// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Features shared by parsing and pre-parsing scanners. #ifndef V8_SCANNER_BASE_H_ #define V8_SCANNER_BASE_H_ #include "globals.h" #include "checks.h" #include "allocation.h" #include "token.h" #include "unicode-inl.h" #include "char-predicates.h" #include "utils.h" #include "list-inl.h" namespace v8 { namespace internal { // Returns the value (0 .. 15) of a hexadecimal character c. // If c is not a legal hexadecimal character, returns a value < 0. inline int HexValue(uc32 c) { c -= '0'; if (static_cast<unsigned>(c) <= 9) return c; c = (c | 0x20) - ('a' - '0'); // detect 0x11..0x16 and 0x31..0x36. if (static_cast<unsigned>(c) <= 5) return c + 10; return -1; } // --------------------------------------------------------------------- // Buffered stream of characters, using an internal UC16 buffer. class UC16CharacterStream { public: UC16CharacterStream() : pos_(0) { } virtual ~UC16CharacterStream() { } // Returns and advances past the next UC16 character in the input // stream. If there are no more characters, it returns a negative // value. inline uc32 Advance() { if (buffer_cursor_ < buffer_end_ || ReadBlock()) { pos_++; return static_cast<uc32>(*(buffer_cursor_++)); } // Note: currently the following increment is necessary to avoid a // parser problem! The scanner treats the final kEndOfInput as // a character with a position, and does math relative to that // position. pos_++; return kEndOfInput; } // Return the current position in the character stream. // Starts at zero. inline unsigned pos() const { return pos_; } // Skips forward past the next character_count UC16 characters // in the input, or until the end of input if that comes sooner. // Returns the number of characters actually skipped. If less // than character_count, inline unsigned SeekForward(unsigned character_count) { unsigned buffered_chars = static_cast<unsigned>(buffer_end_ - buffer_cursor_); if (character_count <= buffered_chars) { buffer_cursor_ += character_count; pos_ += character_count; return character_count; } return SlowSeekForward(character_count); } // Pushes back the most recently read UC16 character (or negative // value if at end of input), i.e., the value returned by the most recent // call to Advance. // Must not be used right after calling SeekForward. virtual void PushBack(int32_t character) = 0; protected: static const uc32 kEndOfInput = -1; // Ensures that the buffer_cursor_ points to the character at // position pos_ of the input, if possible. If the position // is at or after the end of the input, return false. If there // are more characters available, return true. virtual bool ReadBlock() = 0; virtual unsigned SlowSeekForward(unsigned character_count) = 0; const uc16* buffer_cursor_; const uc16* buffer_end_; unsigned pos_; }; class UnicodeCache { // --------------------------------------------------------------------- // Caching predicates used by scanners. public: UnicodeCache() {} typedef unibrow::Utf8InputBuffer<1024> Utf8Decoder; StaticResource<Utf8Decoder>* utf8_decoder() { return &utf8_decoder_; } bool IsIdentifierStart(unibrow::uchar c) { return kIsIdentifierStart.get(c); } bool IsIdentifierPart(unibrow::uchar c) { return kIsIdentifierPart.get(c); } bool IsLineTerminator(unibrow::uchar c) { return kIsLineTerminator.get(c); } bool IsWhiteSpace(unibrow::uchar c) { return kIsWhiteSpace.get(c); } private: unibrow::Predicate<IdentifierStart, 128> kIsIdentifierStart; unibrow::Predicate<IdentifierPart, 128> kIsIdentifierPart; unibrow::Predicate<unibrow::LineTerminator, 128> kIsLineTerminator; unibrow::Predicate<unibrow::WhiteSpace, 128> kIsWhiteSpace; StaticResource<Utf8Decoder> utf8_decoder_; DISALLOW_COPY_AND_ASSIGN(UnicodeCache); }; // ---------------------------------------------------------------------------- // LiteralBuffer - Collector of chars of literals. class LiteralBuffer { public: LiteralBuffer() : is_ascii_(true), position_(0), backing_store_() { } ~LiteralBuffer() { if (backing_store_.length() > 0) { backing_store_.Dispose(); } } inline void AddChar(uc16 character) { if (position_ >= backing_store_.length()) ExpandBuffer(); if (is_ascii_) { if (character < kMaxAsciiCharCodeU) { backing_store_[position_] = static_cast<byte>(character); position_ += kASCIISize; return; } ConvertToUC16(); } *reinterpret_cast<uc16*>(&backing_store_[position_]) = character; position_ += kUC16Size; } bool is_ascii() { return is_ascii_; } Vector<const uc16> uc16_literal() { ASSERT(!is_ascii_); ASSERT((position_ & 0x1) == 0); return Vector<const uc16>( reinterpret_cast<const uc16*>(backing_store_.start()), position_ >> 1); } Vector<const char> ascii_literal() { ASSERT(is_ascii_); return Vector<const char>( reinterpret_cast<const char*>(backing_store_.start()), position_); } int length() { return is_ascii_ ? position_ : (position_ >> 1); } void Reset() { position_ = 0; is_ascii_ = true; } private: static const int kInitialCapacity = 16; static const int kGrowthFactory = 4; static const int kMinConversionSlack = 256; static const int kMaxGrowth = 1 * MB; inline int NewCapacity(int min_capacity) { int capacity = Max(min_capacity, backing_store_.length()); int new_capacity = Min(capacity * kGrowthFactory, capacity + kMaxGrowth); return new_capacity; } void ExpandBuffer() { Vector<byte> new_store = Vector<byte>::New(NewCapacity(kInitialCapacity)); memcpy(new_store.start(), backing_store_.start(), position_); backing_store_.Dispose(); backing_store_ = new_store; } void ConvertToUC16() { ASSERT(is_ascii_); Vector<byte> new_store; int new_content_size = position_ * kUC16Size; if (new_content_size >= backing_store_.length()) { // Ensure room for all currently read characters as UC16 as well // as the character about to be stored. new_store = Vector<byte>::New(NewCapacity(new_content_size)); } else { new_store = backing_store_; } char* src = reinterpret_cast<char*>(backing_store_.start()); uc16* dst = reinterpret_cast<uc16*>(new_store.start()); for (int i = position_ - 1; i >= 0; i--) { dst[i] = src[i]; } if (new_store.start() != backing_store_.start()) { backing_store_.Dispose(); backing_store_ = new_store; } position_ = new_content_size; is_ascii_ = false; } bool is_ascii_; int position_; Vector<byte> backing_store_; DISALLOW_COPY_AND_ASSIGN(LiteralBuffer); }; // ---------------------------------------------------------------------------- // Scanner base-class. // Generic functionality used by both JSON and JavaScript scanners. class Scanner { public: // -1 is outside of the range of any real source code. static const int kNoOctalLocation = -1; typedef unibrow::Utf8InputBuffer<1024> Utf8Decoder; class LiteralScope { public: explicit LiteralScope(Scanner* self); ~LiteralScope(); void Complete(); private: Scanner* scanner_; bool complete_; }; explicit Scanner(UnicodeCache* scanner_contants); // Returns the current token again. Token::Value current_token() { return current_.token; } // One token look-ahead (past the token returned by Next()). Token::Value peek() const { return next_.token; } struct Location { Location(int b, int e) : beg_pos(b), end_pos(e) { } Location() : beg_pos(0), end_pos(0) { } bool IsValid() const { return beg_pos >= 0 && end_pos >= beg_pos; } int beg_pos; int end_pos; }; static Location NoLocation() { return Location(-1, -1); } // Returns the location information for the current token // (the token returned by Next()). Location location() const { return current_.location; } Location peek_location() const { return next_.location; } // Returns the location of the last seen octal literal int octal_position() const { return octal_pos_; } void clear_octal_position() { octal_pos_ = -1; } // Returns the literal string, if any, for the current token (the // token returned by Next()). The string is 0-terminated and in // UTF-8 format; they may contain 0-characters. Literal strings are // collected for identifiers, strings, and numbers. // These functions only give the correct result if the literal // was scanned between calls to StartLiteral() and TerminateLiteral(). bool is_literal_ascii() { ASSERT_NOT_NULL(current_.literal_chars); return current_.literal_chars->is_ascii(); } Vector<const char> literal_ascii_string() { ASSERT_NOT_NULL(current_.literal_chars); return current_.literal_chars->ascii_literal(); } Vector<const