObject* compare = HIsObject::cast(v); ASSERT(compare->value()->representation().IsTagged()); return new LIsObjectAndBranch(UseRegisterAtStart(compare->value())); } else if (v->IsCompareJSObjectEq()) { HCompareJSObjectEq* compare = HCompareJSObjectEq::cast(v); return new LCmpJSObjectEqAndBranch(UseRegisterAtStart(compare->left()), UseRegisterAtStart(compare->right())); } else if (v->IsInstanceOf()) { HInstanceOf* instance_of = HInstanceOf::cast(v); LInstanceOfAndBranch* result = new LInstanceOfAndBranch(UseFixed(instance_of->left(), rax), UseFixed(instance_of->right(), rdx)); return MarkAsCall(result, instr); } else if (v->IsTypeofIs()) { HTypeofIs* typeof_is = HTypeofIs::cast(v); return new LTypeofIsAndBranch(UseTempRegister(typeof_is->value())); } else if (v->IsIsConstructCall()) { return new LIsConstructCallAndBranch(TempRegister()); } else { if (v->IsConstant()) { if (HConstant::cast(v)->ToBoolean()) { return new LGoto(instr->FirstSuccessor()->block_id()); } else { return new LGoto(instr->SecondSuccessor()->block_id()); } } Abort("Undefined compare before branch"); return NULL; } } return new LBranch(UseRegisterAtStart(v)); } LInstruction* LChunkBuilder::DoCompareMap(HCompareMap* instr) { ASSERT(instr->value()->representation().IsTagged()); LOperand* value = UseRegisterAtStart(instr->value()); return new LCmpMapAndBranch(value); } LInstruction* LChunkBuilder::DoArgumentsLength(HArgumentsLength* length) { return DefineAsRegister(new LArgumentsLength(Use(length->value()))); } LInstruction* LChunkBuilder::DoArgumentsElements(HArgumentsElements* elems) { return DefineAsRegister(new LArgumentsElements); } LInstruction* LChunkBuilder::DoInstanceOf(HInstanceOf* instr) { LOperand* left = UseFixed(instr->left(), rax); LOperand* right = UseFixed(instr->right(), rdx); LInstanceOf* result = new LInstanceOf(left, right); return MarkAsCall(DefineFixed(result, rax), instr); } LInstruction* LChunkBuilder::DoInstanceOfKnownGlobal( HInstanceOfKnownGlobal* instr) { LInstanceOfKnownGlobal* result = new LInstanceOfKnownGlobal(UseFixed(instr->value(), rax), FixedTemp(rdi)); return MarkAsCall(DefineFixed(result, rax), instr); } LInstruction* LChunkBuilder::DoApplyArguments(HApplyArguments* instr) { LOperand* function = UseFixed(instr->function(), rdi); LOperand* receiver = UseFixed(instr->receiver(), rax); LOperand* length = UseFixed(instr->length(), rbx); LOperand* elements = UseFixed(instr->elements(), rcx); LApplyArguments* result = new LApplyArguments(function, receiver, length, elements); return MarkAsCall(DefineFixed(result, rax), instr, CAN_DEOPTIMIZE_EAGERLY); } LInstruction* LChunkBuilder::DoPushArgument(HPushArgument* instr) { ++argument_count_; LOperand* argument = UseOrConstant(instr->argument()); return new LPushArgument(argument); } LInstruction* LChunkBuilder::DoContext(HContext* instr) { return DefineAsRegister(new LContext); } LInstruction* LChunkBuilder::DoOuterContext(HOuterContext* instr) { LOperand* context = UseRegisterAtStart(instr->value()); return DefineAsRegister(new LOuterContext(context)); } LInstruction* LChunkBuilder::DoGlobalObject(HGlobalObject* instr) { return DefineAsRegister(new LGlobalObject); } LInstruction* LChunkBuilder::DoGlobalReceiver(HGlobalReceiver* instr) { LOperand* global_object = UseRegisterAtStart(instr->value()); return DefineAsRegister(new LGlobalReceiver(global_object)); } LInstruction* LChunkBuilder::DoCallConstantFunction( HCallConstantFunction* instr) { argument_count_ -= instr->argument_count(); return MarkAsCall(DefineFixed(new LCallConstantFunction, rax), instr); } LInstruction* LChunkBuilder::DoUnaryMathOperation(HUnaryMathOperation* instr) { BuiltinFunctionId op = instr->op(); if (op == kMathLog || op == kMathSin || op == kMathCos) { LOperand* input = UseFixedDouble(instr->value(), xmm1); LUnaryMathOperation* result = new LUnaryMathOperation(input); return MarkAsCall(DefineFixedDouble(result, xmm1), instr); } else { LOperand* input = UseRegisterAtStart(instr->value()); LUnaryMathOperation* result = new