// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include <stdlib.h> #include "v8.h" #include "accessors.h" #include "api.h" #include "arguments.h" #include "codegen.h" #include "compilation-cache.h" #include "compiler.h" #include "cpu.h" #include "dateparser-inl.h" #include "debug.h" #include "deoptimizer.h" #include "execution.h" #include "global-handles.h" #include "jsregexp.h" #include "liveedit.h" #include "liveobjectlist-inl.h" #include "parser.h" #include "platform.h" #include "runtime.h" #include "runtime-profiler.h" #include "scopeinfo.h" #include "smart-pointer.h" #include "stub-cache.h" #include "v8threads.h" #include "string-search.h" namespace v8 { namespace internal { #define RUNTIME_ASSERT(value) \ if (!(value)) return isolate->ThrowIllegalOperation(); // Cast the given object to a value of the specified type and store // it in a variable with the given name. If the object is not of the // expected type call IllegalOperation and return. #define CONVERT_CHECKED(Type, name, obj) \ RUNTIME_ASSERT(obj->Is##Type()); \ Type* name = Type::cast(obj); #define CONVERT_ARG_CHECKED(Type, name, index) \ RUNTIME_ASSERT(args[index]->Is##Type()); \ Handle<Type> name = args.at<Type>(index); // Cast the given object to a boolean and store it in a variable with // the given name. If the object is not a boolean call IllegalOperation // and return. #define CONVERT_BOOLEAN_CHECKED(name, obj) \ RUNTIME_ASSERT(obj->IsBoolean()); \ bool name = (obj)->IsTrue(); // Cast the given object to a Smi and store its value in an int variable // with the given name. If the object is not a Smi call IllegalOperation // and return. #define CONVERT_SMI_CHECKED(name, obj) \ RUNTIME_ASSERT(obj->IsSmi()); \ int name = Smi::cast(obj)->value(); // Cast the given object to a double and store it in a variable with // the given name. If the object is not a number (as opposed to // the number not-a-number) call IllegalOperation and return. #define CONVERT_DOUBLE_CHECKED(name, obj) \ RUNTIME_ASSERT(obj->IsNumber()); \ double name = (obj)->Number(); // Call the specified converter on the object *comand store the result in // a variable of the specified type with the given name. If the // object is not a Number call IllegalOperation and return. #define CONVERT_NUMBER_CHECKED(type, name, Type, obj) \ RUNTIME_ASSERT(obj->IsNumber()); \ type name = NumberTo##Type(obj); MUST_USE_RESULT static MaybeObject* DeepCopyBoilerplate(Isolate* isolate, JSObject* boilerplate) { StackLimitCheck check(isolate); if (check.HasOverflowed()) return isolate->StackOverflow(); Heap* heap = isolate->heap(); Object* result; { MaybeObject* maybe_result = heap->CopyJSObject(boilerplate); if (!maybe_result->ToObject(&result)) return maybe_result; } JSObject* copy = JSObject::cast(result); // Deep copy local properties. if (copy->HasFastProperties()) { FixedArray* properties = copy->properties(); for (int i = 0; i < properties->length(); i++) { Object* value = properties->get(i); if (value->IsJSObject()) { JSObject* js_object = JSObject::cast(value); { MaybeObject* maybe_result = DeepCopyBoilerplate(isolate, js_object); if (!maybe_result->ToObject(&result)) return maybe_result; } properties->set(i, result); } } int nof = copy->map()->inobject_properties(); for (int i = 0; i < nof; i++) { Object* value = copy->InObjectPropertyAt(i); if (value->IsJSObject()) { JSObject* js_object = JSObject::cast(value); { MaybeObject* maybe_result = DeepCopyBoilerplate(isolate, js_object); if (!maybe_result->ToObject(&result)) return maybe_result; } copy->InObjectPropertyAtPut(i, result); } } } else { { MaybeObject* maybe_result = heap->AllocateFixedArray(copy->NumberOfLocalProperties(NONE)); if (!maybe_result->ToObject(&result)) return maybe_result; } FixedArray* names = FixedArray::cast(result); copy->GetLocalPropertyNames(names, 0); for (int i = 0; i < names->length(); i++) { ASSERT(names->get(i)->IsString()); String* key_string = String::cast(names->get(i)); PropertyAttributes attributes = copy->GetLocalPropertyAttribute(key_string); // Only deep copy fields from the object literal expression. // In particular, don't try to copy the length attribute of // an array. if (attributes != NONE) continue; Object* value = copy->GetProperty(key_string, &attributes)->ToObjectUnchecked(); if (value->IsJSObject()) { JSObject* js_object = JSObject::cast(value); { MaybeObject* maybe_result = DeepCopyBoilerplate(isolate, js_object); if (!maybe_result->ToObject(&result)) return maybe_result; } { MaybeObject* maybe_result = // Creating object copy for literals. No strict mode needed. copy->SetProperty(key_string, result, NONE, kNonStrictMode); if (!maybe_result->ToObject(&result)) return maybe_result; } } } } // Deep copy local elements. // Pixel elements cannot be created using an object literal. ASSERT(!copy->HasExternalArrayElements()); switch (copy->GetElementsKind()) { case JSObject::FAST_ELEMENTS: { FixedArray* elements = FixedArray::cast(copy->elements()); if (elements->map() == heap->fixed_cow_array_map()) { isolate->counters()->cow_arrays_created_runtime()->Increment(); #ifdef DEBUG for (int i = 0; i < elements->length(); i++) { ASSERT(!elements->get(i)->IsJSObject()); } #endif } else { for (int i = 0; i < elements->length(); i++) { Object* value = elements->get(i); if (value->IsJSObject()) { JSObject* js_object = JSObject::cast(value); { MaybeObject* maybe_result = DeepCopyBoilerplate(isolate, js_object); if (!maybe_result->ToObject(&result)) return maybe_result; } elements->set(i, result); } } } break; } case JSObject::DICTIONARY_ELEMENTS: { NumberDictionary* element_dictionary = copy->element_dictionary(); int capacity = element_dictionary->Capacity(); for (int i = 0; i < capacity; i++) { Object* k = element_dictionary->KeyAt(i); if (element_dictionary->IsKey(k)) { Object* value = element_dictionary->ValueAt(i); if (value->IsJSObject()) { JSObject* js_object = JSObject::cast(value); { MaybeObject* maybe_result = DeepCopyBoilerplate(isolate, js_object); if (!maybe_result->ToObject(&result)) return maybe_result; } element_dictionary->ValueAtPut(i, result); } } } break; } default: UNREACHABLE(); break; } return copy; } RUNTIME_FUNCTION(MaybeObject*, Runtime_CloneLiteralBoilerplate) { CONVERT_CHECKED(JSObject, boilerplate, args[0]); return DeepCopyBoilerplate(isolate, boilerplate); } RUNTIME_FUNCTION(MaybeObject*, Runtime_CloneShallowLiteralBoilerplate) { CONVERT_CHECKED(JSObject, boilerplate, args[0]); return isolate->heap()->CopyJSObject(boilerplate); } static Handle<Map> ComputeObjectLiteralMap( Handle<Context> context, Handle<FixedArray> constant_properties, bool* is_result_from_cache) { Isolate* isolate = context->GetIsolate(); int properties_length = constant_properties->length(); int number_of_properties = properties_length / 2; if (FLAG_canonicalize_object_literal_maps) { // Check that there are only symbols and array indices among keys. int number_of_symbol_keys = 0; for (int p = 0; p != properties_length; p += 2) { Object* key = constant_properties->get(p); uint32_t element_index = 0; if (key->IsSymbol()) { number_of_symbol_keys++; } else if (key->ToArrayIndex(&element_index)) { // An index key does not require space in the property backing store. number_of_properties--; } else { // Bail out as a non-symbol non-index key makes caching impossible. // ASSERT to make sure that the if condition after the loop is false. ASSERT(number_of_symbol_keys != number_of_properties); break; } } // If we only have symbols and array indices among keys then we can // use the map cache in the global context. const int kMaxKeys = 10; if ((number_of_symbol_keys == number_of_properties) && (number_of_symbol_keys < kMaxKeys)) { // Create the fixed array with the key. Handle<FixedArray> keys = isolate->factory()->NewFixedArray(number_of_symbol_keys); if (number_of_symbol_keys > 0) { int index = 0; for (int p = 0; p < properties_length; p += 2) { Object* key = constant_properties->get(p); if (key->IsSymbol()) { keys->set(index++, key); } } ASSERT(index == number_of_symbol_keys); } *is_result_from_cache = true; return isolate->factory()->ObjectLiteralMapFromCache(context, keys); } } *is_result_from_cache = false; return isolate->factory()->CopyMap( Handle<Map>(context->object_function()->initial_map()), number_of_properties); } static Handle<Object> CreateLiteralBoilerplate( Isolate* isolate, Handle<FixedArray> literals, Handle<FixedArray> constant_properties); static Handle<Object> CreateObjectLiteralBoilerplate( Isolate* isolate, Handle<FixedArray> literals, Handle<FixedArray> constant_properties, bool should_have_fast_elements, bool has_function_literal) { // Get the global context from the literals array. This is the // context in which the function was created and we use the object // function from this context to create the object literal. We do // not use the object function from the current global context // because this might be the object function from another context // which we should not have access to. Handle<Context> context = Handle<Context>(JSFunction::GlobalContextFromLiterals(*literals)); // In case we have function literals, we want the object to be in // slow properties mode for now. We don't go in the map cache because // maps with constant functions can't be shared if the functions are // not the same (which is the common case). bool is_result_from_cache = false; Handle<Map> map = has_function_literal ? Handle<Map>(context->object_function()->initial_map()) : ComputeObjectLiteralMap(context, constant_properties, &is_result_from_cache); Handle<JSObject> boilerplate = isolate->factory()->NewJSObjectFromMap(map); // Normalize the elements of the boilerplate to save space if needed. if (!should_have_fast_elements) NormalizeElements(boilerplate); // Add the constant properties to the boilerplate. int length = constant_properties->length(); bool should_transform = !is_result_from_cache && boilerplate->HasFastProperties(); if (should_transform || has_function_literal) { // Normalize the properties of object to avoid n^2 behavior // when extending the object multiple properties. Indicate the number of // properties to be added. NormalizeProperties(boilerplate, KEEP_INOBJECT_PROPERTIES, length / 2); } for (int index = 0; index < length; index +=2) { Handle<Object> key(constant_properties->get(index+0), isolate); Handle<Object> value(constant_properties->get(index+1), isolate); if (value->IsFixedArray()) { // The value contains the constant_properties of a // simple object or array literal. Handle<FixedArray> array = Handle<FixedArray>::cast(value); value = CreateLiteralBoilerplate(isolate, literals, array); if (value.is_null()) return value; } Handle<Object> result; uint32_t element_index = 0; if (key->IsSymbol()) { if (Handle<String>::cast(key)->AsArrayIndex(&element_index)) { // Array index as string (uint32). result = SetOwnElement(boilerplate, element_index, value, kNonStrictMode); } else { Handle<String> name(String::cast(*key)); ASSERT(!name->AsArrayIndex(&element_index)); result = SetLocalPropertyIgnoreAttributes(boilerplate, name, value, NONE); } } else if (key->ToArrayIndex(&element_index)) { // Array index (uint32). result = SetOwnElement(boilerplate, element_index, value, kNonStrictMode); } else { // Non-uint32 number. ASSERT(key->IsNumber()); double num = key->Number(); char arr[100]; Vector<char> buffer(arr, ARRAY_SIZE(arr)); const char* str = DoubleToCString(num, buffer); Handle<String> name = isolate->factory()->NewStringFromAscii(CStrVector(str)); result = SetLocalPropertyIgnoreAttributes(boilerplate, name, value, NONE); } // If setting the property on the boilerplate throws an // exception, the exception is converted to an empty handle in // the handle based operations. In that case, we need to // convert back to an exception. if (result.is_null()) return result; } // Transform to fast properties if necessary. For object literals with // containing function literals we defer this operation until after all // computed properties have been assigned so that we can generate // constant function properties. if (should_transform && !has_function_literal) { TransformToFastProperties(boilerplate, boilerplate->map()->unused_property_fields()); } return boilerplate; } static Handle<Object> CreateArrayLiteralBoilerplate( Isolate* isolate, Handle<FixedArray> literals, Handle<FixedArray> elements) { // Create the JSArray. Handle<JSFunction> constructor( JSFunction::GlobalContextFromLiterals(*literals)->array_function()); Handle<Object> object = isolate->factory()->NewJSObject(constructor); const bool is_cow = (elements->map() == isolate->heap()->fixed_cow_array_map()); Handle<FixedArray> copied_elements = is_cow ? elements : isolate->factory()->CopyFixedArray(elements); Handle<FixedArray> content = Handle<FixedArray>::cast(copied_elements); if (is_cow) { #ifdef DEBUG // Copy-on-write arrays must be shallow (and simple). for (int i = 0; i < content->length(); i++) { ASSERT(!content->get(i)->IsFixedArray()); } #endif } else { for (int i = 0; i < content->length(); i++) { if (content->get(i)->IsFixedArray()) { // The value contains the constant_properties of a // simple object or array literal. Handle<FixedArray> fa(FixedArray::cast(content->get(i))); Handle<Object> result = CreateLiteralBoilerplate(isolate, literals, fa); if (result.is_null()) return result; content->set(i, *result); } } } // Set the elements. Handle<JSArray>::cast(object)->SetContent(*content); return object; } static Handle<Object> CreateLiteralBoilerplate( Isolate* isolate, Handle<FixedArray> literals, Handle<FixedArray> array) { Handle<FixedArray> elements = CompileTimeValue::GetElements(array); const bool kHasNoFunctionLiteral = false; switch (CompileTimeValue::GetType(array)) { case CompileTimeValue::OBJECT_LITERAL_FAST_ELEMENTS: return CreateObjectLiteralBoilerplate(isolate, literals, elements, true, kHasNoFunctionLiteral); case CompileTimeValue::OBJECT_LITERAL_SLOW_ELEMENTS: return CreateObjectLiteralBoilerplate(isolate, literals, elements, false, kHasNoFunctionLiteral); case CompileTimeValue::ARRAY_LITERAL: return CreateArrayLiteralBoilerplate(isolate, literals, elements); default: UNREACHABLE(); return Handle<Object>::null(); } } RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateArrayLiteralBoilerplate) { // Takes a FixedArray of elements containing the literal elements of // the array literal and produces JSArray with those elements. // Additionally takes the literals array of the surrounding function // which contains the context from which to get the Array function // to use for creating the array literal. HandleScope scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_CHECKED(FixedArray, literals, 0); CONVERT_SMI_CHECKED(literals_index, args[1]); CONVERT_ARG_CHECKED(FixedArray, elements, 2); Handle<Object> object = CreateArrayLiteralBoilerplate(isolate, literals, elements); if (object.is_null()) return Failure::Exception(); // Update the functions literal and return the boilerplate. literals->set(literals_index, *object); return *object; } RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateObjectLiteral) { HandleScope scope(isolate); ASSERT(args.length() == 4); CONVERT_ARG_CHECKED(FixedArray, literals, 0); CONVERT_SMI_CHECKED(literals_index, args[1]); CONVERT_ARG_CHECKED(FixedArray, constant_properties, 2); CONVERT_SMI_CHECKED(flags, args[3]); bool should_have_fast_elements = (flags & ObjectLiteral::kFastElements) != 0; bool has_function_literal = (flags & ObjectLiteral::kHasFunction) != 0; // Check if boilerplate exists. If not, create it first. Handle<Object> boilerplate(literals->get(literals_index), isolate); if (*boilerplate == isolate->heap()->undefined_value()) { boilerplate = CreateObjectLiteralBoilerplate(isolate, literals, constant_properties, should_have_fast_elements, has_function_literal); if (boilerplate.is_null()) return Failure::Exception(); // Update the functions literal and return the boilerplate. literals->set(literals_index, *boilerplate); } return DeepCopyBoilerplate(isolate, JSObject::cast(*boilerplate)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateObjectLiteralShallow) { HandleScope scope(isolate); ASSERT(args.length() == 4); CONVERT_ARG_CHECKED(FixedArray, literals, 0); CONVERT_SMI_CHECKED(literals_index, args[1]); CONVERT_ARG_CHECKED(FixedArray, constant_properties, 2); CONVERT_SMI_CHECKED(flags, args[3]); bool should_have_fast_elements = (flags & ObjectLiteral::kFastElements) != 0; bool has_function_literal = (flags & ObjectLiteral::kHasFunction) != 0; // Check if boilerplate exists. If not, create it first. Handle<Object> boilerplate(literals->get(literals_index), isolate); if (*boilerplate == isolate->heap()->undefined_value()) { boilerplate = CreateObjectLiteralBoilerplate(isolate, literals, constant_properties, should_have_fast_elements, has_function_literal); if (boilerplate.is_null()) return Failure::Exception(); // Update the functions literal and return the boilerplate. literals->set(literals_index, *boilerplate); } return isolate->heap()->CopyJSObject(JSObject::cast(*boilerplate)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateArrayLiteral) { HandleScope scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_CHECKED(FixedArray, literals, 0); CONVERT_SMI_CHECKED(literals_index, args[1]); CONVERT_ARG_CHECKED(FixedArray, elements, 2); // Check if boilerplate exists. If not, create it first. Handle<Object> boilerplate(literals->get(literals_index), isolate); if (*boilerplate == isolate->heap()->undefined_value()) { boilerplate = CreateArrayLiteralBoilerplate(isolate, literals, elements); if (boilerplate.is_null()) return Failure::Exception(); // Update the functions literal and return the boilerplate. literals->set(literals_index, *boilerplate); } return DeepCopyBoilerplate(isolate, JSObject::cast(*boilerplate)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateArrayLiteralShallow) { HandleScope scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_CHECKED(FixedArray, literals, 0); CONVERT_SMI_CHECKED(literals_index, args[1]); CONVERT_ARG_CHECKED(FixedArray, elements, 2); // Check if boilerplate exists. If not, create it first. Handle<Object> boilerplate(literals->get(literals_index), isolate); if (*boilerplate == isolate->heap()->undefined_value()) { boilerplate = CreateArrayLiteralBoilerplate(isolate, literals, elements); if (boilerplate.is_null()) return Failure::Exception(); // Update the functions literal and return the boilerplate. literals->set(literals_index, *boilerplate); } if (JSObject::cast(*boilerplate)->elements()->map() == isolate->heap()->fixed_cow_array_map()) { isolate->counters()->cow_arrays_created_runtime()->Increment(); } return isolate->heap()->CopyJSObject(JSObject::cast(*boilerplate)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateCatchExtensionObject) { ASSERT(args.length() == 2); CONVERT_CHECKED(String, key, args[0]); Object* value = args[1]; // Create a catch context extension object. JSFunction* constructor = isolate->context()->global_context()-> context_extension_function(); Object* object; { MaybeObject* maybe_object = isolate->heap()->AllocateJSObject(constructor); if (!maybe_object->ToObject(&object)) return maybe_object; } // Assign the exception value to the catch variable and make sure // that the catch variable is DontDelete. { MaybeObject* maybe_value = // Passing non-strict per ECMA-262 5th Ed. 12.14. Catch, bullet #4. JSObject::cast(object)->SetProperty( key, value, DONT_DELETE, kNonStrictMode); if (!maybe_value->ToObject(&value)) return maybe_value; } return object; } RUNTIME_FUNCTION(MaybeObject*, Runtime_ClassOf) { NoHandleAllocation ha; ASSERT(args.length() == 1); Object* obj = args[0]; if (!obj->IsJSObject()) return isolate->heap()->null_value(); return JSObject::cast(obj)->class_name(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_IsInPrototypeChain) { NoHandleAllocation ha; ASSERT(args.length() == 2); // See ECMA-262, section 15.3.5.3, page 88 (steps 5 - 8). Object* O = args[0]; Object* V = args[1]; while (true) { Object* prototype = V->GetPrototype(); if (prototype->IsNull()) return isolate->heap()->false_value(); if (O == prototype) return isolate->heap()->true_value(); V = prototype; } } // Inserts an object as the hidden prototype of another object. RUNTIME_FUNCTION(MaybeObject*, Runtime_SetHiddenPrototype) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_CHECKED(JSObject, jsobject, args[0]); CONVERT_CHECKED(JSObject, proto, args[1]); // Sanity checks. The old prototype (that we are replacing) could // theoretically be null, but if it is not null then check that we // didn't already install a hidden prototype here. RUNTIME_ASSERT(!jsobject->GetPrototype()->IsHeapObject() || !HeapObject::cast(jsobject->GetPrototype())->map()->is_hidden_prototype()); RUNTIME_ASSERT(!proto->map()->is_hidden_prototype()); // Allocate up front before we start altering state in case we get a GC. Object* map_or_failure; { MaybeObject* maybe_map_or_failure = proto->map()->CopyDropTransitions(); if (!maybe_map_or_failure->ToObject(&map_or_failure)) { return maybe_map_or_failure; } } Map* new_proto_map = Map::cast(map_or_failure); { MaybeObject* maybe_map_or_failure = jsobject->map()->CopyDropTransitions(); if (!maybe_map_or_failure->ToObject(&map_or_failure)) { return maybe_map_or_failure; } } Map* new_map = Map::cast(map_or_failure); // Set proto's prototype to be the old prototype of the object. new_proto_map->set_prototype(jsobject->GetPrototype()); proto->set_map(new_proto_map); new_proto_map->set_is_hidden_prototype(); // Set the object's prototype to proto. new_map->set_prototype(proto); jsobject->set_map(new_map); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_IsConstructCall) { NoHandleAllocation ha; ASSERT(args.length() == 0); JavaScriptFrameIterator it(isolate); return isolate->heap()->ToBoolean(it.frame()->IsConstructor()); } // Recursively traverses hidden prototypes if property is not found static void GetOwnPropertyImplementation(JSObject* obj, String* name, LookupResult* result) { obj->LocalLookupRealNamedProperty(name, result); if (!result->IsProperty()) { Object* proto = obj->GetPrototype(); if (proto->IsJSObject() && JSObject::cast(proto)->map()->is_hidden_prototype()) GetOwnPropertyImplementation(JSObject::cast(proto), name, result); } } static bool CheckAccessException(LookupResult* result, v8::AccessType access_type) { if (result->type() == CALLBACKS) { Object* callback = result->GetCallbackObject(); if (callback->IsAccessorInfo()) { AccessorInfo* info = AccessorInfo::cast(callback); bool can_access = (access_type == v8::ACCESS_HAS && (info->all_can_read() || info->all_can_write())) || (access_type == v8::ACCESS_GET && info->all_can_read()) || (access_type == v8::ACCESS_SET && info->all_can_write()); return can_access; } } return false; } static bool CheckAccess(JSObject* obj, String* name, LookupResult* result, v8::AccessType access_type) { ASSERT(result->IsProperty()); JSObject* holder = result->holder(); JSObject* current = obj; Isolate* isolate = obj->GetIsolate(); while (true) { if (current->IsAccessCheckNeeded() && !isolate->MayNamedAccess(current, name, access_type)) { // Access check callback denied the access, but some properties // can have a special permissions which override callbacks descision // (currently see v8::AccessControl). break; } if (current == holder) { return true; } current = JSObject::cast(current->GetPrototype()); } // API callbacks can have per callback access exceptions. switch (result->type()) { case CALLBACKS: { if (CheckAccessException(result, access_type)) { return true; } break; } case INTERCEPTOR: { // If the object has an interceptor, try real named properties. // Overwrite the result to fetch the correct property later. holder->LookupRealNamedProperty(name, result); if (result->IsProperty()) { if (CheckAccessException(result, access_type)) { return true; } } break; } default: break; } isolate->ReportFailedAccessCheck(current, access_type); return false; } // TODO(1095): we should traverse hidden prototype hierachy as well. static bool CheckElementAccess(JSObject* obj, uint32_t index, v8::AccessType access_type) { if (obj->IsAccessCheckNeeded() && !obj->GetIsolate()->MayIndexedAccess(obj, index, access_type)) { return false; } return true; } // Enumerator used as indices into the array returned from GetOwnProperty enum PropertyDescriptorIndices { IS_ACCESSOR_INDEX, VALUE_INDEX, GETTER_INDEX, SETTER_INDEX, WRITABLE_INDEX, ENUMERABLE_INDEX, CONFIGURABLE_INDEX, DESCRIPTOR_SIZE }; // Returns an array with the property description: // if args[1] is not a property on args[0] // returns undefined // if args[1] is a data property on args[0] // [false, value, Writeable, Enumerable, Configurable] // if args[1] is an accessor on args[0] // [true, GetFunction, SetFunction, Enumerable, Configurable] RUNTIME_FUNCTION(MaybeObject*, Runtime_GetOwnProperty) { ASSERT(args.length() == 2); Heap* heap = isolate->heap(); HandleScope scope(isolate); Handle<FixedArray> elms = isolate->factory()->NewFixedArray(DESCRIPTOR_SIZE); Handle<JSArray> desc = isolate->factory()->NewJSArrayWithElements(elms); LookupResult result; CONVERT_ARG_CHECKED(JSObject, obj, 0); CONVERT_ARG_CHECKED(String, name, 1); // This could be an element. uint32_t index; if (name->AsArrayIndex(&index)) { switch (obj->HasLocalElement(index)) { case JSObject::UNDEFINED_ELEMENT: return heap->undefined_value(); case JSObject::STRING_CHARACTER_ELEMENT: { // Special handling of string objects according to ECMAScript 5 // 15.5.5.2. Note that this might be a string object with elements // other than the actual string value. This is covered by the // subsequent cases. Handle<JSValue> js_value = Handle<JSValue>::cast(obj); Handle<String> str(String::cast(js_value->value())); Handle<String> substr = SubString(str, index, index + 1, NOT_TENURED); elms->set(IS_ACCESSOR_INDEX, heap->false_value()); elms->set(VALUE_INDEX, *substr); elms->set(WRITABLE_INDEX, heap->false_value()); elms->set(ENUMERABLE_INDEX, heap->false_value()); elms->set(CONFIGURABLE_INDEX, heap->false_value()); return *desc; } case JSObject::INTERCEPTED_ELEMENT: case JSObject::FAST_ELEMENT: { elms->set(IS_ACCESSOR_INDEX, heap->false_value()); Handle<Object> value = GetElement(obj, index); RETURN_IF_EMPTY_HANDLE(isolate, value); elms->set(VALUE_INDEX, *value); elms->set(WRITABLE_INDEX, heap->true_value()); elms->set(ENUMERABLE_INDEX, heap->true_value()); elms->set(CONFIGURABLE_INDEX, heap->true_value()); return *desc; } case JSObject::DICTIONARY_ELEMENT: { Handle<JSObject> holder = obj; if (obj->IsJSGlobalProxy()) { Object* proto = obj->GetPrototype(); if (proto->IsNull()) return heap->undefined_value(); ASSERT(proto->IsJSGlobalObject()); holder = Handle<JSObject>(JSObject::cast(proto)); } NumberDictionary* dictionary = holder->element_dictionary(); int entry = dictionary->FindEntry(index); ASSERT(entry != NumberDictionary::kNotFound); PropertyDetails details = dictionary->DetailsAt(entry); switch (details.type()) { case CALLBACKS: { // This is an accessor property with getter and/or setter. FixedArray* callbacks = FixedArray::cast(dictionary->ValueAt(entry)); elms->set(IS_ACCESSOR_INDEX, heap->true_value()); if (CheckElementAccess(*obj, index, v8::ACCESS_GET)) { elms->set(GETTER_INDEX, callbacks->get(0)); } if (CheckElementAccess(*obj, index, v8::ACCESS_SET)) { elms->set(SETTER_INDEX, callbacks->get(1)); } break; } case NORMAL: { // This is a data property. elms->set(IS_ACCESSOR_INDEX, heap->false_value()); Handle<Object> value = GetElement(obj, index); ASSERT(!value.is_null()); elms->set(VALUE_INDEX, *value); elms->set(WRITABLE_INDEX, heap->ToBoolean(!details.IsReadOnly())); break; } default: UNREACHABLE(); break; } elms->set(ENUMERABLE_INDEX, heap->ToBoolean(!details.IsDontEnum())); elms->set(CONFIGURABLE_INDEX, heap->ToBoolean(!details.IsDontDelete())); return *desc; } } } // Use recursive implementation to also traverse hidden prototypes GetOwnPropertyImplementation(*obj, *name, &result); if (!result.IsProperty()) { return heap->undefined_value(); } if (!CheckAccess(*obj, *name, &result, v8::ACCESS_HAS)) { return heap->false_value(); } elms->set(ENUMERABLE_INDEX, heap->ToBoolean(!result.IsDontEnum())); elms->set(CONFIGURABLE_INDEX, heap->ToBoolean(!result.IsDontDelete())); bool is_js_accessor = (result.type() == CALLBACKS) && (result.GetCallbackObject()->IsFixedArray()); if (is_js_accessor) { // __defineGetter__/__defineSetter__ callback. elms->set(IS_ACCESSOR_INDEX, heap->true_value()); FixedArray* structure = FixedArray::cast(result.GetCallbackObject()); if (CheckAccess(*obj, *name, &result, v8::ACCESS_GET)) { elms->set(GETTER_INDEX, structure->get(0)); } if (CheckAccess(*obj, *name, &result, v8::ACCESS_SET)) { elms->set(SETTER_INDEX, structure->get(1)); } } else { elms->set(IS_ACCESSOR_INDEX, heap->false_value()); elms->set(WRITABLE_INDEX, heap->ToBoolean(!result.IsReadOnly())); PropertyAttributes attrs; Object* value; // GetProperty will check access and report any violations. { MaybeObject* maybe_value = obj->GetProperty(*obj, &result, *name, &attrs); if (!maybe_value->ToObject(&value)) return maybe_value; } elms->set(VALUE_INDEX, value); } return *desc; } RUNTIME_FUNCTION(MaybeObject*, Runtime_PreventExtensions) { ASSERT(args.length() == 1); CONVERT_CHECKED(JSObject, obj, args[0]); return obj->PreventExtensions(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_IsExtensible) { ASSERT(args.length() == 1); CONVERT_CHECKED(JSObject, obj, args[0]); if (obj->IsJSGlobalProxy()) { Object* proto = obj->GetPrototype(); if (proto->IsNull()) return isolate->heap()->false_value(); ASSERT(proto->IsJSGlobalObject()); obj = JSObject::cast(proto); } return obj->map()->is_extensible() ? isolate->heap()->true_value() : isolate->heap()->false_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_RegExpCompile) { HandleScope scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_CHECKED(JSRegExp, re, 0); CONVERT_ARG_CHECKED(String, pattern, 1); CONVERT_ARG_CHECKED(String, flags, 2); Handle<Object> result = RegExpImpl::Compile(re, pattern, flags); if (result.is_null()) return Failure::Exception(); return *result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateApiFunction) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(FunctionTemplateInfo, data, 0); return *isolate->factory()->CreateApiFunction(data); } RUNTIME_FUNCTION(MaybeObject*, Runtime_IsTemplate) { ASSERT(args.length() == 1); Object* arg = args[0]; bool result = arg->IsObjectTemplateInfo() || arg->IsFunctionTemplateInfo(); return isolate->heap()->ToBoolean(result); } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetTemplateField) { ASSERT(args.length() == 2); CONVERT_CHECKED(HeapObject, templ, args[0]); CONVERT_CHECKED(Smi, field, args[1]); int index = field->value(); int offset = index * kPointerSize + HeapObject::kHeaderSize; InstanceType type = templ->map()->instance_type(); RUNTIME_ASSERT(type == FUNCTION_TEMPLATE_INFO_TYPE || type == OBJECT_TEMPLATE_INFO_TYPE); RUNTIME_ASSERT(offset > 0); if (type == FUNCTION_TEMPLATE_INFO_TYPE) { RUNTIME_ASSERT(offset < FunctionTemplateInfo::kSize); } else { RUNTIME_ASSERT(offset < ObjectTemplateInfo::kSize); } return *HeapObject::RawField(templ, offset); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DisableAccessChecks) { ASSERT(args.length() == 1); CONVERT_CHECKED(HeapObject, object, args[0]); Map* old_map = object->map(); bool needs_access_checks = old_map->is_access_check_needed(); if (needs_access_checks) { // Copy map so it won't interfere constructor's initial map. Object* new_map; { MaybeObject* maybe_new_map = old_map->CopyDropTransitions(); if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; } Map::cast(new_map)->set_is_access_check_needed(false); object->set_map(Map::cast(new_map)); } return needs_access_checks ? isolate->heap()->true_value() : isolate->heap()->false_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_EnableAccessChecks) { ASSERT(args.length() == 1); CONVERT_CHECKED(HeapObject, object, args[0]); Map* old_map = object->map(); if (!old_map->is_access_check_needed()) { // Copy map so it won't interfere constructor's initial map. Object* new_map; { MaybeObject* maybe_new_map = old_map->CopyDropTransitions(); if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; } Map::cast(new_map)->set_is_access_check_needed(true); object->set_map(Map::cast(new_map)); } return isolate->heap()->undefined_value(); } static Failure* ThrowRedeclarationError(Isolate* isolate, const char* type, Handle<String> name) { HandleScope scope(isolate); Handle<Object> type_handle = isolate->factory()->NewStringFromAscii(CStrVector(type)); Handle<Object> args[2] = { type_handle, name }; Handle<Object> error = isolate->factory()->NewTypeError("redeclaration", HandleVector(args, 2)); return isolate->Throw(*error); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DeclareGlobals) { ASSERT(args.length() == 4); HandleScope scope(isolate); Handle<GlobalObject> global = Handle<GlobalObject>( isolate->context()->global()); Handle<Context> context = args.at<Context>(0); CONVERT_ARG_CHECKED(FixedArray, pairs, 1); bool is_eval = Smi::cast(args[2])->value() == 1; StrictModeFlag strict_mode = static_cast<StrictModeFlag>(Smi::cast(args[3])->value()); ASSERT(strict_mode == kStrictMode || strict_mode == kNonStrictMode); // Compute the property attributes. According to ECMA-262, section // 13, page 71, the property must be read-only and // non-deletable. However, neither SpiderMonkey nor KJS creates the // property as read-only, so we don't either. PropertyAttributes base = is_eval ? NONE : DONT_DELETE; // Traverse the name/value pairs and set the properties. int length = pairs->length(); for (int i = 0; i < length; i += 2) { HandleScope scope(isolate); Handle<String> name(String::cast(pairs->get(i))); Handle<Object> value(pairs->get(i + 1), isolate); // We have to declare a global const property. To capture we only // assign to it when evaluating the assignment for "const x = // <expr>" the initial value is the hole. bool is_const_property = value->IsTheHole(); if (value->IsUndefined() || is_const_property) { // Lookup the property in the global object, and don't set the // value of the variable if the property is already there. LookupResult lookup; global->Lookup(*name, &lookup); if (lookup.IsProperty()) { // Determine if the property is local by comparing the holder // against the global object. The information will be used to // avoid throwing re-declaration errors when declaring // variables or constants that exist in the prototype chain. bool is_local = (*global == lookup.holder()); // Get the property attributes and determine if the property is // read-only. PropertyAttributes attributes = global->GetPropertyAttribute(*name); bool is_read_only = (attributes & READ_ONLY) != 0; if (lookup.type() == INTERCEPTOR) { // If the interceptor says the property is there, we // just return undefined without overwriting the property. // Otherwise, we continue to setting the property. if (attributes != ABSENT) { // Check if the existing property conflicts with regards to const. if (is_local && (is_read_only || is_const_property)) { const char* type = (is_read_only) ? "const" : "var"; return ThrowRedeclarationError(isolate, type, name); }; // The property already exists without conflicting: Go to // the next declaration. continue; } // Fall-through and introduce the absent property by using // SetProperty. } else { // For const properties, we treat a callback with this name // even in the prototype as a conflicting declaration. if (is_const_property && (lookup.type() == CALLBACKS)) { return ThrowRedeclarationError(isolate, "const", name); } // Otherwise, we check for locally conflicting declarations. if (is_local && (is_read_only || is_const_property)) { const char* type = (is_read_only) ? "const" : "var"; return ThrowRedeclarationError(isolate, type, name); } // The property already exists without conflicting: Go to // the next declaration. continue; } } } else { // Copy the function and update its context. Use it as value. Handle<SharedFunctionInfo> shared = Handle<SharedFunctionInfo>::cast(value); Handle<JSFunction> function = isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context, TENURED); value = function; } LookupResult lookup; global->LocalLookup(*name, &lookup); PropertyAttributes attributes = is_const_property ? static_cast<PropertyAttributes>(base | READ_ONLY) : base; // There's a local property that we need to overwrite because // we're either declaring a function or there's an interceptor // that claims the property is absent. // // Check for conflicting re-declarations. We cannot have // conflicting types in case of intercepted properties because // they are absent. if (lookup.IsProperty() && (lookup.type() != INTERCEPTOR) && (lookup.IsReadOnly() || is_const_property)) { const char* type = (lookup.IsReadOnly()) ? "const" : "var"; return ThrowRedeclarationError(isolate, type, name); } // Safari does not allow the invocation of callback setters for // function declarations. To mimic this behavior, we do not allow // the invocation of setters for function values. This makes a // difference for global functions with the same names as event // handlers such as "function onload() {}". Firefox does call the // onload setter in those case and Safari does not. We follow // Safari for compatibility. if (value->IsJSFunction()) { // Do not change DONT_DELETE to false from true. if (lookup.IsProperty() && (lookup.type() != INTERCEPTOR)) { attributes = static_cast<PropertyAttributes>( attributes | (lookup.GetAttributes() & DONT_DELETE)); } RETURN_IF_EMPTY_HANDLE(isolate, SetLocalPropertyIgnoreAttributes(global, name, value, attributes)); } else { RETURN_IF_EMPTY_HANDLE(isolate, SetProperty(global, name, value, attributes, strict_mode)); } } ASSERT(!isolate->has_pending_exception()); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DeclareContextSlot) { HandleScope scope(isolate); ASSERT(args.length() == 4); CONVERT_ARG_CHECKED(Context, context, 0); Handle<String> name(String::cast(args[1])); PropertyAttributes mode = static_cast<PropertyAttributes>(Smi::cast(args[2])->value()); RUNTIME_ASSERT(mode == READ_ONLY || mode == NONE); Handle<Object> initial_value(args[3], isolate); // Declarations are always done in the function context. context = Handle<Context>(context->fcontext()); int index; PropertyAttributes attributes; ContextLookupFlags flags = DONT_FOLLOW_CHAINS; Handle<Object> holder = context->Lookup(name, flags, &index, &attributes); if (attributes != ABSENT) { // The name was declared before; check for conflicting // re-declarations: This is similar to the code in parser.cc in // the AstBuildingParser::Declare function. if (((attributes & READ_ONLY) != 0) || (mode == READ_ONLY)) { // Functions are not read-only. ASSERT(mode != READ_ONLY || initial_value->IsTheHole()); const char* type = ((attributes & READ_ONLY) != 0) ? "const" : "var"; return ThrowRedeclarationError(isolate, type, name); } // Initialize it if necessary. if (*initial_value != NULL) { if (index >= 0) { // The variable or constant context slot should always be in // the function context or the arguments object. if (holder->IsContext()) { ASSERT(holder.is_identical_to(context)); if (((attributes & READ_ONLY) == 0) || context->get(index)->IsTheHole()) { context->set(index, *initial_value); } } else { // The holder is an arguments object. Handle<JSObject> arguments(Handle<JSObject>::cast(holder)); Handle<Object> result = SetElement(arguments, index, initial_value, kNonStrictMode); if (result.is_null()) return Failure::Exception(); } } else { // Slow case: The property is not in the FixedArray part of the context. Handle<JSObject> context_ext = Handle<JSObject>::cast(holder); RETURN_IF_EMPTY_HANDLE( isolate, SetProperty(context_ext, name, initial_value, mode, kNonStrictMode)); } } } else { // The property is not in the function context. It needs to be // "declared" in the function context's extension context, or in the // global context. Handle<JSObject> context_ext; if (context->has_extension()) { // The function context's extension context exists - use it. context_ext = Handle<JSObject>(context->extension()); } else { // The function context's extension context does not exists - allocate // it. context_ext = isolate->factory()->NewJSObject( isolate->context_extension_function()); // And store it in the extension slot. context->set_extension(*context_ext); } ASSERT(*context_ext != NULL); // Declare the property by setting it to the initial value if provided, // or undefined, and use the correct mode (e.g. READ_ONLY attribute for // constant declarations). ASSERT(!context_ext->HasLocalProperty(*name)); Handle<Object> value(isolate->heap()->undefined_value(), isolate); if (*initial_value != NULL) value = initial_value; // Declaring a const context slot is a conflicting declaration if // there is a callback with that name in a prototype. It is // allowed to introduce const variables in // JSContextExtensionObjects. They are treated specially in // SetProperty and no setters are invoked for those since they are // not real JSObjects. if (initial_value->IsTheHole() && !context_ext->IsJSContextExtensionObject()) { LookupResult lookup; context_ext->Lookup(*name, &lookup); if (lookup.IsProperty() && (lookup.type() == CALLBACKS)) { return ThrowRedeclarationError(isolate, "const", name); } } RETURN_IF_EMPTY_HANDLE(isolate, SetProperty(context_ext, name, value, mode, kNonStrictMode)); } return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_InitializeVarGlobal) { NoHandleAllocation nha; // args[0] == name // args[1] == strict_mode // args[2] == value (optional) // Determine if we need to assign to the variable if it already // exists (based on the number of arguments). RUNTIME_ASSERT(args.length() == 2 || args.length() == 3); bool assign = args.length() == 3; CONVERT_ARG_CHECKED(String, name, 0); GlobalObject* global = isolate->context()->global(); RUNTIME_ASSERT(args[1]->IsSmi()); StrictModeFlag strict_mode = static_cast<StrictModeFlag>(Smi::cast(args[1])->value()); ASSERT(strict_mode == kStrictMode || strict_mode == kNonStrictMode); // According to ECMA-262, section 12.2, page 62, the property must // not be deletable. PropertyAttributes attributes = DONT_DELETE; // Lookup the property locally in the global object. If it isn't // there, there is a property with this name in the prototype chain. // We follow Safari and Firefox behavior and only set the property // locally if there is an explicit initialization value that we have // to assign to the property. // Note that objects can have hidden prototypes, so we need to traverse // the whole chain of hidden prototypes to do a 'local' lookup. JSObject* real_holder = global; LookupResult lookup; while (true) { real_holder->LocalLookup(*name, &lookup); if (lookup.IsProperty()) { // Determine if this is a redeclaration of something read-only. if (lookup.IsReadOnly()) { // If we found readonly property on one of hidden prototypes, // just shadow it. if (real_holder != isolate->context()->global()) break; return ThrowRedeclarationError(isolate, "const", name); } // Determine if this is a redeclaration of an intercepted read-only // property and figure out if the property exists at all. bool found = true; PropertyType type = lookup.type(); if (type == INTERCEPTOR) { HandleScope handle_scope(isolate); Handle<JSObject> holder(real_holder); PropertyAttributes intercepted = holder->GetPropertyAttribute(*name); real_holder = *holder; if (intercepted == ABSENT) { // The interceptor claims the property isn't there. We need to // make sure to introduce it. found = false; } else if ((intercepted & READ_ONLY) != 0) { // The property is present, but read-only. Since we're trying to // overwrite it with a variable declaration we must throw a // re-declaration error. However if we found readonly property // on one of hidden prototypes, just shadow it. if (real_holder != isolate->context()->global()) break; return ThrowRedeclarationError(isolate, "const", name); } } if (found && !assign) { // The global property is there and we're not assigning any value // to it. Just return. return isolate->heap()->undefined_value(); } // Assign the value (or