// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "scopes.h" #include "bootstrapper.h" #include "compiler.h" #include "prettyprinter.h" #include "scopeinfo.h" namespace v8 { namespace internal { // ---------------------------------------------------------------------------- // A Zone allocator for use with LocalsMap. // TODO(isolates): It is probably worth it to change the Allocator class to // take a pointer to an isolate. class ZoneAllocator: public Allocator { public: /* nothing to do */ virtual ~ZoneAllocator() {} virtual void* New(size_t size) { return ZONE->New(static_cast<int>(size)); } /* ignored - Zone is freed in one fell swoop */ virtual void Delete(void* p) {} }; static ZoneAllocator LocalsMapAllocator; // ---------------------------------------------------------------------------- // Implementation of LocalsMap // // Note: We are storing the handle locations as key values in the hash map. // When inserting a new variable via Declare(), we rely on the fact that // the handle location remains alive for the duration of that variable // use. Because a Variable holding a handle with the same location exists // this is ensured. static bool Match(void* key1, void* key2) { String* name1 = *reinterpret_cast<String**>(key1); String* name2 = *reinterpret_cast<String**>(key2); ASSERT(name1->IsSymbol()); ASSERT(name2->IsSymbol()); return name1 == name2; } // Dummy constructor VariableMap::VariableMap(bool gotta_love_static_overloading) : HashMap() {} VariableMap::VariableMap() : HashMap(Match, &LocalsMapAllocator, 8) {} VariableMap::~VariableMap() {} Variable* VariableMap::Declare(Scope* scope, Handle<String> name, Variable::Mode mode, bool is_valid_lhs, Variable::Kind kind) { HashMap::Entry* p = HashMap::Lookup(name.location(), name->Hash(), true); if (p->value == NULL) { // The variable has not been declared yet -> insert it. ASSERT(p->key == name.location()); p->value = new Variable(scope, name, mode, is_valid_lhs, kind); } return reinterpret_cast<Variable*>(p->value); } Variable* VariableMap::Lookup(Handle<String> name) { HashMap::Entry* p = HashMap::Lookup(name.location(), name->Hash(), false); if (p != NULL) { ASSERT(*reinterpret_cast<String**>(p->key) == *name); ASSERT(p->value != NULL); return reinterpret_cast<Variable*>(p->value); } return NULL; } // ---------------------------------------------------------------------------- // Implementation of Scope // Dummy constructor Scope::Scope(Type type) : inner_scopes_(0), variables_(false), temps_(0), params_(0), unresolved_(0), decls_(0) { SetDefaults(type, NULL, Handle<SerializedScopeInfo>::null()); ASSERT(!resolved()); } Scope::Scope(Scope* outer_scope, Type type) : inner_scopes_(4), variables_(), temps_(4), params_(4), unresolved_(16), decls_(4) { SetDefaults(type, outer_scope, Handle<SerializedScopeInfo>::null()); // At some point we might want to provide outer scopes to // eval scopes (by walking the stack and reading the scope info). // In that case, the ASSERT below needs to be adjusted. ASSERT((type == GLOBAL_SCOPE || type == EVAL_SCOPE) == (outer_scope == NULL)); ASSERT(!HasIllegalRedeclaration()); ASSERT(!resolved()); } Scope::Scope(Scope* inner_scope, Handle<SerializedScopeInfo> scope_info) : inner_scopes_(4), variables_(), temps_(4), params_(4), unresolved_(16), decls_(4) { ASSERT(!scope_info.is_null()); SetDefaults(FUNCTION_SCOPE, NULL, scope_info); ASSERT(resolved()); if (scope_info->HasHeapAllocatedLocals()) { num_heap_slots_ = scope_info_->NumberOfContextSlots(); } AddInnerScope(inner_scope); // This scope's arguments shadow (if present) is context-allocated if an inner // scope accesses this one's parameters. Allocate the arguments_shadow_ // variable if necessary. Isolate* isolate = Isolate::Current(); Variable::Mode mode; int arguments_shadow_index = scope_info_->ContextSlotIndex( isolate->heap()->arguments_shadow_symbol(), &mode); if (arguments_shadow_index >= 0) { ASSERT(mode == Variable::INTERNAL); arguments_shadow_ = new Variable( this, isolate->factory()->arguments_shadow_symbol(), Variable::INTERNAL, true, Variable::ARGUMENTS); arguments_shadow_->set_rewrite( new