// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Features shared by parsing and pre-parsing scanners. #include "../include/v8stdint.h" #include "scanner-base.h" #include "char-predicates-inl.h" namespace v8 { namespace internal { // ---------------------------------------------------------------------------- // Scanner Scanner::Scanner(UnicodeCache* unicode_cache) : unicode_cache_(unicode_cache), octal_pos_(kNoOctalLocation) { } uc32 Scanner::ScanHexEscape(uc32 c, int length) { ASSERT(length <= 4); // prevent overflow uc32 digits[4]; uc32 x = 0; for (int i = 0; i < length; i++) { digits[i] = c0_; int d = HexValue(c0_); if (d < 0) { // According to ECMA-262, 3rd, 7.8.4, page 18, these hex escapes // should be illegal, but other JS VMs just return the // non-escaped version of the original character. // Push back digits read, except the last one (in c0_). for (int j = i-1; j >= 0; j--) { PushBack(digits[j]); } // Notice: No handling of error - treat it as "\u"->"u". return c; } x = x * 16 + d; Advance(); } return x; } // Octal escapes of the forms '\0xx' and '\xxx' are not a part of // ECMA-262. Other JS VMs support them. uc32 Scanner::ScanOctalEscape(uc32 c, int length) { uc32 x = c - '0'; int i = 0; for (; i < length; i++) { int d = c0_ - '0'; if (d < 0 || d > 7) break; int nx = x * 8 + d; if (nx >= 256) break; x = nx; Advance(); } // Anything excelt '\0' is an octal escape sequence, illegal in strict mode. // Remember the position of octal escape sequences so that better error // can be reported later (in strict mode). if (c != '0' || i > 0) { octal_pos_ = source_pos() - i - 1; // Already advanced } return x; } // ---------------------------------------------------------------------------- // JavaScriptScanner JavaScriptScanner::JavaScriptScanner(UnicodeCache* scanner_contants) : Scanner(scanner_contants) { } Token::Value JavaScriptScanner::Next() { current_ = next_; has_line_terminator_before_next_ = false; Scan(); return current_.token; } static inline bool IsByteOrderMark(uc32 c) { // The Unicode value U+FFFE is guaranteed never to be assigned as a // Unicode character; this implies that in a Unicode context the // 0xFF, 0xFE byte pattern can only be interpreted as the U+FEFF // character expressed in little-endian byte order (since it could // not be a U+FFFE character expressed in big-endian byte // order). Nevertheless, we check for it to be compatible with // Spidermonkey. return c == 0xFEFF || c == 0xFFFE; } bool JavaScriptScanner::SkipWhiteSpace() { int start_position = source_pos(); while (true) { // We treat byte-order marks (BOMs) as whitespace for better // compatibility with Spidermonkey and other JavaScript engines. while (unicode_cache_->IsWhiteSpace(c0_) || IsByteOrderMark(c0_)) { // IsWhiteSpace() includes line terminators! if (unicode_cache_->IsLineTerminator(c0_)) { // Ignore line terminators, but remember them. This is necessary // for automatic semicolon insertion. has_line_terminator_before_next_ = true; } Advance(); } // If there is an HTML comment end '-->' at the beginning of a // line (with only whitespace in front of it), we treat the rest // of the line as a comment. This is in line with the way // SpiderMonkey handles it. if (c0_ == '-' && has_line_terminator_before_next_) { Advance(); if (c0_ == '-') { Advance(); if (c0_ == '>') { // Treat the rest of the line as a comment. SkipSingleLineComment(); // Continue skipping white space after the comment. continue; } PushBack('-'); // undo Advance() } PushBack('-'); // undo Advance() } // Return whether or not we skipped any characters. return source_pos() != start_position; } } Token::Value JavaScriptScanner::SkipSingleLineComment() { Advance(); // The line terminator at the end of the line is not considered // to be part