undefined) to the property. Object* value = (assign) ? args[2] : isolate->heap()->undefined_value(); return real_holder->SetProperty( &lookup, *name, value, attributes, strict_mode); } Object* proto = real_holder->GetPrototype(); if (!proto->IsJSObject()) break; if (!JSObject::cast(proto)->map()->is_hidden_prototype()) break; real_holder = JSObject::cast(proto); } global = isolate->context()->global(); if (assign) { return global->SetProperty(*name, args[2], attributes, strict_mode); } return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_InitializeConstGlobal) { // All constants are declared with an initial value. The name // of the constant is the first argument and the initial value // is the second. RUNTIME_ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(String, name, 0); Handle<Object> value = args.at<Object>(1); // Get the current global object from top. GlobalObject* global = isolate->context()->global(); // According to ECMA-262, section 12.2, page 62, the property must // not be deletable. Since it's a const, it must be READ_ONLY too. PropertyAttributes attributes = static_cast<PropertyAttributes>(DONT_DELETE | READ_ONLY); // Lookup the property locally in the global object. If it isn't // there, we add the property and take special precautions to always // add it as a local property even in case of callbacks in the // prototype chain (this rules out using SetProperty). // We use SetLocalPropertyIgnoreAttributes instead LookupResult lookup; global->LocalLookup(*name, &lookup); if (!lookup.IsProperty()) { return global->SetLocalPropertyIgnoreAttributes(*name, *value, attributes); } // Determine if this is a redeclaration of something not // read-only. In case the result is hidden behind an interceptor we // need to ask it for the property attributes. if (!lookup.IsReadOnly()) { if (lookup.type() != INTERCEPTOR) { return ThrowRedeclarationError(isolate, "var", name); } PropertyAttributes intercepted = global->GetPropertyAttribute(*name); // Throw re-declaration error if the intercepted property is present // but not read-only. if (intercepted != ABSENT && (intercepted & READ_ONLY) == 0) { return ThrowRedeclarationError(isolate, "var", name); } // Restore global object from context (in case of GC) and continue // with setting the value because the property is either absent or // read-only. We also have to do redo the lookup. HandleScope handle_scope(isolate); Handle<GlobalObject> global(isolate->context()->global()); // BUG 1213575: Handle the case where we have to set a read-only // property through an interceptor and only do it if it's // uninitialized, e.g. the hole. Nirk... // Passing non-strict mode because the property is writable. RETURN_IF_EMPTY_HANDLE(isolate, SetProperty(global, name, value, attributes, kNonStrictMode)); return *value; } // Set the value, but only we're assigning the initial value to a // constant. For now, we determine this by checking if the // current value is the hole. // Strict mode handling not needed (const disallowed in strict mode). PropertyType type = lookup.type(); if (type == FIELD) { FixedArray* properties = global->properties(); int index = lookup.GetFieldIndex(); if (properties->get(index)->IsTheHole()) { properties->set(index, *value); } } else if (type == NORMAL) { if (global->GetNormalizedProperty(&lookup)->IsTheHole()) { global->SetNormalizedProperty(&lookup, *value); } } else { // Ignore re-initialization of constants that have already been // assigned a function value. ASSERT(lookup.IsReadOnly() && type == CONSTANT_FUNCTION); } // Use the set value as the result of the operation. return *value; } RUNTIME_FUNCTION(MaybeObject*, Runtime_InitializeConstContextSlot) { HandleScope scope(isolate); ASSERT(args.length() == 3); Handle<Object> value(args[0], isolate); ASSERT(!value->IsTheHole()); CONVERT_ARG_CHECKED(Context, context, 1); Handle<String> name(String::cast(args[2])); // Initializations are always done in the function context. context = Handle<Context>(context->fcontext()); int index; PropertyAttributes attributes; ContextLookupFlags flags = FOLLOW_CHAINS; Handle<Object> holder = context->Lookup(name, flags, &index, &attributes); // In most situations, the property introduced by the const // declaration should be present in the context extension object. // However, because declaration and initialization are separate, the // property might have been deleted (if it was introduced by eval) // before we reach the initialization point. // // Example: // // function f() { eval("delete x; const x;"); } // // In that case, the initialization behaves like a normal assignment // to property 'x'. if (index >= 0) { // Property was found in a context. if (holder->IsContext()) { // The holder cannot be the function context. If it is, there // should have been a const redeclaration error when declaring // the const property. ASSERT(!holder.is_identical_to(context)); if ((attributes & READ_ONLY) == 0) { Handle<Context>::cast(holder)->set(index, *value); } } else { // The holder is an arguments object. ASSERT((attributes & READ_ONLY) == 0); Handle<JSObject> arguments(Handle<JSObject>::cast(holder)); RETURN_IF_EMPTY_HANDLE( isolate, SetElement(arguments, index, value, kNonStrictMode)); } return *value; } // The property could not be found, we introduce it in the global // context. if (attributes == ABSENT) { Handle<JSObject> global = Handle<JSObject>( isolate->context()->global()); // Strict mode not needed (const disallowed in strict mode). RETURN_IF_EMPTY_HANDLE( isolate, SetProperty(global, name, value, NONE, kNonStrictMode)); return *value; } // The property was present in a context extension object. Handle<JSObject> context_ext = Handle<JSObject>::cast(holder); if (*context_ext == context->extension()) { // This is the property that was introduced by the const // declaration. Set it if it hasn't been set before. NOTE: We // cannot use GetProperty() to get the current value as it // 'unholes' the value. LookupResult lookup; context_ext->LocalLookupRealNamedProperty(*name, &lookup); ASSERT(lookup.IsProperty()); // the property was declared ASSERT(lookup.IsReadOnly()); // and it was declared as read-only PropertyType type = lookup.type(); if (type == FIELD) { FixedArray* properties = context_ext->properties(); int index = lookup.GetFieldIndex(); if (properties->get(index)->IsTheHole()) { properties->set(index, *value); } } else if (type == NORMAL) { if (context_ext->GetNormalizedProperty(&lookup)->IsTheHole()) { context_ext->SetNormalizedProperty(&lookup, *value); } } else { // We should not reach here. Any real, named property should be // either a field or a dictionary slot. UNREACHABLE(); } } else { // The property was found in a different context extension object. // Set it if it is not a read-only property. if ((attributes & READ_ONLY) == 0) { // Strict mode not needed (const disallowed in strict mode). RETURN_IF_EMPTY_HANDLE( isolate, SetProperty(context_ext, name, value, attributes, kNonStrictMode)); } } return *value; } RUNTIME_FUNCTION(MaybeObject*, Runtime_OptimizeObjectForAddingMultipleProperties) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(JSObject, object, 0); CONVERT_SMI_CHECKED(properties, args[1]); if (object->HasFastProperties()) { NormalizeProperties(object, KEEP_INOBJECT_PROPERTIES, properties); } return *object; } RUNTIME_FUNCTION(MaybeObject*, Runtime_RegExpExec) { HandleScope scope(isolate); ASSERT(args.length() == 4); CONVERT_ARG_CHECKED(JSRegExp, regexp, 0); CONVERT_ARG_CHECKED(String, subject, 1); // Due to the way the JS calls are constructed this must be less than the // length of a string, i.e. it is always a Smi. We check anyway for security. CONVERT_SMI_CHECKED(index, args[2]); CONVERT_ARG_CHECKED(JSArray, last_match_info, 3); RUNTIME_ASSERT(last_match_info->HasFastElements()); RUNTIME_ASSERT(index >= 0); RUNTIME_ASSERT(index <= subject->length()); isolate->counters()->regexp_entry_runtime()->Increment(); Handle<Object> result = RegExpImpl::Exec(regexp, subject, index, last_match_info); if (result.is_null()) return Failure::Exception(); return *result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_RegExpConstructResult) { ASSERT(args.length() == 3); CONVERT_SMI_CHECKED(elements_count, args[0]); if (elements_count > JSArray::kMaxFastElementsLength) { return isolate->ThrowIllegalOperation(); } Object* new_object; { MaybeObject* maybe_new_object = isolate->heap()->AllocateFixedArrayWithHoles(elements_count); if (!maybe_new_object->ToObject(&new_object)) return maybe_new_object; } FixedArray* elements = FixedArray::cast(new_object); { MaybeObject* maybe_new_object = isolate->heap()->AllocateRaw( JSRegExpResult::kSize, NEW_SPACE, OLD_POINTER_SPACE); if (!maybe_new_object->ToObject(&new_object)) return maybe_new_object; } { AssertNoAllocation no_gc; HandleScope scope(isolate); reinterpret_cast<HeapObject*>(new_object)-> set_map(isolate->global_context()->regexp_result_map()); } JSArray* array = JSArray::cast(new_object); array->set_properties(isolate->heap()->empty_fixed_array()); array->set_elements(elements); array->set_length(Smi::FromInt(elements_count)); // Write in-object properties after the length of the array. array->InObjectPropertyAtPut(JSRegExpResult::kIndexIndex, args[1]); array->InObjectPropertyAtPut(JSRegExpResult::kInputIndex, args[2]); return array; } RUNTIME_FUNCTION(MaybeObject*, Runtime_RegExpInitializeObject) { AssertNoAllocation no_alloc; ASSERT(args.length() == 5); CONVERT_CHECKED(JSRegExp, regexp, args[0]); CONVERT_CHECKED(String, source, args[1]); Object* global = args[2]; if (!global->IsTrue()) global = isolate->heap()->false_value(); Object* ignoreCase = args[3]; if (!ignoreCase->IsTrue()) ignoreCase = isolate->heap()->false_value(); Object* multiline = args[4]; if (!multiline->IsTrue()) multiline = isolate->heap()->false_value(); Map* map = regexp->map(); Object* constructor = map->constructor(); if (constructor->IsJSFunction() && JSFunction::cast(constructor)->initial_map() == map) { // If we still have the original map, set in-object properties directly. regexp->InObjectPropertyAtPut(JSRegExp::kSourceFieldIndex, source); // TODO(lrn): Consider skipping write barrier on booleans as well. // Both true and false should be in oldspace at all times. regexp->InObjectPropertyAtPut(JSRegExp::kGlobalFieldIndex, global); regexp->InObjectPropertyAtPut(JSRegExp::kIgnoreCaseFieldIndex, ignoreCase); regexp->InObjectPropertyAtPut(JSRegExp::kMultilineFieldIndex, multiline); regexp->InObjectPropertyAtPut(JSRegExp::kLastIndexFieldIndex, Smi::FromInt(0), SKIP_WRITE_BARRIER); return regexp; } // Map has changed, so use generic, but slower, method. PropertyAttributes final = static_cast<PropertyAttributes>(READ_ONLY | DONT_ENUM | DONT_DELETE); PropertyAttributes writable = static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE); Heap* heap = isolate->heap(); MaybeObject* result; result = regexp->SetLocalPropertyIgnoreAttributes(heap->source_symbol(), source, final); ASSERT(!result->IsFailure()); result = regexp->SetLocalPropertyIgnoreAttributes(heap->global_symbol(), global, final); ASSERT(!result->IsFailure()); result = regexp->SetLocalPropertyIgnoreAttributes(heap->ignore_case_symbol(), ignoreCase, final); ASSERT(!result->IsFailure()); result = regexp->SetLocalPropertyIgnoreAttributes(heap->multiline_symbol(), multiline, final); ASSERT(!result->IsFailure()); result = regexp->SetLocalPropertyIgnoreAttributes(heap->last_index_symbol(), Smi::FromInt(0), writable); ASSERT(!result->IsFailure()); USE(result); return regexp; } RUNTIME_FUNCTION(MaybeObject*, Runtime_FinishArrayPrototypeSetup) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSArray, prototype, 0); // This is necessary to enable fast checks for absence of elements // on Array.prototype and below. prototype->set_elements(isolate->heap()->empty_fixed_array()); return Smi::FromInt(0); } static Handle<JSFunction> InstallBuiltin(Isolate* isolate, Handle<JSObject> holder, const char* name, Builtins::Name builtin_name) { Handle<String> key = isolate->factory()->LookupAsciiSymbol(name); Handle<Code> code(isolate->builtins()->builtin(builtin_name)); Handle<JSFunction> optimized = isolate->factory()->NewFunction(key, JS_OBJECT_TYPE, JSObject::kHeaderSize, code, false); optimized->shared()->DontAdaptArguments(); SetProperty(holder, key, optimized, NONE, kStrictMode); return optimized; } RUNTIME_FUNCTION(MaybeObject*, Runtime_SpecialArrayFunctions) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSObject, holder, 0); InstallBuiltin(isolate, holder, "pop", Builtins::kArrayPop); InstallBuiltin(isolate, holder, "push", Builtins::kArrayPush); InstallBuiltin(isolate, holder, "shift", Builtins::kArrayShift); InstallBuiltin(isolate, holder, "unshift", Builtins::kArrayUnshift); InstallBuiltin(isolate, holder, "slice", Builtins::kArraySlice); InstallBuiltin(isolate, holder, "splice", Builtins::kArraySplice); InstallBuiltin(isolate, holder, "concat", Builtins::kArrayConcat); return *holder; } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetGlobalReceiver) { // Returns a real global receiver, not one of builtins object. Context* global_context = isolate->context()->global()->global_context(); return global_context->global()->global_receiver(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_MaterializeRegExpLiteral) { HandleScope scope(isolate); ASSERT(args.length() == 4); CONVERT_ARG_CHECKED(FixedArray, literals, 0); int index = Smi::cast(args[1])->value(); Handle<String> pattern = args.at<String>(2); Handle<String> flags = args.at<String>(3); // Get the RegExp function from the context in the literals array. // This is the RegExp function from the context in which the // function was created. We do not use the RegExp function from the // current global context because this might be the RegExp function // from another context which we should not have access to. Handle<JSFunction> constructor = Handle<JSFunction>( JSFunction::GlobalContextFromLiterals(*literals)->regexp_function()); // Compute the regular expression literal. bool has_pending_exception; Handle<Object> regexp = RegExpImpl::CreateRegExpLiteral(constructor, pattern, flags, &has_pending_exception); if (has_pending_exception) { ASSERT(isolate->has_pending_exception()); return Failure::Exception(); } literals->set(index, *regexp); return *regexp; } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetName) { NoHandleAllocation ha; ASSERT(args.length() == 1); CONVERT_CHECKED(JSFunction, f, args[0]); return f->shared()->name(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionSetName) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_CHECKED(JSFunction, f, args[0]); CONVERT_CHECKED(String, name, args[1]); f->shared()->set_name(name); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionRemovePrototype) { NoHandleAllocation ha; ASSERT(args.length() == 1); CONVERT_CHECKED(JSFunction, f, args[0]); Object* obj = f->RemovePrototype(); if (obj->IsFailure()) return obj; return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetScript) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_CHECKED(JSFunction, fun, args[0]); Handle<Object> script = Handle<Object>(fun->shared()->script(), isolate); if (!script->IsScript()) return isolate->heap()->undefined_value(); return *GetScriptWrapper(Handle<Script>::cast(script)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetSourceCode) { NoHandleAllocation ha; ASSERT(args.length() == 1); CONVERT_CHECKED(JSFunction, f, args[0]); return f->shared()->GetSourceCode(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetScriptSourcePosition) { NoHandleAllocation ha; ASSERT(args.length() == 1); CONVERT_CHECKED(JSFunction, fun, args[0]); int pos = fun->shared()->start_position(); return Smi::FromInt(pos); } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetPositionForOffset) { ASSERT(args.length() == 2); CONVERT_CHECKED(Code, code, args[0]); CONVERT_NUMBER_CHECKED(int, offset, Int32, args[1]); RUNTIME_ASSERT(0 <= offset && offset < code->Size()); Address pc = code->address() + offset; return Smi::FromInt(code->SourcePosition(pc)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionSetInstanceClassName) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_CHECKED(JSFunction, fun, args[0]); CONVERT_CHECKED(String, name, args[1]); fun->SetInstanceClassName(name); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionSetLength) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_CHECKED(JSFunction, fun, args[0]); CONVERT_CHECKED(Smi, length, args[1]); fun->shared()->set_length(length->value()); return length; } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionSetPrototype) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_CHECKED(JSFunction, fun, args[0]); ASSERT(fun->should_have_prototype()); Object* obj; { MaybeObject* maybe_obj = Accessors::FunctionSetPrototype(fun, args[1], NULL); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } return args[0]; // return TOS } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionIsAPIFunction) { NoHandleAllocation ha; ASSERT(args.length() == 1); CONVERT_CHECKED(JSFunction, f, args[0]); return f->shared()->IsApiFunction() ? isolate->heap()->true_value() : isolate->heap()->false_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionIsBuiltin) { NoHandleAllocation ha; ASSERT(args.length() == 1); CONVERT_CHECKED(JSFunction, f, args[0]); return f->IsBuiltin() ? isolate->heap()->true_value() : isolate->heap()->false_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_SetCode) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(JSFunction, target, 0); Handle<Object> code = args.at<Object>(1); Handle<Context> context(target->context()); if (!code->IsNull()) { RUNTIME_ASSERT(code->IsJSFunction()); Handle<JSFunction> fun = Handle<JSFunction>::cast(code); Handle<SharedFunctionInfo> shared(fun->shared()); if (!EnsureCompiled(shared, KEEP_EXCEPTION)) { return Failure::Exception(); } // Since we don't store the source for this we should never // optimize this. shared->code()->set_optimizable(false); // Set the code, scope info, formal parameter count, // and the length of the target function. target->shared()->set_code(shared->code()); target->ReplaceCode(shared->code()); target->shared()->set_scope_info(shared->scope_info()); target->shared()->set_length(shared->length()); target->shared()->set_formal_parameter_count( shared->formal_parameter_count()); // Set the source code of the target function to undefined. // SetCode is only used for built-in constructors like String, // Array, and Object, and some web code // doesn't like seeing source code for constructors. target->shared()->set_script(isolate->heap()->undefined_value()); target->shared()->code()->set_optimizable(false); // Clear the optimization hints related to the compiled code as these are no // longer valid when the code is overwritten. target->shared()->ClearThisPropertyAssignmentsInfo(); context = Handle<Context>(fun->context()); // Make sure we get a fresh copy of the literal vector to avoid // cross context contamination. int number_of_literals = fun->NumberOfLiterals(); Handle<FixedArray> literals = isolate->factory()->NewFixedArray(number_of_literals, TENURED); if (number_of_literals > 0) { // Insert the object, regexp and array functions in the literals // array prefix. These are the functions that will be used when // creating object, regexp and array literals. literals->set(JSFunction::kLiteralGlobalContextIndex, context->global_context()); } // It's okay to skip the write barrier here because the literals // are guaranteed to be in old space. target->set_literals(*literals, SKIP_WRITE_BARRIER); target->set_next_function_link(isolate->heap()->undefined_value()); } target->set_context(*context); return *target; } RUNTIME_FUNCTION(MaybeObject*, Runtime_SetExpectedNumberOfProperties) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(JSFunction, function, 0); CONVERT_SMI_CHECKED(num, args[1]); RUNTIME_ASSERT(num >= 0); SetExpectedNofProperties(function, num); return isolate->heap()->undefined_value(); } MUST_USE_RESULT static MaybeObject* CharFromCode(Isolate* isolate, Object* char_code) { uint32_t code; if (char_code->ToArrayIndex(&code)) { if (code <= 0xffff) { return isolate->heap()->LookupSingleCharacterStringFromCode(code); } } return isolate->heap()->empty_string(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringCharCodeAt) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_CHECKED(String, subject, args[0]); Object* index = args[1]; RUNTIME_ASSERT(index->IsNumber()); uint32_t i = 0; if (index->IsSmi()) { int value = Smi::cast(index)->value(); if (value < 0) return isolate->heap()->nan_value(); i = value; } else { ASSERT(index->IsHeapNumber()); double value = HeapNumber::cast(index)->value(); i = static_cast<uint32_t>(DoubleToInteger(value)); } // Flatten the string. If someone wants to get a char at an index // in a cons string, it is likely that more indices will be // accessed. Object* flat; { MaybeObject* maybe_flat = subject->TryFlatten(); if (!maybe_flat->ToObject(&flat)) return maybe_flat; } subject = String::cast(flat); if (i >= static_cast<uint32_t>(subject->length())) { return isolate->heap()->nan_value(); } return Smi::FromInt(subject->Get(i)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_CharFromCode) { NoHandleAllocation ha; ASSERT(args.length() == 1); return CharFromCode(isolate, args[0]); } class FixedArrayBuilder { public: explicit FixedArrayBuilder(Isolate* isolate, int initial_capacity) : array_(isolate->factory()->NewFixedArrayWithHoles(initial_capacity)), length_(0) { // Require a non-zero initial size. Ensures that doubling the size to // extend the array will work. ASSERT(initial_capacity > 0); } explicit FixedArrayBuilder(Handle<FixedArray> backing_store) : array_(backing_store), length_(0) { // Require a non-zero initial size. Ensures that doubling the size to // extend the array will work. ASSERT(backing_store->length() > 0); } bool HasCapacity(int elements) { int length = array_->length(); int required_length = length_ + elements; return (length >= required_length); } void EnsureCapacity(int