Slot(arguments_shadow_, Slot::CONTEXT, arguments_shadow_index)); arguments_shadow_->set_is_used(true); } } void Scope::SetDefaults(Type type, Scope* outer_scope, Handle<SerializedScopeInfo> scope_info) { outer_scope_ = outer_scope; type_ = type; scope_name_ = FACTORY->empty_symbol(); dynamics_ = NULL; receiver_ = NULL; function_ = NULL; arguments_ = NULL; arguments_shadow_ = NULL; illegal_redecl_ = NULL; scope_inside_with_ = false; scope_contains_with_ = false; scope_calls_eval_ = false; // Inherit the strict mode from the parent scope. strict_mode_ = (outer_scope != NULL) && outer_scope->strict_mode_; outer_scope_calls_eval_ = false; inner_scope_calls_eval_ = false; outer_scope_is_eval_scope_ = false; force_eager_compilation_ = false; num_var_or_const_ = 0; num_stack_slots_ = 0; num_heap_slots_ = 0; scope_info_ = scope_info; } Scope* Scope::DeserializeScopeChain(CompilationInfo* info, Scope* global_scope) { ASSERT(!info->closure().is_null()); // If we have a serialized scope info, reuse it. Scope* innermost_scope = NULL; Scope* scope = NULL; SerializedScopeInfo* scope_info = info->closure()->shared()->scope_info(); if (scope_info != SerializedScopeInfo::Empty()) { JSFunction* current = *info->closure(); do { current = current->context()->closure(); Handle<SerializedScopeInfo> scope_info(current->shared()->scope_info()); if (*scope_info != SerializedScopeInfo::Empty()) { scope = new Scope(scope, scope_info); if (innermost_scope == NULL) innermost_scope = scope; } else { ASSERT(current->context()->IsGlobalContext()); } } while (!current->context()->IsGlobalContext()); } global_scope->AddInnerScope(scope); if (innermost_scope == NULL) innermost_scope = global_scope; return innermost_scope; } bool Scope::Analyze(CompilationInfo* info) { ASSERT(info->function() != NULL); Scope* top = info->function()->scope(); while (top->outer_scope() != NULL) top = top->outer_scope(); top->AllocateVariables(info->calling_context()); #ifdef DEBUG if (info->isolate()->bootstrapper()->IsActive() ? FLAG_print_builtin_scopes : FLAG_print_scopes) { info->function()->scope()->Print(); } #endif info->SetScope(info->function()->scope()); return true; // Can not fail. } void Scope::Initialize(bool inside_with) { ASSERT(!resolved()); // Add this scope as a new inner scope of the outer scope. if (outer_scope_ != NULL) { outer_scope_->inner_scopes_.Add(this); scope_inside_with_ = outer_scope_->scope_inside_with_ || inside_with; } else { scope_inside_with_ = inside_with; } // Declare convenience variables. // Declare and allocate receiver (even for the global scope, and even // if naccesses_ == 0). // NOTE: When loading parameters in the global scope, we must take // care not to access them as properties of the global object, but // instead load them directly from the stack. Currently, the only // such parameter is 'this' which is passed on the stack when // invoking scripts Variable* var = variables_.Declare(this, FACTORY->this_symbol(), Variable::VAR, false, Variable::THIS); var->set_rewrite(new Slot(var, Slot::PARAMETER, -1)); receiver_ = var; if (is_function_scope()) { // Declare 'arguments' variable which exists in all functions. // Note that it might never be accessed, in which case it won't be // allocated during variable allocation. variables_.Declare(this, FACTORY->arguments_symbol(), Variable::VAR, true, Variable::ARGUMENTS); } } Variable* Scope::LocalLookup(Handle<String> name) { Variable* result = variables_.Lookup(name); if (result != NULL || !resolved()) { return result; } // If the scope is resolved, we can find a variable in serialized scope info. // We should never lookup 'arguments' in this scope // as it is implicitly present in any scope. ASSERT(*name != *FACTORY->arguments_symbol()); // Assert that there is no local slot with the given name. ASSERT(scope_info_->StackSlotIndex(*name) < 0); // Check context slot lookup. Variable::Mode mode; int index = scope_info_->ContextSlotIndex(*name, &mode); if (index >= 0) { Variable* var = variables_.Declare(this, name, mode, true, Variable::NORMAL); var->set_rewrite(new Slot(var, Slot::CONTEXT, index)); return var; } index = scope_info_->ParameterIndex(*name); if (index >= 0) { // ".arguments" must be present in