of the single-line comment; it is recognized // separately by the lexical grammar and becomes part of the // stream of input elements for the syntactic grammar (see // ECMA-262, section 7.4, page 12). while (c0_ >= 0 && !unicode_cache_->IsLineTerminator(c0_)) { Advance(); } return Token::WHITESPACE; } Token::Value JavaScriptScanner::SkipMultiLineComment() { ASSERT(c0_ == '*'); Advance(); while (c0_ >= 0) { char ch = c0_; Advance(); // If we have reached the end of the multi-line comment, we // consume the '/' and insert a whitespace. This way all // multi-line comments are treated as whitespace - even the ones // containing line terminators. This contradicts ECMA-262, section // 7.4, page 12, that says that multi-line comments containing // line terminators should be treated as a line terminator, but it // matches the behaviour of SpiderMonkey and KJS. if (ch == '*' && c0_ == '/') { c0_ = ' '; return Token::WHITESPACE; } } // Unterminated multi-line comment. return Token::ILLEGAL; } Token::Value JavaScriptScanner::ScanHtmlComment() { // Check for <!-- comments. ASSERT(c0_ == '!'); Advance(); if (c0_ == '-') { Advance(); if (c0_ == '-') return SkipSingleLineComment(); PushBack('-'); // undo Advance() } PushBack('!'); // undo Advance() ASSERT(c0_ == '!'); return Token::LT; } void JavaScriptScanner::Scan() { next_.literal_chars = NULL; Token::Value token; do { // Remember the position of the next token next_.location.beg_pos = source_pos(); switch (c0_) { case ' ': case '\t': Advance(); token = Token::WHITESPACE; break; case '\n': Advance(); has_line_terminator_before_next_ = true; token = Token::WHITESPACE; break; case '"': case '\'': token = ScanString(); break; case '<': // < <= << <<= <!-- Advance(); if (c0_ == '=') { token = Select(Token::LTE); } else if (c0_ == '<') { token = Select('=', Token::ASSIGN_SHL, Token::SHL); } else if (c0_ == '!') { token = ScanHtmlComment(); } else { token = Token::LT; } break; case '>': // > >= >> >>= >>> >>>= Advance(); if (c0_ == '=') { token = Select(Token::GTE); } else if (c0_ == '>') { // >> >>= >>> >>>= Advance(); if (c0_ == '=') { token = Select(Token::ASSIGN_SAR); } else if (c0_ == '>') { token = Select('=', Token::ASSIGN_SHR, Token::SHR); } else { token = Token::SAR; } } else { token = Token::GT; } break; case '=': // = == === Advance(); if (c0_ == '=') { token = Select('=', Token::EQ_STRICT, Token::EQ); } else { token = Token::ASSIGN; } break; case '!': // ! != !== Advance(); if (c0_ == '=') { token = Select('=', Token::NE_STRICT, Token::NE); } else { token = Token::NOT; } break; case '+': // + ++ += Advance(); if (c0_ == '+') { token = Select(Token::INC); } else if (c0_ == '=') { token = Select(Token::ASSIGN_ADD); } else { token = Token::ADD; } break; case '-': // - -- --> -= Advance(); if (c0_ == '-') { Advance(); if (c0_ == '>' && has_line_terminator_before_next_) { // For compatibility with SpiderMonkey, we skip lines that // start with an HTML comment end '-->'. token = SkipSingleLineComment(); } else { token = Token::DEC; } } else if (c0_ == '=') { token = Select(Token::ASSIGN_SUB); } else { token = Token::SUB; } break; case '*': // * *= token = Select('=', Token::ASSIGN_MUL, Token::MUL); break; case '%': // % %= token = Select('=', Token::ASSIGN_MOD, Token::MOD); break; case '/': // / // /* /= Advance(); if (c0_ == '/') { token = SkipSingleLineComment(); } else if (c0_ == '*') { token = SkipMultiLineComment(); } else if (c0_ == '=') { token = Select(Token::ASSIGN_DIV); } else { token = Token::DIV; } break; case '&': // & && &= Advance(); if (c0_ == '&') { token = Select(Token::AND); } else if (c0_ == '=') { token = Select(Token::ASSIGN_BIT_AND); } else { token = Token::BIT_AND; } break; case '|': // | || |= Advance(); if (c0_ == '|') { token = Select(Token::OR); } else