uc16> literal_uc16_string() { ASSERT_NOT_NULL(current_.literal_chars); return current_.literal_chars->uc16_literal(); } int literal_length() const { ASSERT_NOT_NULL(current_.literal_chars); return current_.literal_chars->length(); } // Returns the literal string for the next token (the token that // would be returned if Next() were called). bool is_next_literal_ascii() { ASSERT_NOT_NULL(next_.literal_chars); return next_.literal_chars->is_ascii(); } Vector<const char> next_literal_ascii_string() { ASSERT_NOT_NULL(next_.literal_chars); return next_.literal_chars->ascii_literal(); } Vector<const uc16> next_literal_uc16_string() { ASSERT_NOT_NULL(next_.literal_chars); return next_.literal_chars->uc16_literal(); } int next_literal_length() const { ASSERT_NOT_NULL(next_.literal_chars); return next_.literal_chars->length(); } static const int kCharacterLookaheadBufferSize = 1; protected: // The current and look-ahead token. struct TokenDesc { Token::Value token; Location location; LiteralBuffer* literal_chars; }; // Call this after setting source_ to the input. void Init() { // Set c0_ (one character ahead) ASSERT(kCharacterLookaheadBufferSize == 1); Advance(); // Initialize current_ to not refer to a literal. current_.literal_chars = NULL; } // Literal buffer support inline void StartLiteral() { LiteralBuffer* free_buffer = (current_.literal_chars == &literal_buffer1_) ? &literal_buffer2_ : &literal_buffer1_; free_buffer->Reset(); next_.literal_chars = free_buffer; } inline void AddLiteralChar(uc32 c) { ASSERT_NOT_NULL(next_.literal_chars); next_.literal_chars->AddChar(c); } // Complete scanning of a literal. inline void TerminateLiteral() { // Does nothing in the current implementation. } // Stops scanning of a literal and drop the collected characters, // e.g., due to an encountered error. inline void DropLiteral() { next_.literal_chars = NULL; } inline void AddLiteralCharAdvance() { AddLiteralChar(c0_); Advance(); } // Low-level scanning support. void Advance() { c0_ = source_->Advance(); } void PushBack(uc32 ch) { source_->PushBack(c0_); c0_ = ch; } inline Token::Value Select(Token::Value tok) { Advance(); return tok; } inline Token::Value Select(uc32 next, Token::Value then, Token::Value else_) { Advance(); if (c0_ == next) { Advance(); return then; } else { return else_; } } uc32 ScanHexEscape(uc32 c, int length); // Scans octal escape sequence. Also accepts "\0" decimal escape sequence. uc32 ScanOctalEscape(uc32 c, int length); // Return the current source position. int source_pos() { return source_->pos() - kCharacterLookaheadBufferSize; } UnicodeCache* unicode_cache_; // Buffers collecting literal strings, numbers, etc. LiteralBuffer literal_buffer1_; LiteralBuffer literal_buffer2_; TokenDesc current_; // desc for current token (as returned by Next()) TokenDesc next_; // desc for next token (one token look-ahead) // Input stream. Must be initialized to an UC16CharacterStream. UC16CharacterStream* source_; // Start position of the octal literal last scanned. int octal_pos_; // One Unicode character look-ahead; c0_ < 0 at the end of the input. uc32 c0_; }; // ---------------------------------------------------------------------------- // JavaScriptScanner - base logic for JavaScript scanning. class JavaScriptScanner : public Scanner { public: // A LiteralScope that disables recording of some types of JavaScript // literals. If the scanner is configured to not record the specific // type of literal, the scope will not call StartLiteral. class LiteralScope { public: explicit LiteralScope(JavaScriptScanner* self) : scanner_(self), complete_(false) { scanner_->StartLiteral(); } ~LiteralScope() { if (!complete_) scanner_->DropLiteral(); } void Complete() { scanner_->TerminateLiteral(); complete_ = true; } private: JavaScriptScanner* scanner_; bool complete_; }; explicit JavaScriptScanner(UnicodeCache* scanner_contants); // Returns the next token. Token::Value Next(); // Returns true if there was a line terminator before the peek'ed token. bool has_line_terminator_before_next() const { return has_line_terminator_before_next_; } // Scans the input as a regular expression pattern, previous // character(s) must be /(=). Returns true if a pattern is scanned. bool ScanRegExpPattern(bool seen_equal); // Returns true if regexp flags are scanned (always since flags can // be empty). bool ScanRegExpFlags(); // Tells whether the buffer contains an identifier (no escapes). // Used for checking if a property name is an identifier. static bool IsIdentifier(unibrow::CharacterStream* buffer); // Seek forward to the given position. This operation does not // work in general, for instance when there are pushed back // characters, but works for seeking forward until simple delimiter // tokens, which is what it is used for. void SeekForward(int pos); protected: bool SkipWhiteSpace(); Token::Value SkipSingleLineComment(); Token::Value SkipMultiLineComment(); // Scans a single JavaScript token. void Scan(); void ScanDecimalDigits(); Token::Value ScanNumber(bool seen_period); Token::Value ScanIdentifierOrKeyword(); Token::Value ScanIdentifierSuffix(LiteralScope* literal); void ScanEscape(); Token::Value ScanString(); // Scans a possible HTML comment -- begins with '<!'. Token::Value ScanHtmlComment(); // Decodes a unicode escape-sequence which is part of an identifier. // If the escape sequence cannot be decoded the result is kBadChar. uc32 ScanIdentifierUnicodeEscape(); bool has_line_terminator_before_next_; }; // ---------------------------------------------------------------------------- // Keyword matching state machine. class KeywordMatcher { // Incrementally recognize keywords. // // Recognized keywords: // break case catch const* continue debugger* default delete do else // finally false for function if in instanceof native* new null // return switch this throw true try typeof var void while with // // *: Actually "future reserved keywords". These are the only ones we // recognize, the remaining are allowed as identifiers. // In ES5 strict mode, we should disallow all reserved keywords. public: KeywordMatcher() : state_(INITIAL), token_(Token::IDENTIFIER), keyword_(NULL), counter_(0), keyword_token_(Token::ILLEGAL) {} Token::Value token() { return token_; } inline bool AddChar(unibrow::uchar input) { if (state_ != UNMATCHABLE) { Step(input); } return state_ != UNMATCHABLE; } void Fail() { token_ = Token::IDENTIFIER; state_ = UNMATCHABLE; } private: enum State { UNMATCHABLE, INITIAL, KEYWORD_PREFIX, KEYWORD_MATCHED, C, CA, CO, CON, D, DE, E, EX, F, I, IM, IMP, IN, N, P, PR, S, T, TH, TR, V, W }; struct FirstState { const char* keyword; State state; Token::Value token; }; // Range of possible first characters of a keyword. static const unsigned int kFirstCharRangeMin = 'b'; static const unsigned int kFirstCharRangeMax = 'y'; static const unsigned int kFirstCharRangeLength = kFirstCharRangeMax - kFirstCharRangeMin + 1; // State map for first keyword character range. static FirstState first_states_[kFirstCharRangeLength]; // If input equals keyword's character at position, continue matching keyword // from that position. inline bool MatchKeywordStart(unibrow::uchar input, const char* keyword, int position, Token::Value token_if_match) { if (input != static_cast<unibrow::uchar>(keyword[position])) { return false; } state_ = KEYWORD_PREFIX; this->keyword_ = keyword; this->counter_ = position + 1; this->keyword_token_ = token_if_match; return true; } // If input equals match character, transition to new state and return true. inline bool MatchState(unibrow::uchar input, char match, State new_state) { if (input != static_cast<unibrow::uchar>(match)) { return false; } state_ = new_state; return true; } inline bool MatchKeyword(unibrow::uchar input, char match, State new_state, Token::Value keyword_token) { if (input != static_cast<unibrow::uchar>(match)) { return false; } state_ = new_state; token_ = keyword_token; return true; } void Step(unibrow::uchar input); // Current state. State state_; // Token for currently added characters. Token::Value token_; // Matching a specific keyword string (there is only one possible valid // keyword with the current prefix). const char* keyword_; int counter_; Token::Value keyword_token_; }; } } // namespace v8::internal #endif // V8_SCANNER_BASE_H_