context slots. ASSERT(arguments_shadow_ != NULL); Variable* var = variables_.Declare(this, name, Variable::VAR, true, Variable::NORMAL); Property* rewrite = new Property(new VariableProxy(arguments_shadow_), new Literal(Handle<Object>(Smi::FromInt(index))), RelocInfo::kNoPosition, Property::SYNTHETIC); rewrite->set_is_arguments_access(true); var->set_rewrite(rewrite); return var; } index = scope_info_->FunctionContextSlotIndex(*name); if (index >= 0) { // Check that there is no local slot with the given name. ASSERT(scope_info_->StackSlotIndex(*name) < 0); Variable* var = variables_.Declare(this, name, Variable::VAR, true, Variable::NORMAL); var->set_rewrite(new Slot(var, Slot::CONTEXT, index)); return var; } return NULL; } Variable* Scope::Lookup(Handle<String> name) { for (Scope* scope = this; scope != NULL; scope = scope->outer_scope()) { Variable* var = scope->LocalLookup(name); if (var != NULL) return var; } return NULL; } Variable* Scope::DeclareFunctionVar(Handle<String> name) { ASSERT(is_function_scope() && function_ == NULL); function_ = new Variable(this, name, Variable::CONST, true, Variable::NORMAL); return function_; } Variable* Scope::DeclareLocal(Handle<String> name, Variable::Mode mode, LocalType type) { // DYNAMIC variables are introduces during variable allocation, // INTERNAL variables are allocated explicitly, and TEMPORARY // variables are allocated via NewTemporary(). ASSERT(!resolved()); ASSERT(mode == Variable::VAR || mode == Variable::CONST); if (type == VAR_OR_CONST) { num_var_or_const_++; } return variables_.Declare(this, name, mode, true, Variable::NORMAL); } Variable* Scope::DeclareGlobal(Handle<String> name) { ASSERT(is_global_scope()); return variables_.Declare(this, name, Variable::DYNAMIC_GLOBAL, true, Variable::NORMAL); } void Scope::AddParameter(Variable* var) { ASSERT(is_function_scope()); ASSERT(LocalLookup(var->name()) == var); params_.Add(var); } VariableProxy* Scope::NewUnresolved(Handle<String> name, bool inside_with, int position) { // Note that we must not share the unresolved variables with // the same name because they may be removed selectively via // RemoveUnresolved(). ASSERT(!resolved()); VariableProxy* proxy = new VariableProxy(name, false, inside_with, position); unresolved_.Add(proxy); return proxy; } void Scope::RemoveUnresolved(VariableProxy* var) { // Most likely (always?) any variable we want to remove // was just added before, so we search backwards. for (int i = unresolved_.length(); i-- > 0;) { if (unresolved_[i] == var) { unresolved_.Remove(i); return; } } } Variable* Scope::NewTemporary(Handle<String> name) { ASSERT(!resolved()); Variable* var = new Variable(this, name, Variable::TEMPORARY, true, Variable::NORMAL); temps_.Add(var); return var; } void Scope::AddDeclaration(Declaration* declaration) { decls_.Add(declaration); } void Scope::SetIllegalRedeclaration(Expression* expression) { // Record only the first illegal redeclaration. if (!HasIllegalRedeclaration()) { illegal_redecl_ = expression; } ASSERT(HasIllegalRedeclaration()); } void Scope::VisitIllegalRedeclaration(AstVisitor* visitor) { ASSERT(HasIllegalRedeclaration()); illegal_redecl_->Accept(visitor); } template<class Allocator> void Scope::CollectUsedVariables(List<Variable*, Allocator>* locals) { // Collect variables in this scope. // Note that the function_ variable - if present - is not // collected here but handled separately in ScopeInfo // which is the current user of this function). for (int i = 0; i < temps_.length(); i++) { Variable* var = temps_[i]; if (var->is_used()) { locals->Add(var); } } for (VariableMap::Entry* p = variables_.Start(); p != NULL; p = variables_.Next(p)) { Variable* var = reinterpret_cast<Variable*>(p->value); if (var->is_used()) { locals->Add(var); } } } // Make sure the method gets instantiated by the template system. template void Scope::CollectUsedVariables( List<Variable*, FreeStoreAllocationPolicy>* locals); template void Scope::CollectUsedVariables( List<Variable*, PreallocatedStorage>* locals); template void Scope::CollectUsedVariables( List<Variable*, ZoneListAllocationPolicy>* locals); void Scope::AllocateVariables(Handle<Context> context) { ASSERT(outer_scope_ == NULL); // eval or global scopes only // 1) Propagate scope information. // If we are in an eval scope, we may have other outer scopes about // which we don't know anything at this point. Thus we must be conservative // and assume they may invoke eval themselves. Eventually we could capture // this information in the ScopeInfo and then use it here (by traversing // the call chain stack, at compile time). bool eval_scope = is_eval_scope(); PropagateScopeInfo(eval_scope, eval_scope); // 2) Resolve variables. Scope* global_scope = NULL; if (is_global_scope()) global_scope = this; ResolveVariablesRecursively(global_scope, context); // 3) Allocate variables. AllocateVariablesRecursively(); } bool Scope::AllowsLazyCompilation() const { return !force_eager_compilation_ && HasTrivialOuterContext(); } bool Scope::HasTrivialContext() const { // A function scope has a trivial context if it always is the global // context. We iteratively scan out the context chain to see if // there is anything that makes this scope non-trivial; otherwise we // return true. for (const Scope* scope = this; scope != NULL; scope = scope->outer_scope_) { if (scope->is_eval_scope()) return false; if (scope->scope_inside_with_) return false; if (scope->num_heap_slots_ > 0) return false; } return true; } bool Scope::HasTrivialOuterContext() const { Scope* outer = outer_scope_; if (outer == NULL) return true; // Note that the outer context may be trivial in general, but the current // scope may be inside a 'with' statement in which case the outer context // for this scope is not trivial. return !scope_inside_with_ && outer->HasTrivialContext(); } int Scope::ContextChainLength(Scope* scope) { int n = 0; for (Scope* s = this; s != scope; s = s->outer_scope_) { ASSERT(s != NULL); // scope must be in the scope chain if (s->num_heap_slots() > 0) n++; } return n; } #ifdef DEBUG static const char* Header(Scope::Type type) { switch (type) { case Scope::EVAL_SCOPE: return "eval"; case Scope::FUNCTION_SCOPE: return "function"; case Scope::GLOBAL_SCOPE: return "global"; } UNREACHABLE(); return NULL; } static void Indent(int n, const char* str) { PrintF("%*s%s", n, "", str); } static void PrintName(Handle<String> name) { SmartPointer<char> s = name->ToCString(DISALLOW_NULLS); PrintF("%s", *s); } static void PrintVar(PrettyPrinter* printer, int indent, Variable* var) { if (var->is_used() || var->rewrite() != NULL) { Indent(indent, Variable::Mode2String(var->mode())); PrintF(" "); PrintName(var->name()); PrintF("; // "); if (var->rewrite() != NULL) { PrintF("%s, ", printer->Print(var->rewrite())); if (var->is_accessed_from_inner_scope()) PrintF(", "); } if (var->is_accessed_from_inner_scope()) PrintF("inner scope access"); PrintF("\n"); } } static void PrintMap(PrettyPrinter* printer, int indent, VariableMap* map) { for (VariableMap::Entry* p = map->Start(); p != NULL; p = map->Next(p)) { Variable* var = reinterpret_cast<Variable*>(p->value); PrintVar(printer, indent, var); } } void Scope::Print(int n) { int n0 = (n > 0 ? n : 0); int n1 = n0 + 2; // indentation // Print header. Indent(n0, Header(type_)); if (scope_name_->length() > 0) { PrintF(" "); PrintName(scope_name_); } // Print parameters, if any. if (is_function_scope()) { PrintF(" ("); for (int i = 0; i < params_.length(); i++) { if (i > 0) PrintF(", "); PrintName(params_[i]->name()); } PrintF(")"); } PrintF(" {\n"); // Function name, if any (named function literals, only). if (function_ != NULL) { Indent(n1, "// (local) function name: "); PrintName(function_->name()); PrintF("\n"); } // Scope info. if (HasTrivialOuterContext()) { Indent(n1, "// scope has trivial outer context\n"); } if (scope_inside_with_) Indent(n1, "// scope inside 'with'\n"); if (scope_contains_with_) Indent(n1, "// scope contains 'with'\n"); if (scope_calls_eval_) Indent(n1, "// scope calls 'eval'\n"); if (outer_scope_calls_eval_) Indent(n1, "// outer scope calls 'eval'\n"); if (inner_scope_calls_eval_) Indent(n1, "// inner scope calls 'eval'\n"); if (outer_scope_is_eval_scope_) { Indent(n1, "// outer scope is 'eval' scope\n"); } if (num_stack_slots_ > 0) { Indent(n1, "// "); PrintF("%d