if (c0_ == '=') { token = Select(Token::ASSIGN_BIT_OR); } else { token = Token::BIT_OR; } break; case '^': // ^ ^= token = Select('=', Token::ASSIGN_BIT_XOR, Token::BIT_XOR); break; case '.': // . Number Advance(); if (IsDecimalDigit(c0_)) { token = ScanNumber(true); } else { token = Token::PERIOD; } break; case ':': token = Select(Token::COLON); break; case ';': token = Select(Token::SEMICOLON); break; case ',': token = Select(Token::COMMA); break; case '(': token = Select(Token::LPAREN); break; case ')': token = Select(Token::RPAREN); break; case '[': token = Select(Token::LBRACK); break; case ']': token = Select(Token::RBRACK); break; case '{': token = Select(Token::LBRACE); break; case '}': token = Select(Token::RBRACE); break; case '?': token = Select(Token::CONDITIONAL); break; case '~': token = Select(Token::BIT_NOT); break; default: if (unicode_cache_->IsIdentifierStart(c0_)) { token = ScanIdentifierOrKeyword(); } else if (IsDecimalDigit(c0_)) { token = ScanNumber(false); } else if (SkipWhiteSpace()) { token = Token::WHITESPACE; } else if (c0_ < 0) { token = Token::EOS; } else { token = Select(Token::ILLEGAL); } break; } // Continue scanning for tokens as long as we're just skipping // whitespace. } while (token == Token::WHITESPACE); next_.location.end_pos = source_pos(); next_.token = token; } void JavaScriptScanner::SeekForward(int pos) { // After this call, we will have the token at the given position as // the "next" token. The "current" token will be invalid. if (pos == next_.location.beg_pos) return; int current_pos = source_pos(); ASSERT_EQ(next_.location.end_pos, current_pos); // Positions inside the lookahead token aren't supported. ASSERT(pos >= current_pos); if (pos != current_pos) { source_->SeekForward(pos - source_->pos()); Advance(); // This function is only called to seek to the location // of the end of a function (at the "}" token). It doesn't matter // whether there was a line terminator in the part we skip. has_line_terminator_before_next_ = false; } Scan(); } void JavaScriptScanner::ScanEscape() { uc32 c = c0_; Advance(); // Skip escaped newlines. if (unicode_cache_->IsLineTerminator(c)) { // Allow CR+LF newlines in multiline string literals. if (IsCarriageReturn(c) && IsLineFeed(c0_)) Advance(); // Allow LF+CR newlines in multiline string literals. if (IsLineFeed(c) && IsCarriageReturn(c0_)) Advance(); return; } switch (c) { case '\'': // fall through case '"' : // fall through case '\\': break; case 'b' : c = '\b'; break; case 'f' : c = '\f'; break; case 'n' : c = '\n'; break; case 'r' : c = '\r'; break; case 't' : c = '\t'; break; case 'u' : c = ScanHexEscape(c, 4); break; case 'v' : c = '\v'; break; case 'x' : c = ScanHexEscape(c, 2); break; case '0' : // fall through case '1' : // fall through case '2' : // fall through case '3' : // fall through case '4' : // fall through case '5' : // fall through case '6' : // fall through case '7' : c = ScanOctalEscape(c, 2); break; } // According to ECMA-262, 3rd, 7.8.4 (p 18ff) these // should be illegal, but they are commonly handled // as non-escaped characters by JS VMs. AddLiteralChar(c); } Token::Value JavaScriptScanner::ScanString() { uc32 quote = c0_; Advance(); // consume quote LiteralScope literal(this); while (c0_ != quote && c0_ >= 0 && !unicode_cache_->IsLineTerminator(c0_)) { uc32 c = c0_; Advance(); if (c == '\\') { if (c0_ < 0) return Token::ILLEGAL; ScanEscape(); } else { AddLiteralChar(c); } } if (c0_ != quote) return Token::ILLEGAL; literal.Complete(); Advance(); // consume quote return Token::STRING; } void JavaScriptScanner::ScanDecimalDigits() { while (IsDecimalDigit(c0_)) AddLiteralCharAdvance(); } Token::Value JavaScriptScanner::ScanNumber(bool seen_period) { ASSERT(IsDecimalDigit(c0_)); // the first