elements) { int length = array_->length(); int required_length = length_ + elements; if (length < required_length) { int new_length = length; do { new_length *= 2; } while (new_length < required_length); Handle<FixedArray> extended_array = array_->GetIsolate()->factory()->NewFixedArrayWithHoles(new_length); array_->CopyTo(0, *extended_array, 0, length_); array_ = extended_array; } } void Add(Object* value) { ASSERT(length_ < capacity()); array_->set(length_, value); length_++; } void Add(Smi* value) { ASSERT(length_ < capacity()); array_->set(length_, value); length_++; } Handle<FixedArray> array() { return array_; } int length() { return length_; } int capacity() { return array_->length(); } Handle<JSArray> ToJSArray() { Handle<JSArray> result_array = FACTORY->NewJSArrayWithElements(array_); result_array->set_length(Smi::FromInt(length_)); return result_array; } Handle<JSArray> ToJSArray(Handle<JSArray> target_array) { target_array->set_elements(*array_); target_array->set_length(Smi::FromInt(length_)); return target_array; } private: Handle<FixedArray> array_; int length_; }; // Forward declarations. const int kStringBuilderConcatHelperLengthBits = 11; const int kStringBuilderConcatHelperPositionBits = 19; template <typename schar> static inline void StringBuilderConcatHelper(String*, schar*, FixedArray*, int); typedef BitField<int, 0, kStringBuilderConcatHelperLengthBits> StringBuilderSubstringLength; typedef BitField<int, kStringBuilderConcatHelperLengthBits, kStringBuilderConcatHelperPositionBits> StringBuilderSubstringPosition; class ReplacementStringBuilder { public: ReplacementStringBuilder(Heap* heap, Handle<String> subject, int estimated_part_count) : heap_(heap), array_builder_(heap->isolate(), estimated_part_count), subject_(subject), character_count_(0), is_ascii_(subject->IsAsciiRepresentation()) { // Require a non-zero initial size. Ensures that doubling the size to // extend the array will work. ASSERT(estimated_part_count > 0); } static inline void AddSubjectSlice(FixedArrayBuilder* builder, int from, int to) { ASSERT(from >= 0); int length = to - from; ASSERT(length > 0); if (StringBuilderSubstringLength::is_valid(length) && StringBuilderSubstringPosition::is_valid(from)) { int encoded_slice = StringBuilderSubstringLength::encode(length) | StringBuilderSubstringPosition::encode(from); builder->Add(Smi::FromInt(encoded_slice)); } else { // Otherwise encode as two smis. builder->Add(Smi::FromInt(-length)); builder->Add(Smi::FromInt(from)); } } void EnsureCapacity(int elements) { array_builder_.EnsureCapacity(elements); } void AddSubjectSlice(int from, int to) { AddSubjectSlice(&array_builder_, from, to); IncrementCharacterCount(to - from); } void AddString(Handle<String> string) { int length = string->length(); ASSERT(length > 0); AddElement(*string); if (!string->IsAsciiRepresentation()) { is_ascii_ = false; } IncrementCharacterCount(length); } Handle<String> ToString() { if (array_builder_.length() == 0) { return heap_->isolate()->factory()->empty_string(); } Handle<String> joined_string; if (is_ascii_) { joined_string = NewRawAsciiString(character_count_); AssertNoAllocation no_alloc; SeqAsciiString* seq = SeqAsciiString::cast(*joined_string); char* char_buffer = seq->GetChars(); StringBuilderConcatHelper(*subject_, char_buffer, *array_builder_.array(), array_builder_.length()); } else { // Non-ASCII. joined_string = NewRawTwoByteString(character_count_); AssertNoAllocation no_alloc; SeqTwoByteString* seq = SeqTwoByteString::cast(*joined_string); uc16* char_buffer = seq->GetChars(); StringBuilderConcatHelper(*subject_, char_buffer, *array_builder_.array(), array_builder_.length()); } return joined_string; } void IncrementCharacterCount(int by) { if (character_count_ > String::kMaxLength - by) { V8::FatalProcessOutOfMemory("String.replace result too large."); } character_count_ += by; } Handle<JSArray> GetParts() { return array_builder_.ToJSArray(); } private: Handle<String> NewRawAsciiString(int size) { CALL_HEAP_FUNCTION(heap_->isolate(), heap_->AllocateRawAsciiString(size), String); } Handle<String> NewRawTwoByteString(int size) { CALL_HEAP_FUNCTION(heap_->isolate(), heap_->AllocateRawTwoByteString(size), String); } void AddElement(Object* element) { ASSERT(element->IsSmi() || element->IsString()); ASSERT(array_builder_.capacity() > array_builder_.length()); array_builder_.Add(element); } Heap* heap_; FixedArrayBuilder array_builder_; Handle<String> subject_; int character_count_; bool is_ascii_; }; class CompiledReplacement { public: CompiledReplacement() : parts_(1), replacement_substrings_(0) {} void Compile(Handle<String> replacement, int capture_count, int subject_length); void Apply(ReplacementStringBuilder* builder, int match_from, int match_to, Handle<JSArray> last_match_info); // Number of distinct parts of the replacement pattern. int parts() { return parts_.length(); } private: enum PartType { SUBJECT_PREFIX = 1, SUBJECT_SUFFIX, SUBJECT_CAPTURE, REPLACEMENT_SUBSTRING, REPLACEMENT_STRING, NUMBER_OF_PART_TYPES }; struct ReplacementPart { static inline ReplacementPart SubjectMatch() { return ReplacementPart(SUBJECT_CAPTURE, 0); } static inline ReplacementPart SubjectCapture(int capture_index) { return ReplacementPart(SUBJECT_CAPTURE, capture_index); } static inline ReplacementPart SubjectPrefix() { return ReplacementPart(SUBJECT_PREFIX, 0); } static inline ReplacementPart SubjectSuffix(int subject_length) { return ReplacementPart(SUBJECT_SUFFIX, subject_length); } static inline ReplacementPart ReplacementString() { return ReplacementPart(REPLACEMENT_STRING, 0); } static inline ReplacementPart ReplacementSubString(int from, int to) { ASSERT(from >= 0); ASSERT(to > from); return ReplacementPart(-from, to); } // If tag <= 0 then it is the negation of a start index of a substring of // the replacement pattern, otherwise it's a value from PartType. ReplacementPart(int tag, int data) : tag(tag), data(data) { // Must be non-positive or a PartType value. ASSERT(tag < NUMBER_OF_PART_TYPES); } // Either a value of PartType or a non-positive number that is // the negation of an index into the replacement string. int tag; // The data value's interpretation depends on the value of tag: // tag == SUBJECT_PREFIX || // tag == SUBJECT_SUFFIX: data is unused. // tag == SUBJECT_CAPTURE: data is the number of the capture. // tag == REPLACEMENT_SUBSTRING || // tag == REPLACEMENT_STRING: data is index into array of substrings // of the replacement string. // tag <= 0: Temporary representation of the substring of the replacement // string ranging over -tag .. data. // Is replaced by REPLACEMENT_{SUB,}STRING when we create the // substring objects. int data; }; template<typename Char> static void ParseReplacementPattern(ZoneList<ReplacementPart>* parts, Vector<Char> characters, int capture_count, int subject_length) { int length = characters.length(); int last = 0; for (int i = 0; i < length; i++) { Char c = characters[i]; if (c == '$') { int next_index = i + 1; if (next_index == length) { // No next character! break; } Char c2 = characters[next_index]; switch (c2) { case '$': if (i > last) { // There is a substring before. Include the first "$". parts->Add(ReplacementPart::ReplacementSubString(last, next_index)); last = next_index + 1; // Continue after the second "$". } else { // Let the next substring start with the second "$". last = next_index; } i = next_index; break; case '`': if (i > last) { parts->Add(ReplacementPart::ReplacementSubString(last, i)); } parts->Add(ReplacementPart::SubjectPrefix()); i = next_index; last = i + 1; break; case '\'': if (i > last) { parts->Add(ReplacementPart::ReplacementSubString(last, i)); } parts->Add(ReplacementPart::SubjectSuffix(subject_length)); i = next_index; last = i + 1; break; case '&': if (i > last) { parts->Add(ReplacementPart::ReplacementSubString(last, i)); } parts->Add(ReplacementPart::SubjectMatch()); i = next_index; last = i + 1; break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { int capture_ref = c2 - '0'; if (capture_ref > capture_count) { i = next_index; continue; } int second_digit_index = next_index + 1; if (second_digit_index < length) { // Peek ahead to see if we have two digits. Char c3 = characters[second_digit_index]; if ('0' <= c3 && c3 <= '9') { // Double digits. int double_digit_ref = capture_ref * 10 + c3 - '0'; if (double_digit_ref <= capture_count) { next_index = second_digit_index; capture_ref = double_digit_ref; } } } if (capture_ref > 0) { if (i > last) { parts->Add(ReplacementPart::ReplacementSubString(last, i)); } ASSERT(capture_ref <= capture_count); parts->Add(ReplacementPart::SubjectCapture(capture_ref)); last = next_index + 1; } i = next_index; break; } default: i = next_index; break; } } } if (length > last) { if (last == 0) { parts->Add(ReplacementPart::ReplacementString()); } else { parts->Add(ReplacementPart::ReplacementSubString(last, length)); } } } ZoneList<ReplacementPart> parts_; ZoneList<Handle<String> > replacement_substrings_; }; void CompiledReplacement::Compile(Handle<String> replacement, int capture_count, int subject_length) { ASSERT(replacement->IsFlat()); if (replacement->IsAsciiRepresentation()) { AssertNoAllocation no_alloc; ParseReplacementPattern(&parts_, replacement->ToAsciiVector(), capture_count, subject_length); } else { ASSERT(replacement->IsTwoByteRepresentation()); AssertNoAllocation no_alloc; ParseReplacementPattern(&parts_, replacement->ToUC16Vector(), capture_count, subject_length); } Isolate* isolate = replacement->GetIsolate(); // Find substrings of replacement string and create them as String objects. int substring_index = 0; for (int i = 0, n = parts_.length(); i < n; i++) { int tag = parts_[i].tag; if (tag <= 0) { // A replacement string slice. int from = -tag; int to = parts_[i].data; replacement_substrings_.Add( isolate->factory()->NewSubString(replacement, from, to)); parts_[i].tag = REPLACEMENT_SUBSTRING; parts_[i].data = substring_index; substring_index++; } else if (tag == REPLACEMENT_STRING) { replacement_substrings_.Add(replacement); parts_[i].data = substring_index; substring_index++; } } } void CompiledReplacement::Apply(ReplacementStringBuilder* builder, int match_from, int match_to, Handle<JSArray> last_match_info) { for (int i = 0, n = parts_.length(); i < n; i++) { ReplacementPart part = parts_[i]; switch (part.tag) { case SUBJECT_PREFIX: if (match_from > 0) builder->AddSubjectSlice(0, match_from); break; case SUBJECT_SUFFIX: { int subject_length = part.data; if (match_to < subject_length) { builder->AddSubjectSlice(match_to, subject_length); } break; } case SUBJECT_CAPTURE: { int capture = part.data; FixedArray* match_info = FixedArray::cast(last_match_info->elements()); int from = RegExpImpl::GetCapture(match_info, capture * 2); int to = RegExpImpl::GetCapture(match_info, capture * 2 + 1); if (from >= 0 && to > from) { builder->AddSubjectSlice(from, to); } break; } case REPLACEMENT_SUBSTRING: case REPLACEMENT_STRING: builder->AddString(replacement_substrings_[part.data]); break; default: UNREACHABLE(); } } } MUST_USE_RESULT static MaybeObject* StringReplaceRegExpWithString( Isolate* isolate, String* subject, JSRegExp* regexp, String* replacement, JSArray* last_match_info) { ASSERT(subject->IsFlat()); ASSERT(replacement->IsFlat()); HandleScope handles(isolate); int length = subject->length(); Handle<String> subject_handle(subject); Handle<JSRegExp> regexp_handle(regexp); Handle<String> replacement_handle(replacement); Handle<JSArray> last_match_info_handle(last_match_info); Handle<Object> match = RegExpImpl::Exec(regexp_handle, subject_handle, 0, last_match_info_handle); if (match.is_null()) { return Failure::Exception(); } if (match->IsNull()) { return *subject_handle; } int capture_count = regexp_handle->CaptureCount(); // CompiledReplacement uses zone allocation. CompilationZoneScope zone(DELETE_ON_EXIT); CompiledReplacement compiled_replacement; compiled_replacement.Compile(replacement_handle, capture_count, length); bool is_global = regexp_handle->GetFlags().is_global(); // Guessing the number of parts that the final result string is built // from. Global regexps can match any number of times, so we guess // conservatively. int expected_parts = (compiled_replacement.parts() + 1) * (is_global ? 4 : 1) + 1; ReplacementStringBuilder builder(isolate->heap(), subject_handle, expected_parts); // Index of end of last match. int prev = 0; // Number of parts added by compiled replacement plus preceeding // string and possibly suffix after last match. It is possible for // all components to use two elements when encoded as two smis. const int parts_added_per_loop = 2 * (compiled_replacement.parts() + 2); bool matched = true; do { ASSERT(last_match_info_handle->HasFastElements()); // Increase the capacity of the builder before entering local handle-scope, // so its internal buffer can safely allocate a new handle if it grows. builder.EnsureCapacity(parts_added_per_loop); HandleScope loop_scope(isolate); int start, end; { AssertNoAllocation match_info_array_is_not_in_a_handle; FixedArray* match_info_array = FixedArray::cast(last_match_info_handle->elements()); ASSERT_EQ(capture_count * 2 + 2, RegExpImpl::GetLastCaptureCount(match_info_array)); start = RegExpImpl::GetCapture(match_info_array, 0); end = RegExpImpl::GetCapture(match_info_array, 1); } if (prev < start) { builder.AddSubjectSlice(prev, start); } compiled_replacement.Apply(&builder, start, end, last_match_info_handle); prev = end; // Only continue checking for global regexps. if (!is_global) break; // Continue from where the match ended, unless it was an empty match. int next = end; if (start == end) { next = end + 1; if (next > length) break; } match = RegExpImpl::Exec(regexp_handle, subject_handle, next, last_match_info_handle); if (match.is_null()) { return Failure::Exception(); } matched = !match->IsNull(); } while (matched); if (prev < length) { builder.AddSubjectSlice(prev, length); } return *(builder.ToString()); } template <typename ResultSeqString> MUST_USE_RESULT static MaybeObject* StringReplaceRegExpWithEmptyString( Isolate* isolate, String* subject, JSRegExp* regexp, JSArray* last_match_info) { ASSERT(subject->IsFlat()); HandleScope handles(isolate); Handle<String> subject_handle(subject); Handle<JSRegExp> regexp_handle(regexp); Handle<JSArray> last_match_info_handle(last_match_info); Handle<Object> match = RegExpImpl::Exec(regexp_handle, subject_handle, 0, last_match_info_handle); if (match.is_null()) return Failure::Exception(); if (match->IsNull()) return *subject_handle; ASSERT(last_match_info_handle->HasFastElements()); int start, end; { AssertNoAllocation match_info_array_is_not_in_a_handle; FixedArray* match_info_array = FixedArray::cast(last_match_info_handle->elements()); start = RegExpImpl::GetCapture(match_info_array, 0); end = RegExpImpl::GetCapture(match_info_array, 1); } int length = subject_handle->length(); int new_length = length - (end - start); if (new_length == 0) { return isolate->heap()->empty_string(); } Handle<ResultSeqString> answer; if (ResultSeqString::kHasAsciiEncoding) { answer = Handle<ResultSeqString>::cast( isolate->factory()->NewRawAsciiString(new_length)); } else { answer = Handle<ResultSeqString>::cast( isolate->factory()->NewRawTwoByteString(new_length)); } // If the regexp isn't global, only match once. if (!regexp_handle->GetFlags().is_global()) { if (start > 0) { String::WriteToFlat(*subject_handle, answer->GetChars(), 0, start); } if (end < length) { String::WriteToFlat(*subject_handle, answer->GetChars() + start, end, length); } return *answer; } int prev = 0; // Index of end of last match. int next = 0; // Start of next search (prev unless last match was empty). int position = 0; do { if (prev < start) { // Add substring subject[prev;start] to answer string. String::WriteToFlat(*subject_handle, answer->GetChars() + position, prev, start); position += start - prev; } prev = end; next = end; // Continue from where the match ended, unless it was an empty match. if (start == end) { next++; if (next > length) break; } match = RegExpImpl::Exec(regexp_handle, subject_handle, next, last_match_info_handle); if (match.is_null()) return Failure::Exception(); if (match->IsNull()) break; ASSERT(last_match_info_handle->HasFastElements()); HandleScope loop_scope(isolate); { AssertNoAllocation match_info_array_is_not_in_a_handle; FixedArray* match_info_array = FixedArray::cast(last_match_info_handle->elements()); start = RegExpImpl::GetCapture(match_info_array, 0); end = RegExpImpl::GetCapture(match_info_array, 1); } } while (true); if (prev < length) { // Add substring subject[prev;length] to answer string. String::WriteToFlat(*subject_handle, answer->GetChars() + position, prev, length); position += length - prev; } if (position == 0) { return isolate->heap()->empty_string(); } // Shorten string and fill int string_size = ResultSeqString::SizeFor(position); int allocated_string_size = ResultSeqString::SizeFor(new_length); int delta = allocated_string_size - string_size; answer->set_length(position); if (delta == 0) return *answer; Address end_of_string = answer->address() + string_size; isolate->heap()->CreateFillerObjectAt(end_of_string, delta); return *answer; } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringReplaceRegExpWithString) { ASSERT(args.length() == 4); CONVERT_CHECKED(String, subject, args[0]); if (!subject->IsFlat()) { Object* flat_subject; { MaybeObject* maybe_flat_subject = subject->TryFlatten(); if (!maybe_flat_subject->ToObject(&flat_subject)) { return maybe_flat_subject; } } subject = String::cast(flat_subject); } CONVERT_CHECKED(String, replacement, args[2]); if (!replacement->IsFlat()) { Object* flat_replacement; { MaybeObject* maybe_flat_replacement = replacement->TryFlatten(); if (!maybe_flat_replacement->ToObject(&flat_replacement)) { return maybe_flat_replacement; } } replacement = String::cast(flat_replacement); } CONVERT_CHECKED(JSRegExp, regexp, args[1]); CONVERT_CHECKED(JSArray, last_match_info, args[3]); ASSERT(last_match_info->HasFastElements()); if (replacement->length() == 0) { if (subject->HasOnlyAsciiChars()) { return StringReplaceRegExpWithEmptyString<SeqAsciiString>( isolate, subject, regexp, last_match_info); } else { return StringReplaceRegExpWithEmptyString<SeqTwoByteString>( isolate, subject, regexp, last_match_info); } } return StringReplaceRegExpWithString(isolate, subject, regexp, replacement, last_match_info); } // Perform string match of pattern on subject, starting at start index. // Caller must ensure that 0 <= start_index <= sub->length(), // and should check that pat->length() + start_index <= sub->length(). int Runtime::StringMatch(Isolate* isolate, Handle<String> sub, Handle<String> pat, int start_index) { ASSERT(0 <= start_index); ASSERT(start_index <= sub->length()); int pattern_length = pat->length(); if (pattern_length == 0) return start_index; int subject_length = sub->length(); if (start_index + pattern_length > subject_length) return -1; if (!sub->IsFlat()) FlattenString(sub); if (!pat->IsFlat()) FlattenString(pat); AssertNoAllocation no_heap_allocation; // ensure vectors stay valid // Extract flattened substrings of cons strings before determining asciiness. String* seq_sub = *sub; if (seq_sub->IsConsString()) seq_sub = ConsString::cast(seq_sub)->first(); String* seq_pat = *pat; if (seq_pat->IsConsString()) seq_pat = ConsString::cast(seq_pat)->first(); // dispatch on type of strings if (seq_pat->IsAsciiRepresentation()) { Vector<const char> pat_vector = seq_pat->ToAsciiVector(); if (seq_sub->IsAsciiRepresentation()) { return SearchString(isolate, seq_sub->ToAsciiVector(), pat_vector, start_index); } return SearchString(isolate, seq_sub->ToUC16Vector(), pat_vector, start_index); } Vector<const uc16> pat_vector = seq_pat->ToUC16Vector(); if (seq_sub->IsAsciiRepresentation()) { return SearchString(isolate, seq_sub->ToAsciiVector(), pat_vector, start_index); } return SearchString(isolate, seq_sub->ToUC16Vector(), pat_vector, start_index); } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringIndexOf) { HandleScope scope(isolate); // create a new handle scope ASSERT(args.length() == 3); CONVERT_ARG_CHECKED(String, sub, 0); CONVERT_ARG_CHECKED(String, pat, 1); Object* index = args[2]; uint32_t start_index; if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1); RUNTIME_ASSERT(start_index <= static_cast<uint32_t>(sub->length())); int position = Runtime::StringMatch(isolate, sub, pat, start_index); return Smi::FromInt(position); } template <typename schar, typename pchar> static int StringMatchBackwards(Vector<const schar> subject, Vector<const pchar> pattern, int idx) { int pattern_length = pattern.length(); ASSERT(pattern_length >= 1); ASSERT(idx + pattern_length <= subject.length()); if (sizeof(schar) == 1 && sizeof(pchar) > 1) { for (int i = 0; i < pattern_length; i++) { uc16 c = pattern[i]; if (c > String::kMaxAsciiCharCode) { return -1; } } } pchar pattern_first_char = pattern[0]; for (int i = idx; i >= 0; i--) { if (subject[i] != pattern_first_char) continue; int j = 1; while (j < pattern_length) { if (pattern[j] != subject[i+j]) { break; } j++; } if (j == pattern_length) { return i; } } return -1; } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringLastIndexOf) { HandleScope scope(isolate); // create a new handle scope ASSERT(args.length() == 3); CONVERT_ARG_CHECKED(String, sub, 0); CONVERT_ARG_CHECKED(String, pat, 1); Object* index = args[2]; uint32_t start_index; if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1); uint32_t pat_length = pat->length(); uint32_t sub_length = sub->length(); if (start_index + pat_length > sub_length) { start_index = sub_length - pat_length; } if (pat_length == 0) { return Smi::FromInt(start_index); } if (!sub->IsFlat()) FlattenString(sub); if (!pat->IsFlat()) FlattenString(pat); AssertNoAllocation no_heap_allocation; // ensure vectors stay valid int position = -1; if (pat->IsAsciiRepresentation()) { Vector<const char> pat_vector = pat->ToAsciiVector(); if (sub->IsAsciiRepresentation()) { position = StringMatchBackwards(sub->ToAsciiVector(), pat_vector, start_index); } else { position = StringMatchBackwards(sub->ToUC16Vector(), pat_vector, start_index); } } else { Vector<const uc16> pat_vector = pat->ToUC16Vector(); if (sub->IsAsciiRepresentation()) { position = StringMatchBackwards(sub->ToAsciiVector(), pat_vector, start_index); } else { position = StringMatchBackwards(sub->ToUC16Vector(), pat_vector, start_index); } } return Smi::FromInt(position); } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringLocaleCompare) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_CHECKED(String, str1, args[0]); CONVERT_CHECKED(String, str2, args[1]); if (str1 == str2) return Smi::FromInt(0); // Equal. int str1_length = str1->length(); int str2_length = str2->length(); // Decide trivial cases without flattening. if (str1_length == 0) { if (str2_length == 0) return Smi::FromInt(0); // Equal. return Smi::FromInt(-str2_length); } else { if (str2_length == 0) return Smi::FromInt(str1_length); } int end = str1_length < str2_length ? str1_length : str2_length; // No need to flatten if we are going to find the answer on the first // character. At this point we know there is at least one character // in each string, due to the trivial case handling above. int d = str1->Get(0) - str2->Get(0); if (d != 0) return Smi::FromInt(d); str1->TryFlatten(); str2->TryFlatten(); StringInputBuffer& buf1 = *isolate->runtime_state()->string_locale_compare_buf1(); StringInputBuffer& buf2 = *isolate->runtime_state()->string_locale_compare_buf2(); buf1.Reset(str1); buf2.Reset(str2); for (int i = 0; i < end; i++) { uint16_t char1 = buf1.GetNext(); uint16_t char2 = buf2.GetNext(); if (char1 != char2) return Smi::FromInt(char1 - char2); } return Smi::FromInt(str1_length - str2_length); } RUNTIME_FUNCTION(MaybeObject*, Runtime_SubString) { NoHandleAllocation ha; ASSERT(args.length() == 3); CONVERT_CHECKED(String, value, args[0]); Object* from = args[1]; Object* to = args[2]; int start, end; // We have a fast integer-only case here to avoid a conversion to double in // the common case where from and to are Smis. if (from->IsSmi() && to->IsSmi()) { start = Smi::cast(from)->value(); end = Smi::cast(to)->value(); } else { CONVERT_DOUBLE_CHECKED(from_number, from); CONVERT_DOUBLE_CHECKED(to_number, to); start = FastD2I(from_number); end = FastD2I(to_number); } RUNTIME_ASSERT(end >= start); RUNTIME_ASSERT(start >= 0); RUNTIME_ASSERT(end <= value->length()); isolate->counters()->sub_string_runtime()->Increment(); return value->SubString(start, end); } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringMatch) { ASSERT_EQ(3, args.length()); CONVERT_ARG_CHECKED(String, subject, 0); CONVERT_ARG_CHECKED(JSRegExp, regexp, 1); CONVERT_ARG_CHECKED(JSArray, regexp_info, 2); HandleScope handles; Handle<Object> match = RegExpImpl::Exec(regexp, subject, 0, regexp_info); if (match.is_null()) { return Failure::Exception(); } if (match->IsNull()) { return isolate->heap()->null_value(); } int length = subject->length(); CompilationZoneScope zone_space(DELETE_ON_EXIT); ZoneList<int> offsets(8); do { int start; int end; { AssertNoAllocation no_alloc; FixedArray* elements = FixedArray::cast(regexp_info->elements()); start = Smi::cast(elements->get(RegExpImpl::kFirstCapture))->value(); end = Smi::cast(elements->get(RegExpImpl::kFirstCapture + 1))->value(); } offsets.Add(start); offsets.Add(end); int index = start < end ? end : end + 1; if (index > length) break; match = RegExpImpl::Exec(regexp, subject, index, regexp_info); if (match.is_null()) { return Failure::Exception(); } } while (!match->IsNull()); int matches = offsets.length() / 2; Handle<FixedArray> elements = isolate->factory()->NewFixedArray(matches); for (int i = 0; i < matches ; i++) { int from = offsets.at(i * 2); int to = offsets.at(i * 2 + 1); Handle<String> match = isolate->factory()->NewSubString(subject, from, to); elements->set(i, *match); } Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(elements); result->set_length(Smi::FromInt(matches)); return *result; } // Two smis before and after the match, for very long strings. const int kMaxBuilderEntriesPerRegExpMatch = 5; static void SetLastMatchInfoNoCaptures(Handle<String> subject, Handle<JSArray> last_match_info, int match_start, int match_end) { // Fill last_match_info with a single capture. last_match_info->EnsureSize(2 + RegExpImpl::kLastMatchOverhead); AssertNoAllocation no_gc; FixedArray* elements = FixedArray::cast(last_match_info->elements()); RegExpImpl::SetLastCaptureCount(elements, 2); RegExpImpl::SetLastInput(elements, *subject); RegExpImpl::SetLastSubject(elements, *subject); RegExpImpl::SetCapture(elements, 0, match_start); RegExpImpl::SetCapture(elements, 1, match_end); } template <typename SubjectChar, typename PatternChar> static bool SearchStringMultiple(Isolate* isolate, Vector<const SubjectChar> subject, Vector<const PatternChar> pattern, String* pattern_string, FixedArrayBuilder* builder, int* match_pos) { int pos = *match_pos; int subject_length = subject.length(); int pattern_length = pattern.length(); int max_search_start = subject_length - pattern_length; StringSearch<PatternChar, SubjectChar> search(isolate, pattern); while (pos <= max_search_start) { if (!builder->HasCapacity(kMaxBuilderEntriesPerRegExpMatch)) { *match_pos = pos; return false; } // Position of end of previous match. int match_end = pos + pattern_length; int new_pos = search.Search(subject, match_end); if (new_pos >= 0) { // A match. if (new_pos > match_end) { ReplacementStringBuilder::AddSubjectSlice(builder, match_end, new_pos); } pos = new_pos; builder->Add(pattern_string); } else { break; } } if (pos < max_search_start) { ReplacementStringBuilder::AddSubjectSlice(builder, pos + pattern_length, subject_length); } *match_pos = pos; return true; } static bool SearchStringMultiple(Isolate* isolate, Handle<String> subject, Handle<String> pattern, Handle<JSArray> last_match_info, FixedArrayBuilder* builder) { ASSERT(subject->IsFlat()); ASSERT(pattern->IsFlat()); // Treating as if a previous match was before first character. int match_pos = -pattern->length(); for (;;) { // Break when search complete. builder->EnsureCapacity(kMaxBuilderEntriesPerRegExpMatch); AssertNoAllocation no_gc; if (subject->IsAsciiRepresentation()) { Vector<const char> subject_vector = subject->ToAsciiVector(); if (pattern->IsAsciiRepresentation()) { if (SearchStringMultiple(isolate, subject_vector, pattern->ToAsciiVector(), *pattern, builder, &match_pos)) break; } else { if (SearchStringMultiple(isolate, subject_vector, pattern->ToUC16Vector(), *pattern, builder, &match_pos)) break; } } else { Vector<const uc16> subject_vector = subject->ToUC16Vector(); if (pattern->IsAsciiRepresentation()) { if (SearchStringMultiple(isolate, subject_vector, pattern->ToAsciiVector(), *pattern, builder, &match_pos)) break; } else { if (SearchStringMultiple(isolate, subject_vector, pattern->ToUC16Vector(), *pattern, builder, &match_pos)) break; } } } if (match_pos >= 0) { SetLastMatchInfoNoCaptures(subject, last_match_info, match_pos, match_pos + pattern->length()); return true; } return false; // No matches at all. } static RegExpImpl::IrregexpResult SearchRegExpNoCaptureMultiple( Isolate* isolate, Handle<String> subject, Handle<JSRegExp> regexp, Handle<JSArray> last_match_array, FixedArrayBuilder* builder) { ASSERT(subject->IsFlat()); int match_start = -1; int match_end = 0; int pos = 0; int required_registers = RegExpImpl::IrregexpPrepare(regexp, subject); if (required_registers < 0) return RegExpImpl::RE_EXCEPTION; OffsetsVector registers(required_registers); Vector<int32_t> register_vector(registers.vector(), registers.length()); int subject_length = subject->length(); for (;;) { // Break on failure, return on exception. RegExpImpl::IrregexpResult result = RegExpImpl::IrregexpExecOnce(regexp, subject, pos, register_vector); if (result == RegExpImpl::RE_SUCCESS) { match_start = register_vector[0]; builder->EnsureCapacity(kMaxBuilderEntriesPerRegExpMatch); if (match_end < match_start) { ReplacementStringBuilder::AddSubjectSlice(builder, match_end, match_start); } match_end = register_vector[1]; HandleScope loop_scope(isolate); builder->Add(*isolate->factory()->NewSubString(subject, match_start, match_end)); if (match_start != match_end) { pos = match_end; } else { pos = match_end + 1; if (pos > subject_length) break; } } else if (result == RegExpImpl::RE_FAILURE) { break; } else { ASSERT_EQ(result, RegExpImpl::RE_EXCEPTION); return result; } } if (match_start >= 0) { if (match_end < subject_length) { ReplacementStringBuilder::AddSubjectSlice(builder, match_end, subject_length); } SetLastMatchInfoNoCaptures(subject, last_match_array, match_start, match_end); return RegExpImpl::RE_SUCCESS; } else { return RegExpImpl::RE_FAILURE; // No matches at all. } } static RegExpImpl::IrregexpResult SearchRegExpMultiple( Isolate* isolate, Handle<String> subject, Handle<JSRegExp> regexp, Handle<JSArray> last_match_array, FixedArrayBuilder* builder) { ASSERT(subject->IsFlat()); int required_registers = RegExpImpl::IrregexpPrepare(regexp, subject); if (required_registers < 0) return RegExpImpl::RE_EXCEPTION; OffsetsVector registers(required_registers); Vector<int32_t> register_vector(registers.vector(), registers.length()); RegExpImpl::IrregexpResult result = RegExpImpl::IrregexpExecOnce(regexp, subject, 0, register_vector); int capture_count = regexp->CaptureCount(); int subject_length = subject->length(); // Position to search from. int pos = 0; // End of previous match. Differs from pos if match was empty. int match_end = 0; if (result == RegExpImpl::RE_SUCCESS) { // Need to keep a copy of the previous match for creating last_match_info // at the end, so we have two vectors that we swap between. OffsetsVector registers2(required_registers); Vector<int> prev_register_vector(registers2.vector(), registers2.length()); do { int match_start = register_vector[0]; builder->EnsureCapacity(kMaxBuilderEntriesPerRegExpMatch); if (match_end < match_start) { ReplacementStringBuilder::AddSubjectSlice(builder, match_end, match_start); } match_end = register_vector[1]; { // Avoid accumulating new handles inside loop. HandleScope temp_scope(isolate); // Arguments array to replace function is match, captures, index and // subject, i.e., 3 + capture count in total. Handle<FixedArray> elements = isolate->factory()->NewFixedArray(3 + capture_count); Handle<String> match = isolate->factory()->NewSubString(subject, match_start, match_end); elements->set(0, *match); for (int i = 1; i <= capture_count; i++) { int start = register_vector[i * 2]; if (start >= 0) { int end = register_vector[i * 2 + 1]; ASSERT(start <= end); Handle<String> substring = isolate->factory()->NewSubString(subject, start, end); elements->set(i, *substring); } else { ASSERT(register_vector[i * 2 + 1] < 0); elements->set(i, isolate->heap()->undefined_value()); } } elements->set(capture_count + 1, Smi::FromInt(match_start)); elements->set(capture_count + 2, *subject); builder->Add(*isolate->factory()->NewJSArrayWithElements(elements)); } // Swap register vectors, so the last successful match is in // prev_register_vector. Vector<int32_t> tmp = prev_register_vector; prev_register_vector = register_vector; register_vector = tmp; if (match_end > match_start) { pos = match_end; } else { pos = match_end + 1; if (pos > subject_length) { break; } } result = RegExpImpl::IrregexpExecOnce(regexp, subject, pos, register_vector); } while (result == RegExpImpl::RE_SUCCESS); if (result != RegExpImpl::RE_EXCEPTION) { // Finished matching, with at least one match. if (match_end < subject_length) { ReplacementStringBuilder::AddSubjectSlice(builder, match_end, subject_length); } int last_match_capture_count = (capture_count + 1) * 2; int last_match_array_size = last_match_capture_count + RegExpImpl::kLastMatchOverhead; last_match_array->EnsureSize(last_match_array_size); AssertNoAllocation no_gc; FixedArray* elements = FixedArray::cast(last_match_array->elements()); RegExpImpl::SetLastCaptureCount(elements, last_match_capture_count); RegExpImpl::SetLastSubject(elements, *subject); RegExpImpl::SetLastInput(elements, *subject); for (int i = 0; i < last_match_capture_count; i++) { RegExpImpl::SetCapture(elements, i, prev_register_vector[i]); } return RegExpImpl::RE_SUCCESS; } } // No matches at all, return failure or exception result directly. return result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_RegExpExecMultiple) { ASSERT(args.length() == 4); HandleScope handles(isolate); CONVERT_ARG_CHECKED(String, subject, 1); if (!subject->IsFlat()) { FlattenString(subject); } CONVERT_ARG_CHECKED(JSRegExp, regexp, 0); CONVERT_ARG_CHECKED(JSArray, last_match_info, 2); CONVERT_ARG_CHECKED(JSArray, result_array, 3); ASSERT(last_match_info->HasFastElements()); ASSERT(regexp->GetFlags().is_global()); Handle<FixedArray> result_elements; if (result_array->HasFastElements()) { result_elements = Handle<FixedArray>(FixedArray::cast(result_array->elements())); } else { result_elements = isolate->factory()->NewFixedArrayWithHoles(16); } FixedArrayBuilder builder(result_elements); if (regexp->TypeTag() == JSRegExp::ATOM) { Handle<String> pattern( String::cast(regexp->DataAt(JSRegExp::kAtomPatternIndex))); ASSERT(pattern->IsFlat()); if (SearchStringMultiple(isolate, subject, pattern, last_match_info, &builder)) { return *builder.ToJSArray(result_array); } return isolate->heap()->null_value(); } ASSERT_EQ(regexp->TypeTag(), JSRegExp::IRREGEXP); RegExpImpl::IrregexpResult result; if (regexp->CaptureCount() == 0) { result = SearchRegExpNoCaptureMultiple(isolate, subject, regexp, last_match_info, &builder); } else { result = SearchRegExpMultiple(isolate, subject, regexp, last_match_info, &builder); } if (result == RegExpImpl::RE_SUCCESS) return *builder.ToJSArray(result_array); if (result == RegExpImpl::RE_FAILURE) return isolate->heap()->null_value(); ASSERT_EQ(result, RegExpImpl::RE_EXCEPTION); return Failure::Exception(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToRadixString) { NoHandleAllocation ha; ASSERT(args.length() == 2); // Fast case where the result is a one character string. if (args[0]->IsSmi() && args[1]->IsSmi()) { int value = Smi::cast(args[0])->value(); int radix = Smi::cast(args[1])->value(); if (value >= 0 && value < radix) { RUNTIME_ASSERT(radix <= 36); // Character array used for conversion. static const char kCharTable[] = "0123456789abcdefghijklmnopqrstuvwxyz"; return isolate->heap()-> LookupSingleCharacterStringFromCode(kCharTable[value]); } } // Slow case. CONVERT_DOUBLE_CHECKED(value, args[0]); if (isnan(value)) { return isolate->heap()->AllocateStringFromAscii(CStrVector("NaN")); } if (isinf(value)) { if (value < 0) { return isolate->heap()->AllocateStringFromAscii(CStrVector("-Infinity")); } return isolate->heap()->AllocateStringFromAscii(CStrVector("Infinity")); } CONVERT_DOUBLE_CHECKED(radix_number, args[1]); int radix = FastD2I(radix_number); RUNTIME_ASSERT(2 <= radix && radix <= 36); char* str = DoubleToRadixCString(value, radix); MaybeObject* result = isolate->heap()->AllocateStringFromAscii(CStrVector(str)); DeleteArray(str); return result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToFixed) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_DOUBLE_CHECKED(value, args[0]); if (isnan(value)) { return isolate->heap()->AllocateStringFromAscii(CStrVector("NaN")); } if (isinf(value)) { if (value < 0) { return isolate->heap()->AllocateStringFromAscii(CStrVector("-Infinity")); } return isolate->heap()->AllocateStringFromAscii(CStrVector("Infinity")); } CONVERT_DOUBLE_CHECKED(f_number, args[1]); int f = FastD2I(f_number); RUNTIME_ASSERT(f >= 0); char* str = DoubleToFixedCString(value, f); MaybeObject* res = isolate->heap()->AllocateStringFromAscii(CStrVector(str)); DeleteArray(str); return res; } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToExponential) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_DOUBLE_CHECKED(value, args[0]); if (isnan(value)) { return isolate->heap()->AllocateStringFromAscii(CStrVector("NaN")); } if (isinf(value)) { if (value < 0) { return isolate->heap()->AllocateStringFromAscii(CStrVector("-Infinity")); } return isolate->heap()->AllocateStringFromAscii(CStrVector("Infinity")); } CONVERT_DOUBLE_CHECKED(f_number, args[1]); int f = FastD2I(f_number); RUNTIME_ASSERT(f >= -1 && f <= 20); char* str = DoubleToExponentialCString(value, f); MaybeObject* res = isolate->heap()->AllocateStringFromAscii(CStrVector(str)); DeleteArray(str); return res; } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToPrecision) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_DOUBLE_CHECKED(value, args[0]); if (isnan(value)) { return isolate->heap()->AllocateStringFromAscii(CStrVector("NaN")); } if (isinf(value)) { if (value < 0) { return isolate->heap()->AllocateStringFromAscii(CStrVector("-Infinity")); } return isolate->heap()->AllocateStringFromAscii(CStrVector("Infinity")); } CONVERT_DOUBLE_CHECKED(f_number, args[1]); int f = FastD2I(f_number); RUNTIME_ASSERT(f >= 1 && f <= 21); char* str = DoubleToPrecisionCString(value, f); MaybeObject* res = isolate->heap()->AllocateStringFromAscii(CStrVector(str)); DeleteArray(str); return res; } // Returns a single character string where first character equals // string->Get(index). static Handle<Object> GetCharAt(Handle<String> string, uint32_t index) { if (index < static_cast<uint32_t>(string->length())) { string->TryFlatten(); return LookupSingleCharacterStringFromCode( string->Get(index)); } return Execution::CharAt(string, index); } MaybeObject* Runtime::GetElementOrCharAt(Isolate* isolate, Handle<Object> object, uint32_t index) { // Handle [] indexing on Strings if (object->IsString()) { Handle<Object> result = GetCharAt(Handle<String>::cast(object), index); if (!result->IsUndefined()) return *result; } // Handle [] indexing on String objects if (object->IsStringObjectWithCharacterAt(index)) { Handle<JSValue> js_value = Handle<JSValue>::cast(object); Handle<Object> result = GetCharAt(Handle<String>(String::cast(js_value->value())), index); if (!result->IsUndefined()) return *result; } if (object->IsString() || object->IsNumber() || object->IsBoolean()) { Handle<Object> prototype = GetPrototype(object); return prototype->GetElement(index); } return GetElement(object, index); } MaybeObject* Runtime::GetElement(Handle<Object> object, uint32_t index) { return object->GetElement(index); } MaybeObject* Runtime::GetObjectProperty(Isolate* isolate, Handle<Object> object, Handle<Object> key) { HandleScope scope(isolate); if (object->IsUndefined() || object->IsNull()) { Handle<Object> args[2] = { key, object }; Handle<Object> error = isolate->factory()->NewTypeError("non_object_property_load", HandleVector(args, 2)); return isolate->Throw(*error); } // Check if the given key is an array index. uint32_t index; if (key->ToArrayIndex(&index)) { return GetElementOrCharAt(isolate, object, index); } // Convert the key to a string - possibly by calling back into JavaScript. Handle<String> name; if (key->IsString()) { name = Handle<String>::cast(key); } else { bool has_pending_exception = false; Handle<Object> converted = Execution::ToString(key, &has_pending_exception); if (has_pending_exception) return Failure::Exception(); name = Handle<String>::cast(converted); } // Check if the name is trivially convertible to an index and get // the element if so. if (name->AsArrayIndex(&index)) { return GetElementOrCharAt(isolate, object, index); } else { PropertyAttributes attr; return object->GetProperty(*name, &attr); } } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetProperty) { NoHandleAllocation ha; ASSERT(args.length() == 2); Handle<Object> object = args.at<Object>(0); Handle<Object> key = args.at<Object>(1); return Runtime::GetObjectProperty(isolate, object, key); } // KeyedStringGetProperty is called from KeyedLoadIC::GenerateGeneric. RUNTIME_FUNCTION(MaybeObject*, Runtime_KeyedGetProperty) { NoHandleAllocation ha; ASSERT(args.length() == 2); // Fast cases for getting named properties of the receiver JSObject // itself. // // The global proxy objects has to be excluded since LocalLookup on // the global proxy object can return a valid result even though the // global proxy object never has properties. This is the case // because the global proxy object forwards everything to its hidden // prototype including local lookups. // // Additionally, we need to make sure that we do not cache results // for objects that require access checks. if (args[0]->IsJSObject() && !args[0]->IsJSGlobalProxy() && !args[0]->IsAccessCheckNeeded() && args[1]->IsString()) { JSObject* receiver = JSObject::cast(args[0]); String* key = String::cast(args[1]); if (receiver->HasFastProperties()) { // Attempt to use lookup cache. Map* receiver_map = receiver->map(); KeyedLookupCache* keyed_lookup_cache = isolate->keyed_lookup_cache(); int offset = keyed_lookup_cache->Lookup(receiver_map, key); if (offset != -1) { Object* value = receiver->FastPropertyAt(offset); return value->IsTheHole() ? isolate->heap()->undefined_value() : value; } // Lookup cache miss. Perform lookup and update the cache if appropriate. LookupResult result; receiver->LocalLookup(key, &result); if (result.IsProperty() && result.type() == FIELD) { int offset = result.GetFieldIndex(); keyed_lookup_cache->Update(receiver_map, key, offset); return receiver->FastPropertyAt(offset); } } else { // Attempt dictionary lookup. StringDictionary* dictionary = receiver->property_dictionary(); int entry = dictionary->FindEntry(key); if ((entry != StringDictionary::kNotFound) && (dictionary->DetailsAt(entry).type() == NORMAL)) { Object* value = dictionary->ValueAt(entry); if (!receiver->IsGlobalObject()) return value; value = JSGlobalPropertyCell::cast(value)->value(); if (!value->IsTheHole()) return value; // If value is the hole do the general lookup. } } } else if (args[0]->IsString() && args[1]->IsSmi()) { // Fast case for string indexing using [] with a smi index. HandleScope scope(isolate); Handle<String> str = args.at<String>(0); int index = Smi::cast(args[1])->value(); if (index >= 0 && index < str->length()) { Handle<Object> result = GetCharAt(str, index); return *result; } } // Fall back to GetObjectProperty. return Runtime::GetObjectProperty(isolate, args.at<Object>(0), args.at<Object>(1)); } // Implements part of 8.12.9 DefineOwnProperty. // There are 3 cases that lead here: // Step 4b - define a new accessor property. // Steps 9c & 12 - replace an existing data property with an accessor property. // Step 12 - update an existing accessor property with an accessor or generic // descriptor. RUNTIME_FUNCTION(MaybeObject*, Runtime_DefineOrRedefineAccessorProperty) { ASSERT(args.length() == 5); HandleScope scope(isolate); CONVERT_ARG_CHECKED(JSObject, obj, 0); CONVERT_CHECKED(String, name, args[1]); CONVERT_CHECKED(Smi, flag_setter, args[2]); Object* fun = args[3]; RUNTIME_ASSERT(fun->IsJSFunction() || fun->IsUndefined()); CONVERT_CHECKED(Smi, flag_attr, args[4]); int unchecked = flag_attr->value(); RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0); RUNTIME_ASSERT(!obj->IsNull()); LookupResult result; obj->LocalLookupRealNamedProperty(name, &result); PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked); // If an existing property is either FIELD, NORMAL or CONSTANT_FUNCTION // delete it to avoid running into trouble in DefineAccessor, which // handles this incorrectly if the property is readonly (does nothing) if (result.IsProperty() && (result.type() == FIELD || result.type() == NORMAL || result.type() == CONSTANT_FUNCTION)) { Object* ok; { MaybeObject* maybe_ok = obj->DeleteProperty(name, JSObject::NORMAL_DELETION); if (!maybe_ok->ToObject(&ok)) return maybe_ok; } } return obj->DefineAccessor(name, flag_setter->value() == 0, fun, attr); } // Implements part of 8.12.9 DefineOwnProperty. // There are 3 cases that lead here: // Step 4a - define a new data property. // Steps 9b & 12 - replace an existing accessor property with a data property. // Step 12 - update an existing data property with a data or generic // descriptor. RUNTIME_FUNCTION(MaybeObject*, Runtime_DefineOrRedefineDataProperty) { ASSERT(args.length() == 4); HandleScope scope(isolate); CONVERT_ARG_CHECKED(JSObject, js_object, 0); CONVERT_ARG_CHECKED(String, name, 1); Handle<Object> obj_value = args.at<Object>(2); CONVERT_CHECKED(Smi, flag, args[3]); int unchecked = flag->value(); RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0); PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked); // Check if this is an element. uint32_t index; bool is_element = name->AsArrayIndex(&index); // Special case for elements if any of the flags are true. // If elements are in fast case we always implicitly assume that: // DONT_DELETE: false, DONT_ENUM: false, READ_ONLY: false. if (((unchecked & (DONT_DELETE | DONT_ENUM | READ_ONLY)) != 0) && is_element) { // Normalize the elements to enable attributes on the property. if (js_object->IsJSGlobalProxy()) { // We do not need to do access checks here since these has already // been performed by the call to GetOwnProperty. Handle<Object> proto(js_object->GetPrototype()); // If proxy is detached, ignore the assignment. Alternatively, // we could throw an exception. if (proto->IsNull()) return *obj_value; js_object = Handle<JSObject>::cast(proto); } NormalizeElements(js_object); Handle<NumberDictionary> dictionary(js_object->element_dictionary()); // Make sure that we never go back to fast case. dictionary->set_requires_slow_elements(); PropertyDetails details = PropertyDetails(attr, NORMAL); NumberDictionarySet(dictionary, index, obj_value, details); return *obj_value; } LookupResult result; js_object->LookupRealNamedProperty(*name, &result); // To be compatible with safari we do not change the value on API objects // in defineProperty. Firefox disagrees here, and actually changes the value. if (result.IsProperty() && (result.type() == CALLBACKS) && result.GetCallbackObject()->IsAccessorInfo()) { return isolate->heap()->undefined_value(); } // Take special care when attributes are different and there is already // a property. For simplicity we normalize the property which enables us // to not worry about changing the instance_descriptor and creating a new // map. The current version of SetObjectProperty does not handle attributes // correctly in the case where a property is a field and is reset with // new attributes. if (result.IsProperty() && (attr != result.GetAttributes() || result.type() == CALLBACKS)) { // New attributes - normalize to avoid writing to instance descriptor if (js_object->IsJSGlobalProxy()) { // Since the result is a property, the prototype will exist so // we don't have to check for null. js_object = Handle<JSObject>(JSObject::cast(js_object->GetPrototype())); } NormalizeProperties(js_object, CLEAR_INOBJECT_PROPERTIES, 0); // Use IgnoreAttributes version since a readonly property may be // overridden and SetProperty does not allow this. return js_object->SetLocalPropertyIgnoreAttributes(*name, *obj_value, attr); } return Runtime::ForceSetObjectProperty(isolate, js_object, name, obj_value, attr); } MaybeObject* Runtime::SetObjectProperty(Isolate* isolate, Handle<Object> object, Handle<Object> key, Handle<Object> value, PropertyAttributes attr, StrictModeFlag strict_mode) { HandleScope scope(isolate); if (object->IsUndefined() || object->IsNull()) { Handle<Object> args[2] = { key, object }; Handle<Object> error = isolate->factory()->NewTypeError("non_object_property_store", HandleVector(args, 2)); return isolate->Throw(*error); } // If the object isn't a JavaScript object, we ignore the store. if (!object->IsJSObject()) return *value; Handle<JSObject> js_object = Handle<JSObject>::cast(object); // Check if the given key is an array index. uint32_t index; if (key->ToArrayIndex(&index)) { // In Firefox/SpiderMonkey, Safari and Opera you can access the characters // of a string using [] notation. We need to support this too in // JavaScript. // In the case of a String object we just need to redirect the assignment to // the underlying string if the index is in range. Since the underlying // string does nothing with the assignment then we can ignore such // assignments. if (js_object->IsStringObjectWithCharacterAt(index)) { return *value; } Handle<Object> result = SetElement(js_object, index, value, strict_mode); if (result.is_null()) return Failure::Exception(); return *value; } if (key->IsString()) { Handle<Object> result; if (Handle<String>::cast(key)->AsArrayIndex(&index)) { result = SetElement(js_object, index, value, strict_mode); } else { Handle<String> key_string = Handle<String>::cast(key); key_string->TryFlatten(); result = SetProperty(js_object, key_string, value, attr, strict_mode); } if (result.is_null()) return Failure::Exception(); return *value; } // Call-back into JavaScript to convert the key to a string. bool has_pending_exception = false; Handle<Object> converted = Execution::ToString(key, &has_pending_exception); if (has_pending_exception) return Failure::Exception(); Handle<String> name = Handle<String>::cast(converted); if (name->AsArrayIndex(&index)) { return js_object->SetElement(index, *value, strict_mode); } else { return js_object->SetProperty(*name, *value, attr, strict_mode); } } MaybeObject* Runtime::ForceSetObjectProperty(Isolate* isolate, Handle<JSObject> js_object, Handle<Object> key, Handle<Object> value, PropertyAttributes attr) { HandleScope scope(isolate); // Check if the given key is an array index. uint32_t index; if (key->ToArrayIndex(&index)) { // In Firefox/SpiderMonkey, Safari and Opera you can access the characters // of a string using [] notation. We need to support this too in // JavaScript. // In the case of a String object we just need to redirect the assignment to // the underlying string if the index is in range. Since the underlying // string does nothing with the assignment then we can ignore such // assignments. if (js_object->IsStringObjectWithCharacterAt(index)) { return *value; } return js_object->SetElement(index, *value, kNonStrictMode); } if (key->IsString()) { if (Handle<String>::cast(key)->AsArrayIndex(&index)) { return js_object->SetElement(index, *value, kNonStrictMode); } else { Handle<String> key_string = Handle<String>::cast(key); key_string->TryFlatten(); return js_object->SetLocalPropertyIgnoreAttributes(*key_string, *value, attr); } } // Call-back into JavaScript to convert the key to a string. bool has_pending_exception = false; Handle<Object> converted = Execution::ToString(key, &has_pending_exception); if (has_pending_exception) return Failure::Exception(); Handle<String> name = Handle<String>::cast(converted); if (name->AsArrayIndex(&index)) { return js_object->SetElement(index, *value, kNonStrictMode); } else { return js_object->SetLocalPropertyIgnoreAttributes(*name, *value, attr); } } MaybeObject* Runtime::ForceDeleteObjectProperty(Isolate* isolate, Handle<JSObject> js_object, Handle<Object> key) { HandleScope scope(isolate); // Check if the given key is an array index. uint32_t index; if (key->ToArrayIndex(&index)) { // In Firefox/SpiderMonkey, Safari and Opera you can access the // characters of a string using [] notation. In the case of a // String object we just need to redirect the deletion to the // underlying string if the index is in range. Since the // underlying string does nothing with the deletion, we can ignore // such deletions. if (js_object->IsStringObjectWithCharacterAt(index)) { return isolate->heap()->true_value(); } return js_object->DeleteElement(index, JSObject::FORCE_DELETION); } Handle<String> key_string; if (key->IsString()) { key_string = Handle<String>::cast(key); } else { // Call-back into JavaScript to convert the key to a string. bool has_pending_exception = false; Handle<Object> converted = Execution::ToString(key, &has_pending_exception); if (has_pending_exception) return Failure::Exception(); key_string = Handle<String>::cast(converted); } key_string->TryFlatten(); return js_object->DeleteProperty(*key_string, JSObject::FORCE_DELETION); } RUNTIME_FUNCTION(MaybeObject*, Runtime_SetProperty) { NoHandleAllocation ha; RUNTIME_ASSERT(args.length() == 4 || args.length() == 5); Handle<Object> object = args.at<Object>(0); Handle<Object> key = args.at<Object>(1); Handle<Object> value = args.at<Object>(2); CONVERT_SMI_CHECKED(unchecked_attributes, args[3]); RUNTIME_ASSERT( (unchecked_attributes & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0); // Compute attributes. PropertyAttributes attributes = static_cast<PropertyAttributes>(unchecked_attributes); StrictModeFlag strict_mode = kNonStrictMode; if (args.length() == 5) { CONVERT_SMI_CHECKED(strict_unchecked, args[4]); RUNTIME_ASSERT(strict_unchecked == kStrictMode || strict_unchecked == kNonStrictMode); strict_mode = static_cast<StrictModeFlag>(strict_unchecked); } return Runtime::SetObjectProperty(isolate, object, key, value, attributes, strict_mode); } // Set a local property, even if it is READ_ONLY. If the property does not // exist, it will be added with attributes NONE. RUNTIME_FUNCTION(MaybeObject*, Runtime_IgnoreAttributesAndSetProperty) { NoHandleAllocation ha; RUNTIME_ASSERT(args.length() == 3 || args.length() == 4); CONVERT_CHECKED(JSObject, object, args[0]); CONVERT_CHECKED(String, name, args[1]); // Compute attributes. PropertyAttributes attributes = NONE; if (args.length() == 4) { CONVERT_CHECKED(Smi, value_obj, args[3]); int unchecked_value = value_obj->value(); // Only attribute bits should be set. RUNTIME_ASSERT( (unchecked_value & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0); attributes = static_cast<PropertyAttributes>(unchecked_value); } return object-> SetLocalPropertyIgnoreAttributes(name, args[2], attributes); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DeleteProperty) { NoHandleAllocation ha; ASSERT(args.length() == 3); CONVERT_CHECKED(JSObject, object, args[0]); CONVERT_CHECKED(String, key, args[1]); CONVERT_SMI_CHECKED(strict, args[2]); return object->DeleteProperty(key, (strict == kStrictMode) ? JSObject::STRICT_DELETION : JSObject::NORMAL_DELETION); } static Object* HasLocalPropertyImplementation(Isolate* isolate, Handle<JSObject> object, Handle<String> key) { if (object->HasLocalProperty(*key)) return isolate->heap()->true_value(); // Handle hidden prototypes. If there's a hidden prototype above this thing // then we have to check it for properties, because they are supposed to // look like they are on this object. Handle<Object> proto(object->GetPrototype()); if (proto->IsJSObject() && Handle<JSObject>::cast(proto)->map()->is_hidden_prototype()) { return HasLocalPropertyImplementation(isolate, Handle<JSObject>::cast(proto), key); } return isolate->heap()->false_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_HasLocalProperty) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_CHECKED(String, key, args[1]); Object* obj = args[0]; // Only JS objects can have properties. if (obj->IsJSObject()) { JSObject* object = JSObject::cast(obj); // Fast case - no interceptors. if (object->HasRealNamedProperty(key)) return isolate->heap()->true_value(); // Slow case. Either it's not there or we have an interceptor. We should // have handles for this kind of deal. HandleScope scope(isolate); return HasLocalPropertyImplementation(isolate, Handle<JSObject>(object), Handle<String>(key)); } else if (obj->IsString()) { // Well, there is one exception: Handle [] on strings. uint32_t index; if (key->AsArrayIndex(&index)) { String* string = String::cast(obj); if (index < static_cast<uint32_t>(string->length())) return isolate->heap()->true_value(); } } return isolate->heap()->false_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_HasProperty) { NoHandleAllocation na; ASSERT(args.length() == 2); // Only JS objects can have properties. if (args[0]->IsJSObject()) { JSObject* object = JSObject::cast(args[0]); CONVERT_CHECKED(String, key, args[1]); if (object->HasProperty(key)) return isolate->heap()->true_value(); } return isolate->heap()->false_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_HasElement) { NoHandleAllocation na; ASSERT(args.length() == 2); // Only JS objects can have elements. if (args[0]->IsJSObject()) { JSObject* object = JSObject::cast(args[0]); CONVERT_CHECKED(Smi, index_obj, args[1]); uint32_t index = index_obj->value(); if (object->HasElement(index)) return isolate->heap()->true_value(); } return isolate->heap()->false_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_IsPropertyEnumerable) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_CHECKED(JSObject, object, args[0]); CONVERT_CHECKED(String, key, args[1]); uint32_t index; if (key->AsArrayIndex(&index)) { return isolate->heap()->ToBoolean(object->HasElement(index)); } PropertyAttributes att = object->GetLocalPropertyAttribute(key); return isolate->heap()->ToBoolean(att != ABSENT && (att & DONT_ENUM) == 0); } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetPropertyNames) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSObject, object, 0); return *GetKeysFor(object); } // Returns either a FixedArray as Runtime_GetPropertyNames, // or, if the given object has an enum cache that contains // all enumerable properties of the object and its prototypes // have none, the map of the object. This is used to speed up // the check for deletions during a for-in. RUNTIME_FUNCTION(MaybeObject*, Runtime_GetPropertyNamesFast) { ASSERT(args.length() == 1); CONVERT_CHECKED(JSObject, raw_object, args[0]); if (raw_object->IsSimpleEnum()) return raw_object->map(); HandleScope scope(isolate); Handle<JSObject> object(raw_object); Handle<FixedArray> content = GetKeysInFixedArrayFor(object, INCLUDE_PROTOS); // Test again, since cache may have been built by preceding call. if (object->IsSimpleEnum()) return object->map(); return *content; } // Find the length of the prototype chain that is to to handled as one. If a // prototype object is hidden it is to be viewed as part of the the object it // is prototype for. static int LocalPrototypeChainLength(JSObject* obj) { int count = 1; Object* proto = obj->GetPrototype(); while (proto->IsJSObject() && JSObject::cast(proto)->map()->is_hidden_prototype()) { count++; proto = JSObject::cast(proto)->GetPrototype(); } return count; } // Return the names of the local named properties. // args[0]: object RUNTIME_FUNCTION(MaybeObject*, Runtime_GetLocalPropertyNames) { HandleScope scope(isolate); ASSERT(args.length() == 1); if (!args[0]->IsJSObject()) { return isolate->heap()->undefined_value(); } CONVERT_ARG_CHECKED(JSObject, obj, 0); // Skip the global proxy as it has no properties and always delegates to the // real global object. if (obj->IsJSGlobalProxy()) { // Only collect names if access is permitted. if (obj->IsAccessCheckNeeded() && !isolate->MayNamedAccess(*obj, isolate->heap()->undefined_value(), v8::ACCESS_KEYS)) { isolate->ReportFailedAccessCheck(*obj, v8::ACCESS_KEYS); return *isolate->factory()->NewJSArray(0); } obj = Handle<JSObject>(JSObject::cast(obj->GetPrototype())); } // Find the number of objects making up this. int length = LocalPrototypeChainLength(*obj); // Find the number of local properties for each of the objects. ScopedVector<int> local_property_count(length); int total_property_count = 0; Handle<JSObject> jsproto = obj; for (int i = 0; i < length; i++) { // Only collect names if access is permitted. if (jsproto->IsAccessCheckNeeded() && !isolate->MayNamedAccess(*jsproto, isolate->heap()->undefined_value(), v8::ACCESS_KEYS)) { isolate->ReportFailedAccessCheck(*jsproto, v8::ACCESS_KEYS); return *isolate->factory()->NewJSArray(0); } int n; n = jsproto->NumberOfLocalProperties(static_cast<PropertyAttributes>(NONE)); local_property_count[i] = n; total_property_count += n; if (i < length - 1) { jsproto = Handle<JSObject>(JSObject::cast(jsproto->GetPrototype())); } } // Allocate an array with storage for all the property names. Handle<FixedArray> names = isolate->factory()->NewFixedArray(total_property_count); // Get the property names. jsproto = obj; int proto_with_hidden_properties = 0; int next_copy_index = 0; for (int i = 0; i < length; i++) { jsproto->GetLocalPropertyNames(*names, next_copy_index); next_copy_index += local_property_count[i]; if (!GetHiddenProperties(jsproto, false)->IsUndefined()) { proto_with_hidden_properties++; } if (i < length - 1) { jsproto = Handle<JSObject>(JSObject::cast(jsproto->GetPrototype())); } } // Filter out name of hidden propeties object. if (proto_with_hidden_properties > 0) { Handle<FixedArray> old_names = names; names = isolate->factory()->NewFixedArray( names->length() - proto_with_hidden_properties); int dest_pos = 0; for (int i = 0; i < total_property_count; i++) { Object* name = old_names->get(i); if (name == isolate->heap()->hidden_symbol()) { continue; } names->set(dest_pos++, name); } } return *isolate->factory()->NewJSArrayWithElements(names); } // Return the names of the local indexed properties. // args[0]: object RUNTIME_FUNCTION(MaybeObject*, Runtime_GetLocalElementNames) { HandleScope scope(isolate); ASSERT(args.length() == 1); if (!args[0]->IsJSObject()) { return isolate->heap()->undefined_value(); } CONVERT_ARG_CHECKED(JSObject, obj, 0); int n = obj->NumberOfLocalElements(static_cast<PropertyAttributes>(NONE)); Handle<FixedArray> names = isolate->factory()->NewFixedArray(n); obj->GetLocalElementKeys(*names, static_cast<PropertyAttributes>(NONE)); return *isolate->factory()->NewJSArrayWithElements(names); } // Return information on whether an object has a named or indexed interceptor. // args[0]: object RUNTIME_FUNCTION(MaybeObject*, Runtime_GetInterceptorInfo) { HandleScope scope(isolate); ASSERT(args.length() == 1); if (!args[0]->IsJSObject()) { return Smi::FromInt(0); } CONVERT_ARG_CHECKED(JSObject, obj, 0); int result = 0; if (obj->HasNamedInterceptor()) result |= 2; if (obj->HasIndexedInterceptor()) result |= 1; return Smi::FromInt(result); } // Return property names from named interceptor. // args[0]: object RUNTIME_FUNCTION(MaybeObject*, Runtime_GetNamedInterceptorPropertyNames) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSObject, obj, 0); if (obj->HasNamedInterceptor()) { v8::Handle<v8::Array> result = GetKeysForNamedInterceptor(obj, obj); if (!result.IsEmpty()) return *v8::Utils::OpenHandle(*result); } return isolate->heap()->undefined_value(); } // Return element names from indexed interceptor. // args[0]: object RUNTIME_FUNCTION(MaybeObject*, Runtime_GetIndexedInterceptorElementNames) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSObject, obj, 0); if (obj->HasIndexedInterceptor()) { v8::Handle<v8::Array> result = GetKeysForIndexedInterceptor(obj, obj); if (!result.IsEmpty()) return *v8::Utils::OpenHandle(*result); } return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_LocalKeys) { ASSERT_EQ(args.length(), 1); CONVERT_CHECKED(JSObject, raw_object, args[0]); HandleScope scope(isolate); Handle<JSObject> object(raw_object); if (object->IsJSGlobalProxy()) { // Do access checks before going to the global object. if (object->IsAccessCheckNeeded() && !isolate->MayNamedAccess(*object, isolate->heap()->undefined_value(), v8::ACCESS_KEYS)) { isolate->ReportFailedAccessCheck(*object, v8::ACCESS_KEYS); return *isolate->factory()->NewJSArray(0); } Handle<Object> proto(object->GetPrototype()); // If proxy is detached we simply return an empty array. if (proto->IsNull()) return *isolate->factory()->NewJSArray(0); object = Handle<JSObject>::cast(proto); } Handle<FixedArray> contents = GetKeysInFixedArrayFor(object, LOCAL_ONLY); // Some fast paths through GetKeysInFixedArrayFor reuse a cached // property array and since the result is mutable we have to create // a fresh clone on each invocation. int length = contents->length(); Handle<FixedArray> copy = isolate->factory()->NewFixedArray(length); for (int i = 0; i < length; i++) { Object* entry = contents->get(i); if (entry->IsString()) { copy->set(i, entry); } else { ASSERT(entry->IsNumber()); HandleScope scope(isolate); Handle<Object> entry_handle(entry, isolate); Handle<Object> entry_str = isolate->factory()->NumberToString(entry_handle); copy->set(i, *entry_str); } } return *isolate->factory()->NewJSArrayWithElements(copy); } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetArgumentsProperty) { NoHandleAllocation