stack slots\n", num_stack_slots_); } if (num_heap_slots_ > 0) { Indent(n1, "// "); PrintF("%d heap slots\n", num_heap_slots_); } // Print locals. PrettyPrinter printer; Indent(n1, "// function var\n"); if (function_ != NULL) { PrintVar(&printer, n1, function_); } Indent(n1, "// temporary vars\n"); for (int i = 0; i < temps_.length(); i++) { PrintVar(&printer, n1, temps_[i]); } Indent(n1, "// local vars\n"); PrintMap(&printer, n1, &variables_); Indent(n1, "// dynamic vars\n"); if (dynamics_ != NULL) { PrintMap(&printer, n1, dynamics_->GetMap(Variable::DYNAMIC)); PrintMap(&printer, n1, dynamics_->GetMap(Variable::DYNAMIC_LOCAL)); PrintMap(&printer, n1, dynamics_->GetMap(Variable::DYNAMIC_GLOBAL)); } // Print inner scopes (disable by providing negative n). if (n >= 0) { for (int i = 0; i < inner_scopes_.length(); i++) { PrintF("\n"); inner_scopes_[i]->Print(n1); } } Indent(n0, "}\n"); } #endif // DEBUG Variable* Scope::NonLocal(Handle<String> name, Variable::Mode mode) { if (dynamics_ == NULL) dynamics_ = new DynamicScopePart(); VariableMap* map = dynamics_->GetMap(mode); Variable* var = map->Lookup(name); if (var == NULL) { // Declare a new non-local. var = map->Declare(NULL, name, mode, true, Variable::NORMAL); // Allocate it by giving it a dynamic lookup. var->set_rewrite(new Slot(var, Slot::LOOKUP, -1)); } return var; } // Lookup a variable starting with this scope. The result is either // the statically resolved variable belonging to an outer scope, or // NULL. It may be NULL because a) we couldn't find a variable, or b) // because the variable is just a guess (and may be shadowed by // another variable that is introduced dynamically via an 'eval' call // or a 'with' statement). Variable* Scope::LookupRecursive(Handle<String> name, bool inner_lookup, Variable** invalidated_local) { // If we find a variable, but the current scope calls 'eval', the found // variable may not be the correct one (the 'eval' may introduce a // property with the same name). In that case, remember that the variable // found is just a guess. bool guess = scope_calls_eval_; // Try to find the variable in this scope. Variable* var = LocalLookup(name); if (var != NULL) { // We found a variable. If this is not an inner lookup, we are done. // (Even if there is an 'eval' in this scope which introduces the // same variable again, the resulting variable remains the same. // Note that enclosing 'with' statements are handled at the call site.) if (!inner_lookup) return var; } else { // We did not find a variable locally. Check against the function variable, // if any. We can do this for all scopes, since the function variable is // only present - if at all - for function scopes. // // This lookup corresponds to a lookup in the "intermediate" scope sitting // between this scope and the outer scope. (ECMA-262, 3rd., requires that // the name of named function literal is kept in an intermediate scope // in between this scope and the next outer scope.) if (function_ != NULL && function_->name().is_identical_to(name)) { var = function_; } else if (outer_scope_ != NULL) { var = outer_scope_->LookupRecursive(name, true, invalidated_local); // We may have found a variable in an outer scope. However, if // the current scope is inside a 'with', the actual variable may // be a property introduced via the 'with' statement. Then, the // variable we may have found is just a guess. if (scope_inside_with_) guess = true; } // If we did not find a variable, we are done. if (var == NULL) return NULL; } ASSERT(var != NULL); // If this is a lookup from an inner scope, mark the variable. if (inner_lookup) { var->MarkAsAccessedFromInnerScope(); } // If the variable we have found is just a guess, invalidate the // result. If the found variable is local, record that fact so we // can generate fast code to get it if it is not shadowed by eval. if (guess) { if (!var->is_global()) *invalidated_local = var; var = NULL; } return var; } void Scope::ResolveVariable(Scope* global_scope, Handle<Context> context, VariableProxy* proxy) { ASSERT(global_scope == NULL || global_scope->is_global_scope()); // If the proxy is already resolved there's nothing to