digit of the number or the fraction enum { DECIMAL, HEX, OCTAL } kind = DECIMAL; LiteralScope literal(this); if (seen_period) { // we have already seen a decimal point of the float AddLiteralChar('.'); ScanDecimalDigits(); // we know we have at least one digit } else { // if the first character is '0' we must check for octals and hex if (c0_ == '0') { AddLiteralCharAdvance(); // either 0, 0exxx, 0Exxx, 0.xxx, an octal number, or a hex number if (c0_ == 'x' || c0_ == 'X') { // hex number kind = HEX; AddLiteralCharAdvance(); if (!IsHexDigit(c0_)) { // we must have at least one hex digit after 'x'/'X' return Token::ILLEGAL; } while (IsHexDigit(c0_)) { AddLiteralCharAdvance(); } } else if ('0' <= c0_ && c0_ <= '7') { // (possible) octal number kind = OCTAL; while (true) { if (c0_ == '8' || c0_ == '9') { kind = DECIMAL; break; } if (c0_ < '0' || '7' < c0_) { // Octal literal finished. octal_pos_ = next_.location.beg_pos; break; } AddLiteralCharAdvance(); } } } // Parse decimal digits and allow trailing fractional part. if (kind == DECIMAL) { ScanDecimalDigits(); // optional if (c0_ == '.') { AddLiteralCharAdvance(); ScanDecimalDigits(); // optional } } } // scan exponent, if any if (c0_ == 'e' || c0_ == 'E') { ASSERT(kind != HEX); // 'e'/'E' must be scanned as part of the hex number if (kind == OCTAL) return Token::ILLEGAL; // no exponent for octals allowed // scan exponent AddLiteralCharAdvance(); if (c0_ == '+' || c0_ == '-') AddLiteralCharAdvance(); if (!IsDecimalDigit(c0_)) { // we must have at least one decimal digit after 'e'/'E' return Token::ILLEGAL; } ScanDecimalDigits(); } // The source character immediately following a numeric literal must // not be an identifier start or a decimal digit; see ECMA-262 // section 7.8.3, page 17 (note that we read only one decimal digit // if the value is 0). if (IsDecimalDigit(c0_) || unicode_cache_->IsIdentifierStart(c0_)) return Token::ILLEGAL; literal.Complete(); return Token::NUMBER; } uc32 JavaScriptScanner::ScanIdentifierUnicodeEscape() { Advance(); if (c0_ != 'u') return unibrow::Utf8::kBadChar; Advance(); uc32 c = ScanHexEscape('u', 4); // We do not allow a unicode escape sequence to start another // unicode escape sequence. if (c == '\\') return unibrow::Utf8::kBadChar; return c; } Token::Value JavaScriptScanner::ScanIdentifierOrKeyword() { ASSERT(unicode_cache_->IsIdentifierStart(c0_)); LiteralScope literal(this); KeywordMatcher keyword_match; // Scan identifier start character. if (c0_ == '\\') { uc32 c = ScanIdentifierUnicodeEscape(); // Only allow legal identifier start characters. if (!unicode_cache_->IsIdentifierStart(c)) return Token::ILLEGAL; AddLiteralChar(c); return ScanIdentifierSuffix(&literal); } uc32 first_char = c0_; Advance(); AddLiteralChar(first_char); if (!keyword_match.AddChar(first_char)) { return ScanIdentifierSuffix(&literal); } // Scan the rest of the identifier characters. while (unicode_cache_->IsIdentifierPart(c0_)) { if (c0_ != '\\') { uc32 next_char = c0_; Advance(); AddLiteralChar(next_char); if (keyword_match.AddChar(next_char)) continue; } // Fallthrough if no loner able to complete keyword. return ScanIdentifierSuffix(&literal); } literal.Complete(); return keyword_match.token(); } Token::Value JavaScriptScanner::ScanIdentifierSuffix(LiteralScope* literal) { // Scan the rest of the identifier characters. while (unicode_cache_->IsIdentifierPart(c0_)) { if (c0_ == '\\') { uc32 c = ScanIdentifierUnicodeEscape(); // Only allow legal identifier part characters. if (!unicode_cache_->IsIdentifierPart(c)) return Token::ILLEGAL; AddLiteralChar(c); } else { AddLiteralChar(c0_); Advance(); } } literal->Complete(); return Token::IDENTIFIER; } bool JavaScriptScanner::ScanRegExpPattern(bool seen_equal) { // Scan: ('/' | '/=') RegularExpressionBody '/' RegularExpressionFlags bool in_character_class = false; // Previous token is either '/' or '/=', in the second case, the // pattern starts at =. next_.location.beg_pos = source_pos() - (seen_equal ? 