ha; ASSERT(args.length() == 1); // Compute the frame holding the arguments. JavaScriptFrameIterator it(isolate); it.AdvanceToArgumentsFrame(); JavaScriptFrame* frame = it.frame(); // Get the actual number of provided arguments. const uint32_t n = frame->ComputeParametersCount(); // Try to convert the key to an index. If successful and within // index return the the argument from the frame. uint32_t index; if (args[0]->ToArrayIndex(&index) && index < n) { return frame->GetParameter(index); } // Convert the key to a string. HandleScope scope(isolate); bool exception = false; Handle<Object> converted = Execution::ToString(args.at<Object>(0), &exception); if (exception) return Failure::Exception(); Handle<String> key = Handle<String>::cast(converted); // Try to convert the string key into an array index. if (key->AsArrayIndex(&index)) { if (index < n) { return frame->GetParameter(index); } else { return isolate->initial_object_prototype()->GetElement(index); } } // Handle special arguments properties. if (key->Equals(isolate->heap()->length_symbol())) return Smi::FromInt(n); if (key->Equals(isolate->heap()->callee_symbol())) { Object* function = frame->function(); if (function->IsJSFunction() && JSFunction::cast(function)->shared()->strict_mode()) { return isolate->Throw(*isolate->factory()->NewTypeError( "strict_arguments_callee", HandleVector<Object>(NULL, 0))); } return function; } // Lookup in the initial Object.prototype object. return isolate->initial_object_prototype()->GetProperty(*key); } RUNTIME_FUNCTION(MaybeObject*, Runtime_ToFastProperties) { HandleScope scope(isolate); ASSERT(args.length() == 1); Handle<Object> object = args.at<Object>(0); if (object->IsJSObject()) { Handle<JSObject> js_object = Handle<JSObject>::cast(object); if (!js_object->HasFastProperties() && !js_object->IsGlobalObject()) { MaybeObject* ok = js_object->TransformToFastProperties(0); if (ok->IsRetryAfterGC()) return ok; } } return *object; } RUNTIME_FUNCTION(MaybeObject*, Runtime_ToSlowProperties) { HandleScope scope(isolate); ASSERT(args.length() == 1); Handle<Object> object = args.at<Object>(0); if (object->IsJSObject() && !object->IsJSGlobalProxy()) { Handle<JSObject> js_object = Handle<JSObject>::cast(object); NormalizeProperties(js_object, CLEAR_INOBJECT_PROPERTIES, 0); } return *object; } RUNTIME_FUNCTION(MaybeObject*, Runtime_ToBool) { NoHandleAllocation ha; ASSERT(args.length() == 1); return args[0]->ToBoolean(); } // Returns the type string of a value; see ECMA-262, 11.4.3 (p 47). // Possible optimizations: put the type string into the oddballs. RUNTIME_FUNCTION(MaybeObject*, Runtime_Typeof) { NoHandleAllocation ha; Object* obj = args[0]; if (obj->IsNumber()) return isolate->heap()->number_symbol(); HeapObject* heap_obj = HeapObject::cast(obj); // typeof an undetectable object is 'undefined' if (heap_obj->map()->is_undetectable()) { return isolate->heap()->undefined_symbol(); } InstanceType instance_type = heap_obj->map()->instance_type(); if (instance_type < FIRST_NONSTRING_TYPE) { return isolate->heap()->string_symbol(); } switch (instance_type) { case ODDBALL_TYPE: if (heap_obj->IsTrue() || heap_obj->IsFalse()) { return isolate->heap()->boolean_symbol(); } if (heap_obj->IsNull()) { return isolate->heap()->object_symbol(); } ASSERT(heap_obj->IsUndefined()); return isolate->heap()->undefined_symbol(); case JS_FUNCTION_TYPE: case JS_REGEXP_TYPE: return isolate->heap()->function_symbol(); default: // For any kind of object not handled above, the spec rule for // host objects gives that it is okay to return "object" return isolate->heap()->object_symbol(); } } static bool AreDigits(const char*s, int from, int to) { for (int i = from; i < to; i++) { if (s[i] < '0' || s[i] > '9') return false; } return true; } static int ParseDecimalInteger(const char*s, int from, int to) { ASSERT(to - from < 10); // Overflow is not possible. ASSERT(from < to); int d = s[from] - '0'; for (int i = from + 1; i < to; i++) { d = 10 * d + (s[i] - '0'); } return d; } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringToNumber) { NoHandleAllocation ha; ASSERT(args.length() == 1); CONVERT_CHECKED(String, subject, args[0]); subject->TryFlatten(); // Fast case: short integer or some sorts of junk values. int len = subject->length(); if (subject->IsSeqAsciiString()) { if (len == 0) return Smi::FromInt(0); char const* data = SeqAsciiString::cast(subject)->GetChars(); bool minus = (data[0] == '-'); int start_pos = (minus ? 1 : 0); if (start_pos == len) { return isolate->heap()->nan_value(); } else if (data[start_pos] > '9') { // Fast check for a junk value. A valid string may start from a // whitespace, a sign ('+' or '-'), the decimal point, a decimal digit or // the 'I' character ('Infinity'). All of that have codes not greater than // '9' except 'I'. if (data[start_pos] != 'I') { return isolate->heap()->nan_value(); } } else if (len - start_pos < 10 && AreDigits(data, start_pos, len)) { // The maximal/minimal smi has 10 digits. If the string has less digits we // know it will fit into the smi-data type. int d = ParseDecimalInteger(data, start_pos, len); if (minus) { if (d == 0) return isolate->heap()->minus_zero_value(); d = -d; } else if (!subject->HasHashCode() && len <= String::kMaxArrayIndexSize && (len == 1 || data[0] != '0')) { // String hash is not calculated yet but all the data are present. // Update the hash field to speed up sequential convertions. uint32_t hash = StringHasher::MakeArrayIndexHash(d, len); #ifdef DEBUG subject->Hash(); // Force hash calculation. ASSERT_EQ(static_cast<int>(subject->hash_field()), static_cast<int>(hash)); #endif subject->set_hash_field(hash); } return Smi::FromInt(d); } } // Slower case. return isolate->heap()->NumberFromDouble( StringToDouble(isolate->unicode_cache(), subject, ALLOW_HEX)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringFromCharCodeArray) { NoHandleAllocation ha; ASSERT(args.length() == 1); CONVERT_CHECKED(JSArray, codes, args[0]); int length = Smi::cast(codes->length())->value(); // Check if the string can be ASCII. int i; for (i = 0; i < length; i++) { Object* element; { MaybeObject* maybe_element = codes->GetElement(i); // We probably can't get an exception here, but just in order to enforce // the checking of inputs in the runtime calls we check here. if (!maybe_element->ToObject(&element)) return maybe_element; } CONVERT_NUMBER_CHECKED(int, chr, Int32, element); if ((chr & 0xffff) > String::kMaxAsciiCharCode) break; } MaybeObject* maybe_object = NULL; if (i == length) { // The string is ASCII. maybe_object = isolate->heap()->AllocateRawAsciiString(length); } else { // The string is not ASCII. maybe_object = isolate->heap()->AllocateRawTwoByteString(length); } Object* object = NULL; if (!maybe_object->ToObject(&object)) return maybe_object; String* result = String::cast(object); for (int i = 0; i < length; i++) { Object* element; { MaybeObject* maybe_element = codes->GetElement(i); if (!maybe_element->ToObject(&element)) return maybe_element; } CONVERT_NUMBER_CHECKED(int, chr, Int32, element); result->Set(i, chr & 0xffff); } return result; } // kNotEscaped is generated by the following: // // #!/bin/perl // for (my $i = 0; $i < 256; $i++) { // print "\n" if $i % 16 == 0; // my $c = chr($i); // my $escaped = 1; // $escaped = 0 if $c =~ m#[A-Za-z0-9@*_+./-]#; // print $escaped ? "0, " : "1, "; // } static bool IsNotEscaped(uint16_t character) { // Only for 8 bit characters, the rest are always escaped (in a different way) ASSERT(character < 256); static const char kNotEscaped[256] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; return kNotEscaped[character] != 0; } RUNTIME_FUNCTION(MaybeObject*, Runtime_URIEscape) { const char hex_chars[] = "0123456789ABCDEF"; NoHandleAllocation ha; ASSERT(args.length() == 1); CONVERT_CHECKED(String, source, args[0]); source->TryFlatten(); int escaped_length = 0; int length = source->length(); { Access<StringInputBuffer> buffer( isolate->runtime_state()->string_input_buffer()); buffer->Reset(source); while (buffer->has_more()) { uint16_t character = buffer->GetNext(); if (character >= 256) { escaped_length += 6; } else if (IsNotEscaped(character)) { escaped_length++; } else { escaped_length += 3; } // We don't allow strings that are longer than a maximal length. ASSERT(String::kMaxLength < 0x7fffffff - 6); // Cannot overflow. if (escaped_length > String::kMaxLength) { isolate->context()->mark_out_of_memory(); return Failure::OutOfMemoryException(); } } } // No length change implies no change. Return original string if no change. if (escaped_length == length) { return source; } Object* o; { MaybeObject* maybe_o = isolate->heap()->AllocateRawAsciiString(escaped_length); if (!maybe_o->ToObject(&o)) return maybe_o; } String* destination = String::cast(o); int dest_position = 0; Access<StringInputBuffer> buffer( isolate->runtime_state()->string_input_buffer()); buffer->Rewind(); while (buffer->has_more()) { uint16_t chr = buffer->GetNext(); if (chr >= 256) { destination->Set(dest_position, '%'); destination->Set(dest_position+1, 'u'); destination->Set(dest_position+2, hex_chars[chr >> 12]); destination->Set(dest_position+3, hex_chars[(chr >> 8) & 0xf]); destination->Set(dest_position+4, hex_chars[(chr >> 4) & 0xf]); destination->Set(dest_position+5, hex_chars[chr & 0xf]); dest_position += 6; } else if (IsNotEscaped(chr)) { destination->Set(dest_position, chr); dest_position++; } else { destination->Set(dest_position, '%'); destination->Set(dest_position+1, hex_chars[chr >> 4]); destination->Set(dest_position+2, hex_chars[chr & 0xf]); dest_position += 3; } } return destination; } static inline int TwoDigitHex(uint16_t character1, uint16_t character2) { static const signed char kHexValue['g'] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1, -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 10, 11, 12, 13, 14, 15 }; if (character1 > 'f') return -1; int hi = kHexValue[character1]; if (hi == -1) return -1; if (character2 > 'f') return -1; int lo = kHexValue[character2]; if (lo == -1) return -1; return (hi << 4) + lo; } static inline int Unescape(String* source, int i, int length, int* step) { uint16_t character = source->Get(i); int32_t hi = 0; int32_t lo = 0; if (character == '%' && i <= length - 6 && source->Get(i + 1) == 'u' && (hi = TwoDigitHex(source->Get(i + 2), source->Get(i + 3))) != -1 && (lo = TwoDigitHex(source->Get(i + 4), source->Get(i + 5))) != -1) { *step = 6; return (hi << 8) + lo; } else if (character == '%' && i <= length - 3 && (lo = TwoDigitHex(source->Get(i + 1), source->Get(i + 2))) != -1) { *step = 3; return lo; } else { *step = 1; return character; } } RUNTIME_FUNCTION(MaybeObject*, Runtime_URIUnescape) { NoHandleAllocation ha; ASSERT(args.length() == 1); CONVERT_CHECKED(String, source, args[0]); source->TryFlatten(); bool ascii = true; int length = source->length(); int unescaped_length = 0; for (int i = 0; i < length; unescaped_length++) { int step; if (Unescape(source, i, length, &step) > String::kMaxAsciiCharCode) { ascii = false; } i += step; } // No length change implies no change. Return original string if no change. if (unescaped_length == length) return source; Object* o; { MaybeObject* maybe_o = ascii ? isolate->heap()->AllocateRawAsciiString(unescaped_length) : isolate->heap()->AllocateRawTwoByteString(unescaped_length); if (!maybe_o->ToObject(&o)) return maybe_o; } String* destination = String::cast(o); int dest_position = 0; for (int i = 0; i < length; dest_position++) { int step; destination->Set(dest_position, Unescape(source, i, length, &step)); i += step; } return destination; } static const unsigned int kQuoteTableLength = 128u; static const int kJsonQuotesCharactersPerEntry = 8; static const char* const JsonQuotes = "\\u0000 \\u0001 \\u0002 \\u0003 " "\\u0004 \\u0005 \\u0006 \\u0007 " "\\b \\t \\n \\u000b " "\\f \\r \\u000e \\u000f " "\\u0010 \\u0011 \\u0012 \\u0013 " "\\u0014 \\u0015 \\u0016 \\u0017 " "\\u0018 \\u0019 \\u001a \\u001b " "\\u001c \\u001d \\u001e \\u001f " " ! \\\" # " "$ % & ' " "( ) * + " ", - . / " "0 1 2 3 " "4 5 6 7 " "8 9 : ; " "< = > ? " "@ A B C " "D E F G " "H I J K " "L M N O " "P Q R S " "T U V W " "X Y Z [ " "\\\\ ] ^ _ " "` a b c " "d e f g " "h i j k " "l m n o " "p q r s " "t u v w " "x y z { " "| } ~ \177 "; // For a string that is less than 32k characters it should always be // possible to allocate it in new space. static const int kMaxGuaranteedNewSpaceString = 32 * 1024; // Doing JSON quoting cannot make the string more than this many times larger. static const int kJsonQuoteWorstCaseBlowup = 6; // Covers the entire ASCII range (all other characters are unchanged by JSON // quoting). static const byte JsonQuoteLengths[kQuoteTableLength] = { 6, 6, 6, 6, 6, 6, 6, 6, 2, 2, 2, 6, 2, 2, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, }; template <typename StringType> MaybeObject* AllocateRawString(Isolate* isolate, int length); template <> MaybeObject* AllocateRawString<SeqTwoByteString>(Isolate* isolate, int length) { return isolate->heap()->AllocateRawTwoByteString(length); } template <> MaybeObject* AllocateRawString<SeqAsciiString>(Isolate* isolate, int length) { return isolate->heap()->AllocateRawAsciiString(length); } template <typename Char, typename StringType, bool comma> static MaybeObject* SlowQuoteJsonString(Isolate* isolate, Vector<const Char> characters) { int length = characters.length(); const Char* read_cursor = characters.start(); const Char* end = read_cursor + length; const int kSpaceForQuotes = 2 + (comma ? 1 :0); int quoted_length = kSpaceForQuotes; while (read_cursor < end) { Char c = *(read_cursor++); if (sizeof(Char) > 1u && static_cast<unsigned>(c) >= kQuoteTableLength) { quoted_length++; } else { quoted_length += JsonQuoteLengths[static_cast<unsigned>(c)]; } } MaybeObject* new_alloc = AllocateRawString<StringType>(isolate, quoted_length); Object* new_object; if (!new_alloc->ToObject(&new_object)) { return new_alloc; } StringType* new_string = StringType::cast(new_object); Char* write_cursor = reinterpret_cast<Char*>( new_string->address() + SeqAsciiString::kHeaderSize); if (comma) *(write_cursor++) = ','; *(write_cursor++) = '"'; read_cursor = characters.start(); while (read_cursor < end) { Char c = *(read_cursor++); if (sizeof(Char) > 1u && static_cast<unsigned>(c) >= kQuoteTableLength) { *(write_cursor++) = c; } else { int len = JsonQuoteLengths[static_cast<unsigned>(c)]; const char* replacement = JsonQuotes + static_cast<unsigned>(c) * kJsonQuotesCharactersPerEntry; for (int i = 0; i < len; i++) { *write_cursor++ = *replacement++; } } } *(write_cursor++) = '"'; return new_string; } template <typename Char, typename StringType, bool comma> static MaybeObject* QuoteJsonString(Isolate* isolate, Vector<const Char> characters) { int length = characters.length(); isolate->counters()->quote_json_char_count()->Increment(length); const int kSpaceForQuotes = 2 + (comma ? 1 :0); int worst_case_length = length * kJsonQuoteWorstCaseBlowup + kSpaceForQuotes; if (worst_case_length > kMaxGuaranteedNewSpaceString) { return SlowQuoteJsonString<Char, StringType, comma>(isolate, characters); } MaybeObject* new_alloc = AllocateRawString<StringType>(isolate, worst_case_length); Object* new_object; if (!new_alloc->ToObject(&new_object)) { return new_alloc; } if (!isolate->heap()->new_space()->Contains(new_object)) { // Even if our string is small enough to fit in new space we still have to // handle it being allocated in old space as may happen in the third // attempt. See CALL_AND_RETRY in heap-inl.h and similar code in // CEntryStub::GenerateCore. return SlowQuoteJsonString<Char, StringType, comma>(isolate, characters); } StringType* new_string = StringType::cast(new_object); ASSERT(isolate->heap()->new_space()->Contains(new_string)); STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize); Char* write_cursor = reinterpret_cast<Char*>( new_string->address() + SeqAsciiString::kHeaderSize); if (comma) *(write_cursor++) = ','; *(write_cursor++) = '"'; const Char* read_cursor = characters.start(); const Char* end = read_cursor + length; while (read_cursor < end) { Char c = *(read_cursor++); if (sizeof(Char) > 1u && static_cast<unsigned>(c) >= kQuoteTableLength) { *(write_cursor++) = c; } else { int len = JsonQuoteLengths[static_cast<unsigned>(c)]; const char* replacement = JsonQuotes + static_cast<unsigned>(c) * kJsonQuotesCharactersPerEntry; write_cursor[0] = replacement[0]; if (len > 1) { write_cursor[1] = replacement[1]; if (len > 2) { ASSERT(len == 6); write_cursor[2] = replacement[2]; write_cursor[3] = replacement[3]; write_cursor[4] = replacement[4]; write_cursor[5] = replacement[5]; } } write_cursor += len; } } *(write_cursor++) = '"'; int final_length = static_cast<int>( write_cursor - reinterpret_cast<Char*>( new_string->address() + SeqAsciiString::kHeaderSize)); isolate->heap()->new_space()-> template ShrinkStringAtAllocationBoundary<StringType>( new_string, final_length); return new_string; } RUNTIME_FUNCTION(MaybeObject*, Runtime_QuoteJSONString) { NoHandleAllocation ha; CONVERT_CHECKED(String, str, args[0]); if (!str->IsFlat()) { MaybeObject* try_flatten = str->TryFlatten(); Object* flat; if (!try_flatten->ToObject(&flat)) { return try_flatten; } str = String::cast(flat); ASSERT(str->IsFlat()); } if (str->IsTwoByteRepresentation()) { return QuoteJsonString<uc16, SeqTwoByteString, false>(isolate, str->ToUC16Vector()); } else { return QuoteJsonString<char, SeqAsciiString, false>(isolate, str->ToAsciiVector()); } } RUNTIME_FUNCTION(MaybeObject*, Runtime_QuoteJSONStringComma) { NoHandleAllocation ha; CONVERT_CHECKED(String, str, args[0]); if (!str->IsFlat()) { MaybeObject* try_flatten = str->TryFlatten(); Object* flat; if (!try_flatten->ToObject(&flat)) { return try_flatten; } str = String::cast(flat); ASSERT(str->IsFlat()); } if (str->IsTwoByteRepresentation()) { return QuoteJsonString<uc16, SeqTwoByteString, true>(isolate, str->ToUC16Vector()); } else { return QuoteJsonString<char, SeqAsciiString, true>(isolate, str->ToAsciiVector()); } } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringParseInt) { NoHandleAllocation ha; CONVERT_CHECKED(String, s, args[0]); CONVERT_SMI_CHECKED(radix, args[1]); s->TryFlatten(); RUNTIME_ASSERT(radix == 0 || (2 <= radix && radix <= 36)); double value = StringToInt(isolate->unicode_cache(), s, radix); return isolate->heap()->NumberFromDouble(value); } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringParseFloat) { NoHandleAllocation ha; CONVERT_CHECKED(String, str, args[0]); // ECMA-262 section 15.1.2.3, empty string is NaN double value = StringToDouble(isolate->unicode_cache(), str, ALLOW_TRAILING_JUNK, OS::nan_value()); // Create a number object from the value. return isolate->heap()->NumberFromDouble(value); } template <class Converter> MUST_USE_RESULT static MaybeObject* ConvertCaseHelper( Isolate* isolate, String* s, int length, int input_string_length, unibrow::Mapping<Converter, 128>* mapping) { // We try this twice, once with the assumption that the result is no longer // than the input and, if that assumption breaks, again with the exact // length. This may not be pretty, but it is nicer than what was here before // and I hereby claim my vaffel-is. // // Allocate the resulting string. // // NOTE: This assumes that the upper/lower case of an ascii // character is also ascii. This is currently the case, but it // might break in the future if we implement more context and locale // dependent upper/lower conversions. Object* o; { MaybeObject* maybe_o = s->IsAsciiRepresentation() ? isolate->heap()->AllocateRawAsciiString(length) : isolate->heap()->AllocateRawTwoByteString(length); if (!maybe_o->ToObject(&o)) return maybe_o; } String* result = String::cast(o); bool has_changed_character = false; // Convert all characters to upper case, assuming that they will fit // in the buffer Access<StringInputBuffer> buffer( isolate->runtime_state()->string_input_buffer()); buffer->Reset(s); unibrow::uchar chars[Converter::kMaxWidth]; // We can assume that the string is not empty uc32 current = buffer->GetNext(); for (int i = 0; i < length;) { bool has_next = buffer->has_more(); uc32 next = has_next ? buffer->GetNext() : 0; int char_length = mapping->get(current, next, chars); if (char_length == 0) { // The case conversion of this character is the character itself. result->Set(i, current); i++; } else if (char_length == 1) { // Common case: converting the letter resulted in one character. ASSERT(static_cast<uc32>(chars[0]) != current); result->Set(i, chars[0]); has_changed_character = true; i++; } else if (length == input_string_length) { // We've assumed that the result would be as long as the // input but here is a character that converts to several // characters. No matter, we calculate the exact length // of the result and try the whole thing again. // // Note that this leaves room for optimization. We could just // memcpy what we already have to the result string. Also, // the result string is the last object allocated we could // "realloc" it and probably, in the vast majority of cases, // extend the existing string to be able to hold the full // result. int next_length = 0; if (has_next) { next_length = mapping->get(next, 0, chars); if (next_length == 0) next_length = 1; } int current_length = i + char_length + next_length; while (buffer->has_more()) { current = buffer->GetNext(); // NOTE: we use 0 as the next character here because, while // the next character may affect what a character converts to, // it does not in any case affect the length of what it convert // to. int char_length = mapping->get(current, 0, chars); if (char_length == 0) char_length = 1; current_length += char_length; if (current_length > Smi::kMaxValue) { isolate->context()->mark_out_of_memory(); return Failure::OutOfMemoryException(); } } // Try again with the real length. return Smi::FromInt(current_length); } else { for (int j = 0; j < char_length; j++) { result->Set(i, chars[j]); i++; } has_changed_character = true; } current = next; } if (has_changed_character) { return result; } else { // If we didn't actually change anything in doing the conversion // we simple return the result and let the converted string // become garbage; there is no reason to keep two identical strings // alive. return s; } } namespace { static const uintptr_t kOneInEveryByte = kUintptrAllBitsSet / 0xFF; // Given a word and two range boundaries returns a word with high bit // set in every byte iff the corresponding input byte was strictly in // the range (m, n). All the other bits in the result are cleared. // This function is only useful when it can be inlined and the // boundaries are statically known. // Requires: all bytes in the input word and the boundaries must be // ascii (less than 0x7F). static inline uintptr_t AsciiRangeMask(uintptr_t w, char m, char n) { // Every byte in an ascii string is less than or equal to 0x7F. ASSERT((w & (kOneInEveryByte * 0x7F)) == w); // Use strict inequalities since in edge cases the function could be // further simplified. ASSERT(0 < m && m < n && n < 0x7F); // Has high bit set in every w byte less than n. uintptr_t tmp1 = kOneInEveryByte * (0x7F + n) - w; // Has high bit set in every w byte greater than m. uintptr_t tmp2 = w + kOneInEveryByte * (0x7F - m); return (tmp1 & tmp2 & (kOneInEveryByte * 0x80)); } enum AsciiCaseConversion { ASCII_TO_LOWER, ASCII_TO_UPPER }; template <AsciiCaseConversion dir> struct FastAsciiConverter { static bool Convert(char* dst, char* src, int length) { #ifdef DEBUG char* saved_dst = dst; char* saved_src = src; #endif // We rely on the distance between upper and lower case letters // being a known power of 2. ASSERT('a' - 'A' == (1 << 5)); // Boundaries for the range of input characters than require conversion. const char lo = (dir == ASCII_TO_LOWER) ? 