do // (functions and consts may be resolved by the parser). if (proxy->var() != NULL) return; // Otherwise, try to resolve the variable. Variable* invalidated_local = NULL; Variable* var = LookupRecursive(proxy->name(), false, &invalidated_local); if (proxy->inside_with()) { // If we are inside a local 'with' statement, all bets are off // and we cannot resolve the proxy to a local variable even if // we found an outer matching variable. // Note that we must do a lookup anyway, because if we find one, // we must mark that variable as potentially accessed from this // inner scope (the property may not be in the 'with' object). var = NonLocal(proxy->name(), Variable::DYNAMIC); } else { // We are not inside a local 'with' statement. if (var == NULL) { // We did not find the variable. We have a global variable // if we are in the global scope (we know already that we // are outside a 'with' statement) or if there is no way // that the variable might be introduced dynamically (through // a local or outer eval() call, or an outer 'with' statement), // or we don't know about the outer scope (because we are // in an eval scope). if (is_global_scope() || !(scope_inside_with_ || outer_scope_is_eval_scope_ || scope_calls_eval_ || outer_scope_calls_eval_)) { // We must have a global variable. ASSERT(global_scope != NULL); var = global_scope->DeclareGlobal(proxy->name()); } else if (scope_inside_with_) { // If we are inside a with statement we give up and look up // the variable at runtime. var = NonLocal(proxy->name(), Variable::DYNAMIC); } else if (invalidated_local != NULL) { // No with statements are involved and we found a local // variable that might be shadowed by eval introduced // variables. var = NonLocal(proxy->name(), Variable::DYNAMIC_LOCAL); var->set_local_if_not_shadowed(invalidated_local); } else if (outer_scope_is_eval_scope_) { // No with statements and we did not find a local and the code // is executed with a call to eval. The context contains // scope information that we can use to determine if the // variable is global if it is not shadowed by eval-introduced // variables. if (context->GlobalIfNotShadowedByEval(proxy->name())) { var = NonLocal(proxy->name(), Variable::DYNAMIC_GLOBAL); } else { var = NonLocal(proxy->name(), Variable::DYNAMIC); } } else { // No with statements and we did not find a local and the code // is not executed with a call to eval. We know that this // variable is global unless it is shadowed by eval-introduced // variables. var = NonLocal(proxy->name(), Variable::DYNAMIC_GLOBAL); } } } proxy->BindTo(var); } void Scope::ResolveVariablesRecursively(Scope* global_scope, Handle<Context> context) { ASSERT(global_scope == NULL || global_scope->is_global_scope()); // Resolve unresolved variables for this scope. for (int i = 0; i < unresolved_.length(); i++) { ResolveVariable(global_scope, context, unresolved_[i]); } // Resolve unresolved variables for inner scopes. for (int i = 0; i < inner_scopes_.length(); i++) { inner_scopes_[i]->ResolveVariablesRecursively(global_scope, context); } } bool Scope::PropagateScopeInfo(bool outer_scope_calls_eval, bool outer_scope_is_eval_scope) { if (outer_scope_calls_eval) { outer_scope_calls_eval_ = true; } if (outer_scope_is_eval_scope) { outer_scope_is_eval_scope_ = true; } bool calls_eval = scope_calls_eval_ || outer_scope_calls_eval_; bool is_eval = is_eval_scope() || outer_scope_is_eval_scope_; for (int i = 0; i < inner_scopes_.length(); i++) { Scope* inner_scope = inner_scopes_[i]; if (inner_scope->PropagateScopeInfo(calls_eval, is_eval)) { inner_scope_calls_eval_ = true; } if (inner_scope->force_eager_compilation_) { force_eager_compilation_ = true; } } return scope_calls_eval_ || inner_scope_calls_eval_; } bool Scope::MustAllocate(Variable* var) { // Give var a read/write use if there is a chance it might be accessed // via an eval() call. This is only possible if the variable has a // visible name. if ((var->is_this() || var->name()->length() > 0) && (var->is_accessed_from_inner_scope() || scope_calls_eval_ || inner_scope_calls_eval_ || scope_contains_with_)) { var->set_is_used(true); } // Global variables do not need to