2 : 1); next_.location.end_pos = source_pos() - (seen_equal ? 1 : 0); // Scan regular expression body: According to ECMA-262, 3rd, 7.8.5, // the scanner should pass uninterpreted bodies to the RegExp // constructor. LiteralScope literal(this); if (seen_equal) AddLiteralChar('='); while (c0_ != '/' || in_character_class) { if (unicode_cache_->IsLineTerminator(c0_) || c0_ < 0) return false; if (c0_ == '\\') { // Escape sequence. AddLiteralCharAdvance(); if (unicode_cache_->IsLineTerminator(c0_) || c0_ < 0) return false; AddLiteralCharAdvance(); // If the escape allows more characters, i.e., \x??, \u????, or \c?, // only "safe" characters are allowed (letters, digits, underscore), // otherwise the escape isn't valid and the invalid character has // its normal meaning. I.e., we can just continue scanning without // worrying whether the following characters are part of the escape // or not, since any '/', '\\' or '[' is guaranteed to not be part // of the escape sequence. } else { // Unescaped character. if (c0_ == '[') in_character_class = true; if (c0_ == ']') in_character_class = false; AddLiteralCharAdvance(); } } Advance(); // consume '/' literal.Complete(); return true; } bool JavaScriptScanner::ScanRegExpFlags() { // Scan regular expression flags. LiteralScope literal(this); while (unicode_cache_->IsIdentifierPart(c0_)) { if (c0_ == '\\') { uc32 c = ScanIdentifierUnicodeEscape(); if (c != static_cast<uc32>(unibrow::Utf8::kBadChar)) { // We allow any escaped character, unlike the restriction on // IdentifierPart when it is used to build an IdentifierName. AddLiteralChar(c); continue; } } AddLiteralCharAdvance(); } literal.Complete(); next_.location.end_pos = source_pos() - 1; return true; } // ---------------------------------------------------------------------------- // Keyword Matcher KeywordMatcher::FirstState KeywordMatcher::first_states_[] = { { "break", KEYWORD_PREFIX, Token::BREAK }, { NULL, C, Token::ILLEGAL }, { NULL, D, Token::ILLEGAL }, { NULL, E, Token::ILLEGAL }, { NULL, F, Token::ILLEGAL }, { NULL, UNMATCHABLE, Token::ILLEGAL }, { NULL, UNMATCHABLE, Token::ILLEGAL }, { NULL, I, Token::ILLEGAL }, { NULL, UNMATCHABLE, Token::ILLEGAL }, { NULL, UNMATCHABLE, Token::ILLEGAL }, { "let", KEYWORD_PREFIX, Token::FUTURE_RESERVED_WORD }, { NULL, UNMATCHABLE, Token::ILLEGAL }, { NULL, N, Token::ILLEGAL }, { NULL, UNMATCHABLE, Token::ILLEGAL }, { NULL, P, Token::ILLEGAL }, { NULL, UNMATCHABLE, Token::ILLEGAL }, { "return", KEYWORD_PREFIX, Token::RETURN }, { NULL, S, Token::ILLEGAL }, { NULL, T, Token::ILLEGAL }, { NULL, UNMATCHABLE, Token::ILLEGAL }, { NULL, V, Token::ILLEGAL }, { NULL, W, Token::ILLEGAL }, { NULL, UNMATCHABLE, Token::ILLEGAL }, { "yield", KEYWORD_PREFIX, Token::FUTURE_RESERVED_WORD } }; void KeywordMatcher::Step(unibrow::uchar input) { switch (state_) { case INITIAL: { // matching the first character is the only state with significant fanout. // Match only lower-case letters in range 'b'..'y'. unsigned int offset = input - kFirstCharRangeMin; if (offset < kFirstCharRangeLength) { state_ = first_states_[offset].state; if (state_ == KEYWORD_PREFIX) { keyword_ = first_states_[offset].keyword; counter_ = 1; keyword_token_ = first_states_[offset].token; } return; } break; } case KEYWORD_PREFIX: if (static_cast<unibrow::uchar>(keyword_[counter_]) == input) { counter_++; if (keyword_[counter_] == '\0') { state_ = KEYWORD_MATCHED; token_ = keyword_token_; } return; } break; case KEYWORD_MATCHED: token_ = Token::IDENTIFIER; break; case C: if (MatchState(input, 'a', CA)) return; if (MatchKeywordStart(input, "class", 1, Token::FUTURE_RESERVED_WORD)) return; if (MatchState(input, 'o', CO)) return; break; case CA: if (MatchKeywordStart(input, "case", 2, Token::CASE)) return; if (MatchKeywordStart(input, "catch", 2, Token::CATCH)) return; break; case CO: if (MatchState(input, 'n', CON)) return; break; case CON: if (MatchKeywordStart(input, "const", 3, Token::CONST)) return; if (MatchKeywordStart(input, "continue", 3, Token::CONTINUE)) return; break; case D: if (MatchState(input, 'e', DE)) return; if (MatchKeyword(input, 'o', KEYWORD_MATCHED, Token::DO)) return; break; case DE: if (MatchKeywordStart(input, "debugger", 2, Token::DEBUGGER)) return; if (MatchKeywordStart(input, "default", 2, Token::DEFAULT)) return; if (MatchKeywordStart(input, "delete", 2, Token::DELETE)) return; break; case E: if (MatchKeywordStart(input, "else", 1, Token::ELSE)) return; if (MatchKeywordStart(input, "enum", 1, Token::FUTURE_RESERVED_WORD)) return; if (MatchState(input, 'x', EX)) return; break; case EX: if (MatchKeywordStart(input, "export", 2, Token::FUTURE_RESERVED_WORD)) return; if (MatchKeywordStart(input, "extends", 2, Token::FUTURE_RESERVED_WORD)) return; break; case F: if (MatchKeywordStart(input, "false", 1, Token::FALSE_LITERAL)) return; if (MatchKeywordStart(input, "finally", 1, Token::FINALLY)) return; if (MatchKeywordStart(input, "for", 1, Token::FOR)) return; if (MatchKeywordStart(input, "function", 1, Token::FUNCTION)) return; break; case I: if (MatchKeyword(input, 'f', KEYWORD_MATCHED, Token::IF)) return; if (MatchState(input, 'm', IM)) return; if (MatchKeyword(input, 'n', IN, Token::IN)) return; break; case IM: if (MatchState(input, 'p', IMP)) return; break; case IMP: if (MatchKeywordStart(input, "implements", 3, Token::FUTURE_RESERVED_WORD )) return; if (MatchKeywordStart(input, "import", 3, Token::FUTURE_RESERVED_WORD)) return; break; case IN: token_ = Token::IDENTIFIER; if (MatchKeywordStart(input, "interface", 2, Token::FUTURE_RESERVED_WORD)) return; if (MatchKeywordStart(input, "instanceof", 2, Token::INSTANCEOF)) return; break; case N: if (MatchKeywordStart(input, "native", 1, Token::NATIVE)) return; if (MatchKeywordStart(input, "new", 1, Token::NEW)) return; if (MatchKeywordStart(input, "null", 1, Token::NULL_LITERAL)) return; break; case P: if (MatchKeywordStart(input, "package", 1, Token::FUTURE_RESERVED_WORD)) return; if (MatchState(input, 'r', PR)) return; if (MatchKeywordStart(input, "public", 1, Token::FUTURE_RESERVED_WORD)) return; break; case PR: if (MatchKeywordStart(input, "private", 2, Token::FUTURE_RESERVED_WORD)) return; if (MatchKeywordStart(input, "protected", 2, Token::FUTURE_RESERVED_WORD)) return; break; case S: if (MatchKeywordStart(input, "static", 1, Token::FUTURE_RESERVED_WORD)) return; if (MatchKeywordStart(input, "super", 1, Token::FUTURE_RESERVED_WORD)) return; if (MatchKeywordStart(input, "switch", 1, Token::SWITCH)) return; break; case T: if (MatchState(input, 'h', TH)) return; if (MatchState(input, 'r', TR)) return; if (MatchKeywordStart(input, "typeof", 1, Token::TYPEOF)) return; break; case TH: if (MatchKeywordStart(input, "this", 2, Token::THIS)) return; if (MatchKeywordStart(input, "throw", 2, Token::THROW)) return; break; case TR: if (MatchKeywordStart(input, "true", 2, Token::TRUE_LITERAL)) return; if (MatchKeyword(input, 'y', KEYWORD_MATCHED, Token::TRY)) return; break; case V: if (MatchKeywordStart(input, "var", 1, Token::VAR)) return; if (MatchKeywordStart(input, "void", 1, Token::VOID)) return; break; case W: if (MatchKeywordStart(input, "while", 1, Token::WHILE)) return; if (MatchKeywordStart(input, "with", 1, Token::WITH)) return; break; case UNMATCHABLE: break; } // On fallthrough, it's a failure. state_ = UNMATCHABLE; } } } // namespace v8::internal