LUnaryMathOperation(input); switch (op) { case kMathAbs: return AssignEnvironment(AssignPointerMap(DefineSameAsFirst(result))); case kMathFloor: return AssignEnvironment(DefineAsRegister(result)); case kMathRound: return AssignEnvironment(DefineAsRegister(result)); case kMathSqrt: return DefineSameAsFirst(result); case kMathPowHalf: return DefineSameAsFirst(result); default: UNREACHABLE(); return NULL; } } } LInstruction* LChunkBuilder::DoCallKeyed(HCallKeyed* instr) { ASSERT(instr->key()->representation().IsTagged()); LOperand* key = UseFixed(instr->key(), rcx); argument_count_ -= instr->argument_count(); LCallKeyed* result = new LCallKeyed(key); return MarkAsCall(DefineFixed(result, rax), instr); } LInstruction* LChunkBuilder::DoCallNamed(HCallNamed* instr) { argument_count_ -= instr->argument_count(); return MarkAsCall(DefineFixed(new LCallNamed, rax), instr); } LInstruction* LChunkBuilder::DoCallGlobal(HCallGlobal* instr) { argument_count_ -= instr->argument_count(); return MarkAsCall(DefineFixed(new LCallGlobal, rax), instr); } LInstruction* LChunkBuilder::DoCallKnownGlobal(HCallKnownGlobal* instr) { argument_count_ -= instr->argument_count(); return MarkAsCall(DefineFixed(new LCallKnownGlobal, rax), instr); } LInstruction* LChunkBuilder::DoCallNew(HCallNew* instr) { LOperand* constructor = UseFixed(instr->constructor(), rdi); argument_count_ -= instr->argument_count(); LCallNew* result = new LCallNew(constructor); return MarkAsCall(DefineFixed(result, rax), instr); } LInstruction* LChunkBuilder::DoCallFunction(HCallFunction* instr) { argument_count_ -= instr->argument_count(); LCallFunction* result = new LCallFunction(); return MarkAsCall(DefineFixed(result, rax), instr); } LInstruction* LChunkBuilder::DoCallRuntime(HCallRuntime* instr) { argument_count_ -= instr->argument_count(); return MarkAsCall(DefineFixed(new LCallRuntime, rax), instr); } LInstruction* LChunkBuilder::DoShr(HShr* instr) { return DoShift(Token::SHR, instr); } LInstruction* LChunkBuilder::DoSar(HSar* instr) { return DoShift(Token::SAR, instr); } LInstruction* LChunkBuilder::DoShl(HShl* instr) { return DoShift(Token::SHL, instr); } LInstruction* LChunkBuilder::DoBitAnd(HBitAnd* instr) { return DoBit(Token::BIT_AND, instr); } LInstruction* LChunkBuilder::DoBitNot(HBitNot* instr) { ASSERT(instr->value()->representation().IsInteger32()); ASSERT(instr->representation().IsInteger32()); LOperand* input = UseRegisterAtStart(instr->value()); LBitNotI* result = new LBitNotI(input); return DefineSameAsFirst(result); } LInstruction* LChunkBuilder::DoBitOr(HBitOr* instr) { return DoBit(Token::BIT_OR, instr); } LInstruction* LChunkBuilder::DoBitXor(HBitXor* instr) { return DoBit(Token::BIT_XOR, instr); } LInstruction* LChunkBuilder::DoDiv(HDiv* instr) { if (instr->representation().IsDouble()) { return DoArithmeticD(Token::DIV, instr); } else if (instr->representation().IsInteger32()) { // The temporary operand is necessary to ensure that right is not allocated // into rdx. LOperand* temp = FixedTemp(rdx); LOperand* dividend = UseFixed(instr->left(), rax); LOperand* divisor = UseRegister(instr->right()); LDivI* result = new LDivI(dividend, divisor, temp); return AssignEnvironment(DefineFixed(result, rax)); } else { ASSERT(instr->representation().IsTagged()); return DoArithmeticT(Token::DIV, instr); } } LInstruction* LChunkBuilder::DoMod(HMod* instr) { if (instr->representation().IsInteger32()) { ASSERT(instr->left()->representation().IsInteger32()); ASSERT(instr->right()->representation().IsInteger32()); LInstruction* result; if (instr->HasPowerOf2Divisor()) { ASSERT(!instr->CheckFlag(HValue::kCanBeDivByZero)); LOperand* value = UseRegisterAtStart(instr->left()); LModI* mod = new LModI(value, UseOrConstant(instr->right()), NULL); result = DefineSameAsFirst(mod); } else { // The temporary operand is necessary to ensure that right is not // allocated into edx. LOperand* temp = FixedTemp(rdx); LOperand* value = UseFixed(instr->left(), rax); LOperand* divisor = UseRegister(instr->right()); LModI* mod = new LModI(value, divisor, temp); result = DefineFixed(mod, rdx); } return (instr->CheckFlag(HValue::kBailoutOnMinusZero) || instr->CheckFlag(HValue::kCanBeDivByZero)) ? AssignEnvironment(result) : result; } else if (instr->representation().IsTagged()) { return DoArithmeticT(Token::MOD, instr); } else { ASSERT(instr->representation().IsDouble()); // We call a C function for double modulo. It can't trigger a GC. // We need to use fixed result register for the call. // TODO(fschneider): Allow any register as input registers. LOperand* left = UseFixedDouble(instr->left(), xmm2); LOperand* right = UseFixedDouble(instr->right(), xmm1); LArithmeticD* result = new LArithmeticD(Token::MOD, left, right); return MarkAsCall(DefineFixedDouble(result, xmm1), instr); } } LInstruction* LChunkBuilder::DoMul(HMul* instr) { if (instr->representation().IsInteger32()) { ASSERT(instr->left()->representation().IsInteger32()); ASSERT(instr->right()->representation().IsInteger32()); LOperand* left = UseRegisterAtStart(instr->LeastConstantOperand()); LOperand* right = UseOrConstant(instr->MostConstantOperand()); LMulI* mul = new LMulI(left, right); return AssignEnvironment(DefineSameAsFirst(mul)); } else if (instr->representation().IsDouble()) { return DoArithmeticD(Token::MUL, instr); } else { ASSERT(instr->representation().IsTagged()); return DoArithmeticT(Token::MUL, instr); } } LInstruction* LChunkBuilder::DoSub(HSub* instr) { if (instr->representation().IsInteger32()) { ASSERT(instr->left()->representation().IsInteger32()); ASSERT(instr->right()->representation().IsInteger32()); LOperand* left = UseRegisterAtStart(instr->left()); LOperand* right = UseOrConstantAtStart(instr->right()); LSubI* sub = new LSubI(left, right); LInstruction* result = DefineSameAsFirst(sub); if (instr->CheckFlag(HValue::kCanOverflow)) { result = AssignEnvironment(result); } return result; } else if (instr->representation().IsDouble()) { return DoArithmeticD(Token::SUB, instr); } else { ASSERT(instr->representation().IsTagged()); return DoArithmeticT(Token::SUB, instr); } } LInstruction* LChunkBuilder::DoAdd(HAdd* instr) { if (instr->representation().IsInteger32()) { ASSERT(instr->left()->representation().IsInteger32()); ASSERT(instr->right()->representation().IsInteger32()); LOperand* left = UseRegisterAtStart(instr->LeastConstantOperand()); LOperand* right = UseOrConstantAtStart(instr->MostConstantOperand()); LAddI* add = new LAddI(left, right); LInstruction* result = DefineSameAsFirst(add); if (instr->CheckFlag(HValue::kCanOverflow)) { result = AssignEnvironment(result); } return result; } else if (instr->representation().IsDouble()) { return DoArithmeticD(Token::ADD, instr); } else { ASSERT(instr->representation().IsTagged()); return DoArithmeticT(Token::ADD, instr); } return NULL; } LInstruction* LChunkBuilder::DoPower(HPower* instr) { ASSERT(instr->representation().IsDouble()); // We call a C function for double power. It can't trigger a GC. // We need to use fixed result register for the call. Representation exponent_type = instr->right()->representation(); ASSERT(instr->left()->representation().IsDouble()); LOperand* left = UseFixedDouble(instr->left(), xmm2); LOperand* right = exponent_type.IsDouble() ? UseFixedDouble(instr->right(), xmm1) : #ifdef _WIN64 UseFixed(instr->right(), rdx); #else UseFixed(instr->right(), rdi); #endif LPower* result = new LPower(left, right); return MarkAsCall(DefineFixedDouble(result, xmm1), instr, CAN_DEOPTIMIZE_EAGERLY); } LInstruction* LChunkBuilder::DoCompare(HCompare* instr) { Token::Value op = instr->token(); Representation r = instr->GetInputRepresentation(); if (r.IsInteger32()) { ASSERT(instr->left()->representation().IsInteger32()); ASSERT(instr->right()->representation().IsInteger32()); LOperand* left = UseRegisterAtStart(instr->left()); LOperand* right = UseOrConstantAtStart(instr->right()); return DefineAsRegister(new LCmpID(left, right)); } else if (r.IsDouble()) { ASSERT(instr->left()->representation().IsDouble()); ASSERT(instr->right()->representation().IsDouble()); LOperand* left = UseRegisterAtStart(instr->left()); LOperand* right = UseRegisterAtStart(instr->right()); return DefineAsRegister(new LCmpID(left, right)); } else { ASSERT(instr->left()->representation().IsTagged()); ASSERT(instr->right()->representation().IsTagged()); bool reversed = (op == Token::GT || op == Token::LTE); LOperand* left = UseFixed(instr->left(), reversed ? rax : rdx); LOperand* right = UseFixed(instr->right(), reversed ? rdx : rax); LCmpT* result = new LCmpT(left, right); return MarkAsCall(DefineFixed(result, rax), instr); } } LInstruction* LChunkBuilder::DoCompareJSObjectEq( HCompareJSObjectEq* instr) { LOperand* left = UseRegisterAtStart(instr->left()); LOperand* right = UseRegisterAtStart(instr->right()); LCmpJSObjectEq* result = new LCmpJSObjectEq(left, right); return DefineAsRegister(result); } LInstruction* LChunkBuilder::DoIsNull(HIsNull* instr) { ASSERT(instr->value()->representation().IsTagged()); LOperand* value = UseRegisterAtStart(instr->value()); return DefineAsRegister(new LIsNull(value)); } LInstruction* LChunkBuilder::DoIsObject(HIsObject* instr) { ASSERT(instr->value()->representation().IsTagged()); LOperand* value = UseRegister(instr->value()); return DefineAsRegister(new LIsObject(value)); } LInstruction* LChunkBuilder::DoIsSmi(HIsSmi* instr) { ASSERT(instr->value()->representation().IsTagged()); LOperand* value = UseAtStart(instr->value()); return DefineAsRegister(new LIsSmi(value)); } LInstruction* LChunkBuilder::DoHasInstanceType(HHasInstanceType* instr) { ASSERT(instr->value()->representation().IsTagged()); LOperand* value = UseRegisterAtStart(instr->value()); return DefineAsRegister(new LHasInstanceType(value)); } LInstruction* LChunkBuilder::DoGetCachedArrayIndex( HGetCachedArrayIndex* instr) { ASSERT(instr->value()->representation().IsTagged()); LOperand* value = UseRegisterAtStart(instr->value()); return DefineAsRegister(new LGetCachedArrayIndex(value)); } LInstruction* LChunkBuilder::DoHasCachedArrayIndex( HHasCachedArrayIndex* instr) { ASSERT(instr->value()->representation().IsTagged()); LOperand* value = UseRegister(instr->value()); return DefineAsRegister(new LHasCachedArrayIndex(value)); } LInstruction* LChunkBuilder::DoClassOfTest(HClassOfTest* instr) { Abort("Unimplemented: %s", "DoClassOfTest"); return NULL; } LInstruction* LChunkBuilder::DoJSArrayLength(HJSArrayLength* instr) { LOperand* array = UseRegisterAtStart(instr->value()); return DefineAsRegister(new LJSArrayLength(array)); } LInstruction* LChunkBuilder::DoFixedArrayLength(HFixedArrayLength* instr) { LOperand* array = UseRegisterAtStart(instr->value()); return DefineAsRegister(new LFixedArrayLength(array)); } LInstruction* LChunkBuilder::DoExternalArrayLength( HExternalArrayLength* instr) { LOperand* array = UseRegisterAtStart(instr->value()); return DefineAsRegister(new LExternalArrayLength(array)); } LInstruction* LChunkBuilder::DoValueOf(HValueOf* instr) { LOperand* object = UseRegister(instr->value()); LValueOf* result = new LValueOf(object); return AssignEnvironment(DefineSameAsFirst(result)); } LInstruction* LChunkBuilder::DoBoundsCheck(HBoundsCheck* instr) { return AssignEnvironment(new LBoundsCheck(UseRegisterAtStart(instr->index()), Use(instr->length()))); } LInstruction* LChunkBuilder::DoAbnormalExit(HAbnormalExit* instr) { // The control instruction marking the end of a block that completed // abruptly (e.g., threw an exception). There is nothing specific to do. return NULL; } LInstruction* LChunkBuilder::DoThrow(HThrow* instr) { LOperand* value = UseFixed(instr->value(), rax); return MarkAsCall(new LThrow(value), instr); } LInstruction* LChunkBuilder::DoChange(HChange* instr) { Representation from = instr->from(); Representation to = instr->to(); if (from.IsTagged()) { if (to.IsDouble()) { LOperand* value = UseRegister(instr->value()); LNumberUntagD* res = new LNumberUntagD(value); return AssignEnvironment(DefineAsRegister(res)); } else { ASSERT(to.IsInteger32()); LOperand* value = UseRegister(instr->value()); bool needs_check = !instr->value()->type().IsSmi(); if (needs_check) { LOperand* xmm_temp = instr->CanTruncateToInt32() ? NULL : FixedTemp(xmm1); LTaggedToI* res = new LTaggedToI(value, xmm_temp); return AssignEnvironment(DefineSameAsFirst(res)); } else { return DefineSameAsFirst(new LSmiUntag(value, needs_check)); } } } else if (from.IsDouble()) { if (to.IsTagged()) { LOperand* value = UseRegister(instr->value()); LOperand* temp = TempRegister(); // Make sure that temp and result_temp are different registers. LUnallocated* result_temp = TempRegister(); LNumberTagD* result = new LNumberTagD(value, temp); return AssignPointerMap(Define(result, result_temp)); } else { ASSERT(to.IsInteger32()); LOperand* value = UseRegister(instr->value()); return AssignEnvironment(DefineAsRegister(new LDoubleToI(value))); } } else if (from.IsInteger32()) { if (to.IsTagged()) { HValue* val = instr->value(); LOperand* value = UseRegister(val); if (val->HasRange() && val->range()->IsInSmiRange()) { return DefineSameAsFirst(new LSmiTag(value)); } else { LNumberTagI* result = new LNumberTagI(value); return AssignEnvironment(AssignPointerMap(DefineSameAsFirst(result))); } } else { ASSERT(to.IsDouble()); return DefineAsRegister(new LInteger32ToDouble(Use(instr->value()))); } } UNREACHABLE(); return NULL; } LInstruction* LChunkBuilder::DoCheckNonSmi(HCheckNonSmi* instr) { LOperand* value = UseRegisterAtStart(instr->value()); return AssignEnvironment(new LCheckNonSmi(value)); } LInstruction* LChunkBuilder::DoCheckInstanceType(HCheckInstanceType* instr) { LOperand* value = UseRegisterAtStart(instr->value()); LCheckInstanceType* result = new LCheckInstanceType(value); return AssignEnvironment(result); } LInstruction* LChunkBuilder::DoCheckPrototypeMaps(HCheckPrototypeMaps* instr) { LOperand* temp = TempRegister(); LCheckPrototypeMaps* result = new LCheckPrototypeMaps(temp); return AssignEnvironment(result); } LInstruction* LChunkBuilder::DoCheckSmi(HCheckSmi* instr) { LOperand* value = UseRegisterAtStart(instr->value()); return AssignEnvironment(new LCheckSmi(value)); } LInstruction* LChunkBuilder::DoCheckFunction(HCheckFunction* instr) { LOperand* value = UseRegisterAtStart(instr->value()); return AssignEnvironment(new LCheckFunction(value)); } LInstruction* LChunkBuilder::DoCheckMap(HCheckMap* instr) { LOperand* value = UseRegisterAtStart(instr->value()); LCheckMap* result = new LCheckMap(value); return AssignEnvironment(result); } LInstruction* LChunkBuilder::DoReturn(HReturn* instr) { return new LReturn(UseFixed(instr->value(), rax)); } LInstruction* LChunkBuilder::DoConstant(HConstant* instr) { Representation r = instr->representation(); if (r.IsInteger32()) { return DefineAsRegister(new LConstantI); } else if (r.IsDouble()) { LOperand* temp = TempRegister(); return DefineAsRegister(new LConstantD(temp)); } else if (r.IsTagged()) { return DefineAsRegister(new LConstantT); } else { UNREACHABLE(); return NULL; } } LInstruction* LChunkBuilder::DoLoadGlobalCell(HLoadGlobalCell* instr) { LLoadGlobalCell* result = new LLoadGlobalCell; return instr->check_hole_value() ? AssignEnvironment(DefineAsRegister(result)) : DefineAsRegister(result); } LInstruction* LChunkBuilder::DoLoadGlobalGeneric(HLoadGlobalGeneric* instr) { LOperand* global_object = UseFixed(instr->global_object(), rax); LLoadGlobalGeneric* result = new LLoadGlobalGeneric(global_object); return MarkAsCall(DefineFixed(result, rax), instr); } LInstruction* LChunkBuilder::DoStoreGlobalCell(HStoreGlobalCell* instr) { LStoreGlobalCell* result = new LStoreGlobalCell(UseRegister(instr->value()), TempRegister()); return instr->check_hole_value() ? AssignEnvironment(result) : result; } LInstruction* LChunkBuilder::DoStoreGlobalGeneric(HStoreGlobalGeneric* instr) { LOperand* global_object = UseFixed(instr->global_object(), rdx); LOperand* value = UseFixed(instr->value(), rax); LStoreGlobalGeneric* result = new LStoreGlobalGeneric(global_object, value); return