be allocated. return !var->is_global() && var->is_used(); } bool Scope::MustAllocateInContext(Variable* var) { // If var is accessed from an inner scope, or if there is a // possibility that it might be accessed from the current or an inner // scope (through an eval() call), it must be allocated in the // context. Exception: temporary variables are not allocated in the // context. return var->mode() != Variable::TEMPORARY && (var->is_accessed_from_inner_scope() || scope_calls_eval_ || inner_scope_calls_eval_ || scope_contains_with_ || var->is_global()); } bool Scope::HasArgumentsParameter() { for (int i = 0; i < params_.length(); i++) { if (params_[i]->name().is_identical_to(FACTORY->arguments_symbol())) return true; } return false; } void Scope::AllocateStackSlot(Variable* var) { var->set_rewrite(new Slot(var, Slot::LOCAL, num_stack_slots_++)); } void Scope::AllocateHeapSlot(Variable* var) { var->set_rewrite(new Slot(var, Slot::CONTEXT, num_heap_slots_++)); } void Scope::AllocateParameterLocals() { ASSERT(is_function_scope()); Variable* arguments = LocalLookup(FACTORY->arguments_symbol()); ASSERT(arguments != NULL); // functions have 'arguments' declared implicitly // Parameters are rewritten to arguments[i] if 'arguments' is used in // a non-strict mode function. Strict mode code doesn't alias arguments. bool rewrite_parameters = false; if (MustAllocate(arguments) && !HasArgumentsParameter()) { // 'arguments' is used. Unless there is also a parameter called // 'arguments', we must be conservative and access all parameters via // the arguments object: The i'th parameter is rewritten into // '.arguments[i]' (*). If we have a parameter named 'arguments', a // (new) value is always assigned to it via the function // invocation. Then 'arguments' denotes that specific parameter value // and cannot be used to access the parameters, which is why we don't // need to rewrite in that case. // // (*) Instead of having a parameter called 'arguments', we may have an // assignment to 'arguments' in the function body, at some arbitrary // point in time (possibly through an 'eval()' call!). After that // assignment any re-write of parameters would be invalid (was bug // 881452). Thus, we introduce a shadow '.arguments' // variable which also points to the arguments object. For rewrites we // use '.arguments' which remains valid even if we assign to // 'arguments'. To summarize: If we need to rewrite, we allocate an // 'arguments' object dynamically upon function invocation. The compiler // introduces 2 local variables 'arguments' and '.arguments', both of // which originally point to the arguments object that was // allocated. All parameters are rewritten into property accesses via // the '.arguments' variable. Thus, any changes to properties of // 'arguments' are reflected in the variables and vice versa. If the // 'arguments' variable is changed, '.arguments' still points to the // correct arguments object and the rewrites still work. // We are using 'arguments'. Tell the code generator that is needs to // allocate the arguments object by setting 'arguments_'. arguments_ = arguments; // In strict mode 'arguments' does not alias formal parameters. // Therefore in strict mode we allocate parameters as if 'arguments' // were not used. rewrite_parameters = !is_strict_mode(); } if (rewrite_parameters) { // We also need the '.arguments' shadow variable. Declare it and create // and bind the corresponding proxy. It's ok to declare it only now // because it's a local variable that is allocated after the parameters // have been allocated. // // Note: This is "almost" at temporary variable but we cannot use // NewTemporary() because the mode needs to be INTERNAL since this // variable may be allocated in the heap-allocated context (temporaries // are never allocated in the context). arguments_shadow_ = new Variable(this, FACTORY->arguments_shadow_symbol(), Variable::INTERNAL, true, Variable::ARGUMENTS); arguments_shadow_->set_is_used(true); temps_.Add(arguments_shadow_); // Allocate the parameters by rewriting them into '.arguments[i]' accesses. for (int i = 0; i < params_.length(); i++) { Variable* var = params_[i]; ASSERT(var->scope() == this); if (MustAllocate(var)) { if (MustAllocateInContext(var)) { // It is ok to set this only now, because arguments is a local // variable that is allocated after the parameters have been // allocated. arguments_shadow_->MarkAsAccessedFromInnerScope(); } Property* rewrite = new Property(new VariableProxy(arguments_shadow_), new Literal(Handle<Object>(Smi::FromInt(i))), RelocInfo::kNoPosition, Property::SYNTHETIC); rewrite->set_is_arguments_access(true); var->set_rewrite(rewrite); } } } else { // The arguments object is not used, so we can access parameters directly. // The same parameter may occur multiple times in the parameters_ list. // If it does, and if it is not copied into the context object, it must // receive the highest parameter index for that parameter; thus iteration // order is relevant! for (int i = 0; i < params_.length(); i++) { Variable* var = params_[i]; ASSERT(var->scope() == this); if (MustAllocate(var)) { if (MustAllocateInContext(var)) { ASSERT(var->rewrite() == NULL || (var->AsSlot() != NULL && var->AsSlot()->type() == Slot::CONTEXT)); if (var->rewrite() == NULL) { // Only set the heap allocation if the parameter has not // been allocated yet. AllocateHeapSlot(var); } } else { ASSERT(var->rewrite() == NULL || (var->AsSlot() != NULL && var->AsSlot()->type() == Slot::PARAMETER)); // Set the parameter index always, even if the parameter // was seen before! (We need to access the actual parameter // supplied for the last occurrence of a multiply declared // parameter.) var->set_rewrite(new Slot(var, Slot::PARAMETER, i)); } } } } } void Scope::AllocateNonParameterLocal(Variable* var) { ASSERT(var->scope() == this); ASSERT(var->rewrite() == NULL || (!var->IsVariable(FACTORY->result_symbol())) || (var->AsSlot() == NULL || var->AsSlot()->type() != Slot::LOCAL)); if (var->rewrite() == NULL && MustAllocate(var)) { if (MustAllocateInContext(var)) { AllocateHeapSlot(var); } else { AllocateStackSlot(var); } } } void Scope::AllocateNonParameterLocals() { // All variables that have no rewrite yet are non-parameter locals. for (int i = 0; i < temps_.length(); i++) { AllocateNonParameterLocal(temps_[i]); } for (VariableMap::Entry* p = variables_.Start(); p != NULL; p = variables_.Next(p)) { Variable* var = reinterpret_cast<Variable*>(p->value); AllocateNonParameterLocal(var); } // For now, function_ must be allocated at the very end. If it gets // allocated in the context, it must be the last slot in the context, // because of the current ScopeInfo implementation (see // ScopeInfo::ScopeInfo(FunctionScope* scope) constructor). if (function_ != NULL) { AllocateNonParameterLocal(function_); } } void Scope::AllocateVariablesRecursively() { // Allocate variables for inner scopes. for (int i = 0; i < inner_scopes_.length(); i++) { inner_scopes_[i]->AllocateVariablesRecursively(); } // If scope is already resolved, we still need to allocate // variables in inner scopes which might not had been resolved yet. if (resolved()) return; // The number of slots required for variables. num_stack_slots_ = 0; num_heap_slots_ = Context::MIN_CONTEXT_SLOTS; // Allocate variables for this scope. // Parameters must be allocated first, if any. if (is_function_scope()) AllocateParameterLocals(); AllocateNonParameterLocals(); // Allocate context if necessary. bool must_have_local_context = false; if (scope_calls_eval_ || scope_contains_with_) { // The context for the eval() call or 'with' statement in this scope. // Unless we are in the global or an eval scope, we need a local // context even if we didn't statically allocate any locals in it, // and the compiler will access the context variable. If we are // not in an inner scope, the scope is provided from the outside. must_have_local_context = is_function_scope(); } // If we didn't allocate any locals in the local context, then we only // need the minimal number of slots if we must have a local context. if (num_heap_slots_ == Context::MIN_CONTEXT_SLOTS && !must_have_local_context) { num_heap_slots_ = 0; } // Allocation done. ASSERT(num_heap_slots_ == 0 || num_heap_slots_ >= Context::MIN_CONTEXT_SLOTS); } } } // namespace v8::internal