MarkAsCall(result, instr); } LInstruction* LChunkBuilder::DoLoadContextSlot(HLoadContextSlot* instr) { LOperand* context = UseRegisterAtStart(instr->value()); return DefineAsRegister(new LLoadContextSlot(context)); } LInstruction* LChunkBuilder::DoStoreContextSlot(HStoreContextSlot* instr) { LOperand* context; LOperand* value; LOperand* temp; if (instr->NeedsWriteBarrier()) { context = UseTempRegister(instr->context()); value = UseTempRegister(instr->value()); temp = TempRegister(); } else { context = UseRegister(instr->context()); value = UseRegister(instr->value()); temp = NULL; } return new LStoreContextSlot(context, value, temp); } LInstruction* LChunkBuilder::DoLoadNamedField(HLoadNamedField* instr) { ASSERT(instr->representation().IsTagged()); LOperand* obj = UseRegisterAtStart(instr->object()); return DefineAsRegister(new LLoadNamedField(obj)); } LInstruction* LChunkBuilder::DoLoadNamedFieldPolymorphic( HLoadNamedFieldPolymorphic* instr) { ASSERT(instr->representation().IsTagged()); if (instr->need_generic()) { LOperand* obj = UseFixed(instr->object(), rax); LLoadNamedFieldPolymorphic* result = new LLoadNamedFieldPolymorphic(obj); return MarkAsCall(DefineFixed(result, rax), instr); } else { LOperand* obj = UseRegisterAtStart(instr->object()); LLoadNamedFieldPolymorphic* result = new LLoadNamedFieldPolymorphic(obj); return AssignEnvironment(DefineAsRegister(result)); } } LInstruction* LChunkBuilder::DoLoadNamedGeneric(HLoadNamedGeneric* instr) { LOperand* object = UseFixed(instr->object(), rax); LLoadNamedGeneric* result = new LLoadNamedGeneric(object); return MarkAsCall(DefineFixed(result, rax), instr); } LInstruction* LChunkBuilder::DoLoadFunctionPrototype( HLoadFunctionPrototype* instr) { return AssignEnvironment(DefineAsRegister( new LLoadFunctionPrototype(UseRegister(instr->function())))); } LInstruction* LChunkBuilder::DoLoadElements(HLoadElements* instr) { LOperand* input = UseRegisterAtStart(instr->value()); return DefineAsRegister(new LLoadElements(input)); } LInstruction* LChunkBuilder::DoLoadExternalArrayPointer( HLoadExternalArrayPointer* instr) { LOperand* input = UseRegisterAtStart(instr->value()); return DefineAsRegister(new LLoadExternalArrayPointer(input)); } LInstruction* LChunkBuilder::DoLoadKeyedFastElement( HLoadKeyedFastElement* instr) { ASSERT(instr->representation().IsTagged()); ASSERT(instr->key()->representation().IsInteger32()); LOperand* obj = UseRegisterAtStart(instr->object()); LOperand* key = UseRegisterAtStart(instr->key()); LLoadKeyedFastElement* result = new LLoadKeyedFastElement(obj, key); return AssignEnvironment(DefineSameAsFirst(result)); } LInstruction* LChunkBuilder::DoLoadKeyedSpecializedArrayElement( HLoadKeyedSpecializedArrayElement* instr) { ExternalArrayType array_type = instr->array_type(); Representation representation(instr->representation()); ASSERT((representation.IsInteger32() && array_type != kExternalFloatArray) || (representation.IsDouble() && array_type == kExternalFloatArray)); ASSERT(instr->key()->representation().IsInteger32()); LOperand* external_pointer = UseRegister(instr->external_pointer()); LOperand* key = UseRegister(instr->key()); LLoadKeyedSpecializedArrayElement* result = new LLoadKeyedSpecializedArrayElement(external_pointer, key); LInstruction* load_instr = DefineAsRegister(result); // An unsigned int array load might overflow and cause a deopt, make sure it // has an environment. return (array_type == kExternalUnsignedIntArray) ? AssignEnvironment(load_instr) : load_instr; } LInstruction* LChunkBuilder::DoLoadKeyedGeneric(HLoadKeyedGeneric* instr) { LOperand* object = UseFixed(instr->object(), rdx); LOperand* key = UseFixed(instr->key(), rax); LLoadKeyedGeneric* result = new LLoadKeyedGeneric(object, key); return MarkAsCall(DefineFixed(result, rax), instr); } LInstruction* LChunkBuilder::DoStoreKeyedFastElement( HStoreKeyedFastElement* instr) { bool needs_write_barrier = instr->NeedsWriteBarrier(); ASSERT(instr->value()->representation().IsTagged()); ASSERT(instr->object()->representation().IsTagged()); ASSERT(instr->key()->representation().IsInteger32()); LOperand* obj = UseTempRegister(instr->object()); LOperand* val = needs_write_barrier ? UseTempRegister(instr->value()) : UseRegisterAtStart(instr->value()); LOperand* key = needs_write_barrier ? UseTempRegister(instr->key()) : UseRegisterOrConstantAtStart(instr->key()); return AssignEnvironment(new LStoreKeyedFastElement(obj, key, val)); } LInstruction* LChunkBuilder::DoStoreKeyedSpecializedArrayElement( HStoreKeyedSpecializedArrayElement* instr) { Representation representation(instr->value()->representation()); ExternalArrayType array_type = instr->array_type(); ASSERT((representation.IsInteger32() && array_type != kExternalFloatArray) || (representation.IsDouble() && array_type == kExternalFloatArray)); ASSERT(instr->external_pointer()->representation().IsExternal()); ASSERT(instr->key()->representation().IsInteger32()); LOperand* external_pointer = UseRegister(instr->external_pointer()); bool val_is_temp_register = array_type == kExternalPixelArray || array_type == kExternalFloatArray; LOperand* val = val_is_temp_register ? UseTempRegister(instr->value()) : UseRegister(instr->value()); LOperand* key = UseRegister(instr->key()); return new LStoreKeyedSpecializedArrayElement(external_pointer, key, val); } LInstruction* LChunkBuilder::DoStoreKeyedGeneric(HStoreKeyedGeneric* instr) { LOperand* object = UseFixed(instr->object(), rdx); LOperand* key = UseFixed(instr->key(), rcx); LOperand* value = UseFixed(instr->value(), rax); ASSERT(instr->object()->representation().IsTagged()); ASSERT(instr->key()->representation().IsTagged()); ASSERT(instr->value()->representation().IsTagged()); LStoreKeyedGeneric* result = new LStoreKeyedGeneric(object, key, value); return MarkAsCall(result, instr); } LInstruction* LChunkBuilder::DoStoreNamedField(HStoreNamedField* instr) { bool needs_write_barrier = instr->NeedsWriteBarrier(); LOperand* obj = needs_write_barrier ? UseTempRegister(instr->object()) : UseRegisterAtStart(instr->object()); LOperand* val = needs_write_barrier ? UseTempRegister(instr->value()) : UseRegister(instr->value()); // We only need a scratch register if we have a write barrier or we // have a store into the properties array (not in-object-property). LOperand* temp = (!instr->is_in_object() || needs_write_barrier) ? TempRegister() : NULL; return new LStoreNamedField(obj, val, temp); } LInstruction* LChunkBuilder::DoStoreNamedGeneric(HStoreNamedGeneric* instr) { LOperand* object = UseFixed(instr->object(), rdx); LOperand* value = UseFixed(instr->value(), rax); LStoreNamedGeneric* result = new LStoreNamedGeneric(object, value); return MarkAsCall(result, instr); } LInstruction* LChunkBuilder::DoStringCharCodeAt(HStringCharCodeAt* instr) { LOperand* string = UseRegister(instr->string()); LOperand* index = UseRegisterOrConstant(instr->index()); LStringCharCodeAt* result = new LStringCharCodeAt(string, index); return AssignEnvironment(AssignPointerMap(DefineAsRegister(result))); } LInstruction* LChunkBuilder::DoStringCharFromCode(HStringCharFromCode* instr) { LOperand* char_code = UseRegister(instr->value()); LStringCharFromCode* result = new LStringCharFromCode(char_code); return AssignPointerMap(DefineAsRegister(result)); } LInstruction* LChunkBuilder::DoStringLength(HStringLength* instr) { LOperand* string = UseRegisterAtStart(instr->value()); return DefineAsRegister(new LStringLength(string)); } LInstruction* LChunkBuilder::DoArrayLiteral(HArrayLiteral* instr) { return MarkAsCall(DefineFixed(new LArrayLiteral, rax), instr); } LInstruction* LChunkBuilder::DoObjectLiteral(HObjectLiteral* instr) { return MarkAsCall(DefineFixed(new LObjectLiteral, rax), instr); } LInstruction* LChunkBuilder::DoRegExpLiteral(HRegExpLiteral* instr) { return MarkAsCall(DefineFixed(new LRegExpLiteral, rax), instr); } LInstruction* LChunkBuilder::DoFunctionLiteral(HFunctionLiteral* instr) { return MarkAsCall(DefineFixed(new LFunctionLiteral, rax), instr); } LInstruction* LChunkBuilder::DoDeleteProperty(HDeleteProperty* instr) { LDeleteProperty* result = new LDeleteProperty(Use(instr->object()), UseOrConstant(instr->key())); return MarkAsCall(DefineFixed(result, rax), instr); } LInstruction* LChunkBuilder::DoOsrEntry(HOsrEntry* instr) { allocator_->MarkAsOsrEntry(); current_block_->last_environment()->set_ast_id(instr->ast_id()); return AssignEnvironment(new LOsrEntry); } LInstruction* LChunkBuilder::DoParameter(HParameter* instr) { int spill_index = chunk()->GetParameterStackSlot(instr->index()); return DefineAsSpilled(new LParameter, spill_index); } LInstruction* LChunkBuilder::DoUnknownOSRValue(HUnknownOSRValue* instr) { int spill_index = chunk()->GetNextSpillIndex(false); // Not double-width. if (spill_index > LUnallocated::kMaxFixedIndex) { Abort("Too many spill slots needed for OSR"); spill_index = 0; } return DefineAsSpilled(new LUnknownOSRValue, spill_index); } LInstruction* LChunkBuilder::DoCallStub(HCallStub* instr) { argument_count_ -= instr->argument_count(); return MarkAsCall(DefineFixed(new LCallStub, rax), instr); } LInstruction* LChunkBuilder::DoArgumentsObject(HArgumentsObject* instr) { // There are no real uses of the arguments object. // arguments.length and element access are supported directly on // stack arguments, and any real arguments object use causes a bailout. // So this value is never used. return NULL; } LInstruction* LChunkBuilder::DoAccessArgumentsAt(HAccessArgumentsAt* instr) { LOperand* arguments = UseRegister(instr->arguments()); LOperand* length = UseTempRegister(instr->length()); LOperand* index = Use(instr->index()); LAccessArgumentsAt* result = new LAccessArgumentsAt(arguments, length, index); return AssignEnvironment(DefineAsRegister(result)); } LInstruction* LChunkBuilder::DoToFastProperties(HToFastProperties* instr) { LOperand* object = UseFixed(instr->value(), rax); LToFastProperties* result = new LToFastProperties(object); return MarkAsCall(DefineFixed(result, rax), instr); } LInstruction* LChunkBuilder::DoTypeof(HTypeof* instr) { LTypeof* result = new LTypeof(UseAtStart(instr->value())); return MarkAsCall(DefineFixed(result, rax), instr); } LInstruction* LChunkBuilder::DoTypeofIs(HTypeofIs* instr) { return DefineSameAsFirst(new LTypeofIs(UseRegister(instr->value()))); } LInstruction* LChunkBuilder::DoIsConstructCall(HIsConstructCall* instr) { return DefineAsRegister(new LIsConstructCall); } LInstruction* LChunkBuilder::DoSimulate(HSimulate* instr) { HEnvironment* env = current_block_->last_environment(); ASSERT(env != NULL); env->set_ast_id(instr->ast_id()); env->Drop(instr->pop_count()); for (int i = 0; i < instr->values()->length(); ++i) { HValue* value = instr->values()->at(i); if (instr->HasAssignedIndexAt(i)) { env->Bind(instr->GetAssignedIndexAt(i), value); } else { env->Push(value); } } // If there is an instruction pending deoptimization environment create a // lazy bailout instruction to capture the environment. if (pending_deoptimization_ast_id_ == instr->ast_id()) { LLazyBailout* lazy_bailout = new LLazyBailout; LInstruction* result = AssignEnvironment(lazy_bailout); instruction_pending_deoptimization_environment_-> set_deoptimization_environment(result->environment()); ClearInstructionPendingDeoptimizationEnvironment(); return result; } return NULL; } LInstruction* LChunkBuilder::DoStackCheck(HStackCheck* instr) { return MarkAsCall(new LStackCheck, instr); } LInstruction* LChunkBuilder::DoEnterInlined(HEnterInlined* instr) { HEnvironment* outer = current_block_->last_environment(); HConstant* undefined = graph()->GetConstantUndefined(); HEnvironment* inner = outer->CopyForInlining(instr->closure(), instr->function(), false, undefined); current_block_->UpdateEnvironment(inner); chunk_->AddInlinedClosure(instr->closure()); return NULL; } LInstruction* LChunkBuilder::DoLeaveInlined(HLeaveInlined* instr) { HEnvironment* outer = current_block_->last_environment()->outer(); current_block_->UpdateEnvironment(outer); return NULL; } } } // namespace v8::internal #endif // V8_TARGET_ARCH_X64