'A' - 1 : 'a' - 1; const char hi = (dir == ASCII_TO_LOWER) ? 'Z' + 1 : 'z' + 1; bool changed = false; char* const limit = src + length; #ifdef V8_HOST_CAN_READ_UNALIGNED // Process the prefix of the input that requires no conversion one // (machine) word at a time. while (src <= limit - sizeof(uintptr_t)) { uintptr_t w = *reinterpret_cast<uintptr_t*>(src); if (AsciiRangeMask(w, lo, hi) != 0) { changed = true; break; } *reinterpret_cast<uintptr_t*>(dst) = w; src += sizeof(uintptr_t); dst += sizeof(uintptr_t); } // Process the remainder of the input performing conversion when // required one word at a time. while (src <= limit - sizeof(uintptr_t)) { uintptr_t w = *reinterpret_cast<uintptr_t*>(src); uintptr_t m = AsciiRangeMask(w, lo, hi); // The mask has high (7th) bit set in every byte that needs // conversion and we know that the distance between cases is // 1 << 5. *reinterpret_cast<uintptr_t*>(dst) = w ^ (m >> 2); src += sizeof(uintptr_t); dst += sizeof(uintptr_t); } #endif // Process the last few bytes of the input (or the whole input if // unaligned access is not supported). while (src < limit) { char c = *src; if (lo < c && c < hi) { c ^= (1 << 5); changed = true; } *dst = c; ++src; ++dst; } #ifdef DEBUG CheckConvert(saved_dst, saved_src, length, changed); #endif return changed; } #ifdef DEBUG static void CheckConvert(char* dst, char* src, int length, bool changed) { bool expected_changed = false; for (int i = 0; i < length; i++) { if (dst[i] == src[i]) continue; expected_changed = true; if (dir == ASCII_TO_LOWER) { ASSERT('A' <= src[i] && src[i] <= 'Z'); ASSERT(dst[i] == src[i] + ('a' - 'A')); } else { ASSERT(dir == ASCII_TO_UPPER); ASSERT('a' <= src[i] && src[i] <= 'z'); ASSERT(dst[i] == src[i] - ('a' - 'A')); } } ASSERT(expected_changed == changed); } #endif }; struct ToLowerTraits { typedef unibrow::ToLowercase UnibrowConverter; typedef FastAsciiConverter<ASCII_TO_LOWER> AsciiConverter; }; struct ToUpperTraits { typedef unibrow::ToUppercase UnibrowConverter; typedef FastAsciiConverter<ASCII_TO_UPPER> AsciiConverter; }; } // namespace template <typename ConvertTraits> MUST_USE_RESULT static MaybeObject* ConvertCase( Arguments args, Isolate* isolate, unibrow::Mapping<typename ConvertTraits::UnibrowConverter, 128>* mapping) { NoHandleAllocation ha; CONVERT_CHECKED(String, s, args[0]); s = s->TryFlattenGetString(); const int length = s->length(); // Assume that the string is not empty; we need this assumption later if (length == 0) return s; // Simpler handling of ascii strings. // // NOTE: This assumes that the upper/lower case of an ascii // character is also ascii. This is currently the case, but it // might break in the future if we implement more context and locale // dependent upper/lower conversions. if (s->IsSeqAsciiString()) { Object* o; { MaybeObject* maybe_o = isolate->heap()->AllocateRawAsciiString(length); if (!maybe_o->ToObject(&o)) return maybe_o; } SeqAsciiString* result = SeqAsciiString::cast(o); bool has_changed_character = ConvertTraits::AsciiConverter::Convert( result->GetChars(), SeqAsciiString::cast(s)->GetChars(), length); return has_changed_character ? result : s; } Object* answer; { MaybeObject* maybe_answer = ConvertCaseHelper(isolate, s, length, length, mapping); if (!maybe_answer->ToObject(&answer)) return maybe_answer; } if (answer->IsSmi()) { // Retry with correct length. { MaybeObject* maybe_answer = ConvertCaseHelper(isolate, s, Smi::cast(answer)->value(), length, mapping); if (!maybe_answer->ToObject(&answer)) return maybe_answer; } } return answer; } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringToLowerCase) { return ConvertCase<ToLowerTraits>( args, isolate, isolate->runtime_state()->to_lower_mapping()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringToUpperCase) { return ConvertCase<ToUpperTraits>( args, isolate, isolate->runtime_state()->to_upper_mapping()); } static inline bool IsTrimWhiteSpace(unibrow::uchar c) { return unibrow::WhiteSpace::Is(c) || c == 0x200b; } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringTrim) { NoHandleAllocation ha; ASSERT(args.length() == 3); CONVERT_CHECKED(String, s, args[0]); CONVERT_BOOLEAN_CHECKED(trimLeft, args[1]); CONVERT_BOOLEAN_CHECKED(trimRight, args[2]); s->TryFlatten(); int length = s->length(); int left = 0; if (trimLeft) { while (left < length && IsTrimWhiteSpace(s->Get(left))) { left++; } } int right = length; if (trimRight) { while (right > left && IsTrimWhiteSpace(s->Get(right - 1))) { right--; } } return s->SubString(left, right); } template <typename SubjectChar, typename PatternChar> void FindStringIndices(Isolate* isolate, Vector<const SubjectChar> subject, Vector<const PatternChar> pattern, ZoneList<int>* indices, unsigned int limit) { ASSERT(limit > 0); // Collect indices of pattern in subject, and the end-of-string index. // Stop after finding at most limit values. StringSearch<PatternChar, SubjectChar> search(isolate, pattern); int pattern_length = pattern.length(); int index = 0; while (limit > 0) { index = search.Search(subject, index); if (index < 0) return; indices->Add(index); index += pattern_length; limit--; } } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringSplit) { ASSERT(args.length() == 3); HandleScope handle_scope(isolate); CONVERT_ARG_CHECKED(String, subject, 0); CONVERT_ARG_CHECKED(String, pattern, 1); CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[2]); int subject_length = subject->length(); int pattern_length = pattern->length(); RUNTIME_ASSERT(pattern_length > 0); // The limit can be very large (0xffffffffu), but since the pattern // isn't empty, we can never create more parts than ~half the length // of the subject. if (!subject->IsFlat()) FlattenString(subject); static const int kMaxInitialListCapacity = 16; ZoneScope scope(DELETE_ON_EXIT); // Find (up to limit) indices of separator and end-of-string in subject int initial_capacity = Min<uint32_t>(kMaxInitialListCapacity, limit); ZoneList<int> indices(initial_capacity); if (!pattern->IsFlat()) FlattenString(pattern); // No allocation block. { AssertNoAllocation nogc; if (subject->IsAsciiRepresentation()) { Vector<const char> subject_vector = subject->ToAsciiVector(); if (pattern->IsAsciiRepresentation()) { FindStringIndices(isolate, subject_vector, pattern->ToAsciiVector(), &indices, limit); } else { FindStringIndices(isolate, subject_vector, pattern->ToUC16Vector(), &indices, limit); } } else { Vector<const uc16> subject_vector = subject->ToUC16Vector(); if (pattern->IsAsciiRepresentation()) { FindStringIndices(isolate, subject_vector, pattern->ToAsciiVector(), &indices, limit); } else { FindStringIndices(isolate, subject_vector, pattern->ToUC16Vector(), &indices, limit); } } } if (static_cast<uint32_t>(indices.length()) < limit) { indices.Add(subject_length); } // The list indices now contains the end of each part to create. // Create JSArray of substrings separated by separator. int part_count = indices.length(); Handle<JSArray> result = isolate->factory()->NewJSArray(part_count); result->set_length(Smi::FromInt(part_count)); ASSERT(result->HasFastElements()); if (part_count == 1 && indices.at(0) == subject_length) { FixedArray::cast(result->elements())->set(0, *subject); return *result; } Handle<FixedArray> elements(FixedArray::cast(result->elements())); int part_start = 0; for (int i = 0; i < part_count; i++) { HandleScope local_loop_handle; int part_end = indices.at(i); Handle<String> substring = isolate->factory()->NewSubString(subject, part_start, part_end); elements->set(i, *substring); part_start = part_end + pattern_length; } return *result; } // Copies ascii characters to the given fixed array looking up // one-char strings in the cache. Gives up on the first char that is // not in the cache and fills the remainder with smi zeros. Returns // the length of the successfully copied prefix. static int CopyCachedAsciiCharsToArray(Heap* heap, const char* chars, FixedArray* elements, int length) { AssertNoAllocation nogc; FixedArray* ascii_cache = heap->single_character_string_cache(); Object* undefined = heap->undefined_value(); int i; for (i = 0; i < length; ++i) { Object* value = ascii_cache->get(chars[i]); if (value == undefined) break; ASSERT(!heap->InNewSpace(value)); elements->set(i, value, SKIP_WRITE_BARRIER); } if (i < length) { ASSERT(Smi::FromInt(0) == 0); memset(elements->data_start() + i, 0, kPointerSize * (length - i)); } #ifdef DEBUG for (int j = 0; j < length; ++j) { Object* element = elements->get(j); ASSERT(element == Smi::FromInt(0) || (element->IsString() && String::cast(element)->LooksValid())); } #endif return i; } // Converts a String to JSArray. // For example, "foo" => ["f", "o", "o"]. RUNTIME_FUNCTION(MaybeObject*, Runtime_StringToArray) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(String, s, 0); CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]); s->TryFlatten(); const int length = static_cast<int>(Min<uint32_t>(s->length(), limit)); Handle<FixedArray> elements; if (s->IsFlat() && s->IsAsciiRepresentation()) { Object* obj; { MaybeObject* maybe_obj = isolate->heap()->AllocateUninitializedFixedArray(length); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } elements = Handle<FixedArray>(FixedArray::cast(obj), isolate); Vector<const char> chars = s->ToAsciiVector(); // Note, this will initialize all elements (not only the prefix) // to prevent GC from seeing partially initialized array. int num_copied_from_cache = CopyCachedAsciiCharsToArray(isolate->heap(), chars.start(), *elements, length); for (int i = num_copied_from_cache; i < length; ++i) { Handle<Object> str = LookupSingleCharacterStringFromCode(chars[i]); elements->set(i, *str); } } else { elements = isolate->factory()->NewFixedArray(length); for (int i = 0; i < length; ++i) { Handle<Object> str = LookupSingleCharacterStringFromCode(s->Get(i)); elements->set(i, *str); } } #ifdef DEBUG for (int i = 0; i < length; ++i) { ASSERT(String::cast(elements->get(i))->length() == 1); } #endif return *isolate->factory()->NewJSArrayWithElements(elements); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NewStringWrapper) { NoHandleAllocation ha; ASSERT(args.length() == 1); CONVERT_CHECKED(String, value, args[0]); return value->ToObject(); } bool Runtime::IsUpperCaseChar(RuntimeState* runtime_state, uint16_t ch) { unibrow::uchar chars[unibrow::ToUppercase::kMaxWidth]; int char_length = runtime_state->to_upper_mapping()->get(ch, 0, chars); return char_length == 0; } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToString) { NoHandleAllocation ha; ASSERT(args.length() == 1); Object* number = args[0]; RUNTIME_ASSERT(number->IsNumber()); return isolate->heap()->NumberToString(number); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToStringSkipCache) { NoHandleAllocation ha; ASSERT(args.length() == 1); Object* number = args[0]; RUNTIME_ASSERT(number->IsNumber()); return isolate->heap()->NumberToString(number, false); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToInteger) { NoHandleAllocation ha; ASSERT(args.length() == 1); CONVERT_DOUBLE_CHECKED(number, args[0]); // We do not include 0 so that we don't have to treat +0 / -0 cases. if (number > 0 && number <= Smi::kMaxValue) { return Smi::FromInt(static_cast<int>(number)); } return isolate->heap()->NumberFromDouble(DoubleToInteger(number)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToIntegerMapMinusZero) { NoHandleAllocation ha; ASSERT(args.length() == 1); CONVERT_DOUBLE_CHECKED(number, args[0]); // We do not include 0 so that we don't have to treat +0 / -0 cases. if (number > 0 && number <= Smi::kMaxValue) { return Smi::FromInt(static_cast<int>(number)); } double double_value = DoubleToInteger(number); // Map both -0 and +0 to +0. if (double_value == 0) double_value = 0; return isolate->heap()->NumberFromDouble(double_value); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToJSUint32) { NoHandleAllocation ha; ASSERT(args.length() == 1); CONVERT_NUMBER_CHECKED(int32_t, number, Uint32, args[0]); return isolate->heap()->NumberFromUint32(number); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToJSInt32) { NoHandleAllocation ha; ASSERT(args.length() == 1); CONVERT_DOUBLE_CHECKED(number, args[0]); // We do not include 0 so that we don't have to treat +0 / -0 cases. if (number > 0 && number <= Smi::kMaxValue) { return Smi::FromInt(static_cast<int>(number)); } return isolate->heap()->NumberFromInt32(DoubleToInt32(number)); } // Converts a Number to a Smi, if possible. Returns NaN if the number is not // a small integer. RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToSmi) { NoHandleAllocation ha; ASSERT(args.length() == 1); Object* obj = args[0]; if (obj->IsSmi()) { return obj; } if (obj->IsHeapNumber()) { double value = HeapNumber::cast(obj)->value(); int int_value = FastD2I(value); if (value == FastI2D(int_value) && Smi::IsValid(int_value)) { return Smi::FromInt(int_value); } } return isolate->heap()->nan_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_AllocateHeapNumber) { NoHandleAllocation ha; ASSERT(args.length() == 0); return isolate->heap()->AllocateHeapNumber(0); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberAdd) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_DOUBLE_CHECKED(x, args[0]); CONVERT_DOUBLE_CHECKED(y, args[1]); return isolate->heap()->NumberFromDouble(x + y); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberSub) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_DOUBLE_CHECKED(x, args[0]); CONVERT_DOUBLE_CHECKED(y, args[1]); return isolate->heap()->NumberFromDouble(x - y); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberMul) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_DOUBLE_CHECKED(x, args[0]); CONVERT_DOUBLE_CHECKED(y, args[1]); return isolate->heap()->NumberFromDouble(x * y); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberUnaryMinus) { NoHandleAllocation ha; ASSERT(args.length() == 1); CONVERT_DOUBLE_CHECKED(x, args[0]); return isolate->heap()->NumberFromDouble(-x); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberAlloc) { NoHandleAllocation ha; ASSERT(args.length() == 0); return isolate->heap()->NumberFromDouble(9876543210.0); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberDiv) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_DOUBLE_CHECKED(x, args[0]); CONVERT_DOUBLE_CHECKED(y, args[1]); return isolate->heap()->NumberFromDouble(x / y); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberMod) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_DOUBLE_CHECKED(x, args[0]); CONVERT_DOUBLE_CHECKED(y, args[1]); x = modulo(x, y); // NumberFromDouble may return a Smi instead of a Number object return isolate->heap()->NumberFromDouble(x); } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringAdd) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_CHECKED(String, str1, args[0]); CONVERT_CHECKED(String, str2, args[1]); isolate->counters()->string_add_runtime()->Increment(); return isolate->heap()->AllocateConsString(str1, str2); } template <typename sinkchar> static inline void StringBuilderConcatHelper(String* special, sinkchar* sink, FixedArray* fixed_array, int array_length) { int position = 0; for (int i = 0; i < array_length; i++) { Object* element = fixed_array->get(i); if (element->IsSmi()) { // Smi encoding of position and length. int encoded_slice = Smi::cast(element)->value(); int pos; int len; if (encoded_slice > 0) { // Position and length encoded in one smi. pos = StringBuilderSubstringPosition::decode(encoded_slice); len = StringBuilderSubstringLength::decode(encoded_slice); } else { // Position and length encoded in two smis. Object* obj = fixed_array->get(++i); ASSERT(obj->IsSmi()); pos = Smi::cast(obj)->value(); len = -encoded_slice; } String::WriteToFlat(special, sink + position, pos, pos + len); position += len; } else { String* string = String::cast(element); int element_length = string->length(); String::WriteToFlat(string, sink + position, 0, element_length); position += element_length; } } } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringBuilderConcat) { NoHandleAllocation ha; ASSERT(args.length() == 3); CONVERT_CHECKED(JSArray, array, args[0]); if (!args[1]->IsSmi()) { isolate->context()->mark_out_of_memory(); return Failure::OutOfMemoryException(); } int array_length = Smi::cast(args[1])->value(); CONVERT_CHECKED(String, special, args[2]); // This assumption is used by the slice encoding in one or two smis. ASSERT(Smi::kMaxValue >= String::kMaxLength); int special_length = special->length(); if (!array->HasFastElements()) { return isolate->Throw(isolate->heap()->illegal_argument_symbol()); } FixedArray* fixed_array = FixedArray::cast(array->elements()); if (fixed_array->length() < array_length) { array_length = fixed_array->length(); } if (array_length == 0) { return isolate->heap()->empty_string(); } else if (array_length == 1) { Object* first = fixed_array->get(0); if (first->IsString()) return first; } bool ascii = special->HasOnlyAsciiChars(); int position = 0; for (int i = 0; i < array_length; i++) { int increment = 0; Object* elt = fixed_array->get(i); if (elt->IsSmi()) { // Smi encoding of position and length. int smi_value = Smi::cast(elt)->value(); int pos; int len; if (smi_value > 0) { // Position and length encoded in one smi. pos = StringBuilderSubstringPosition::decode(smi_value); len = StringBuilderSubstringLength::decode(smi_value); } else { // Position and length encoded in two smis. len = -smi_value; // Get the position and check that it is a positive smi. i++; if (i >= array_length) { return isolate->Throw(isolate->heap()->illegal_argument_symbol()); } Object* next_smi = fixed_array->get(i); if (!next_smi->IsSmi()) { return isolate->Throw(isolate->heap()->illegal_argument_symbol()); } pos = Smi::cast(next_smi)->value(); if (pos < 0) { return isolate->Throw(isolate->heap()->illegal_argument_symbol()); } } ASSERT(pos >= 0); ASSERT(len >= 0); if (pos > special_length || len > special_length - pos) { return isolate->Throw(isolate->heap()->illegal_argument_symbol()); } increment = len; } else if (elt->IsString()) { String* element = String::cast(elt); int element_length = element->length(); increment = element_length; if (ascii && !element->HasOnlyAsciiChars()) { ascii = false; } } else { return isolate->Throw(isolate->heap()->illegal_argument_symbol()); } if (increment > String::kMaxLength - position) { isolate->context()->mark_out_of_memory(); return Failure::OutOfMemoryException(); } position += increment; } int length = position; Object* object; if (ascii) { { MaybeObject* maybe_object = isolate->heap()->AllocateRawAsciiString(length); if (!maybe_object->ToObject(&object)) return maybe_object; } SeqAsciiString* answer = SeqAsciiString::cast(object); StringBuilderConcatHelper(special, answer->GetChars(), fixed_array, array_length); return answer; } else { { MaybeObject* maybe_object = isolate->heap()->AllocateRawTwoByteString(length); if (!maybe_object->ToObject(&object)) return maybe_object; } SeqTwoByteString* answer = SeqTwoByteString::cast(object); StringBuilderConcatHelper(special, answer->GetChars(), fixed_array, array_length); return answer; } } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringBuilderJoin) { NoHandleAllocation ha; ASSERT(args.length() == 3); CONVERT_CHECKED(JSArray, array, args[0]); if (!args[1]->IsSmi()) { isolate->context()->mark_out_of_memory(); return Failure::OutOfMemoryException(); } int array_length = Smi::cast(args[1])->value(); CONVERT_CHECKED(String, separator, args[2]); if (!array->HasFastElements()) { return isolate->Throw(isolate->heap()->illegal_argument_symbol()); } FixedArray* fixed_array = FixedArray::cast(array->elements()); if (fixed_array->length() < array_length) { array_length = fixed_array->length(); } if (array_length == 0) { return isolate->heap()->empty_string(); } else if (array_length == 1) { Object* first = fixed_array->get(0); if (first->IsString()) return first; } int separator_length = separator->length(); int max_nof_separators = (String::kMaxLength + separator_length - 1) / separator_length; if (max_nof_separators < (array_length - 1)) { isolate->context()->mark_out_of_memory(); return Failure::OutOfMemoryException(); } int length = (array_length - 1) * separator_length; for (int i = 0; i < array_length; i++) { Object* element_obj = fixed_array->get(i); if (!element_obj->IsString()) { // TODO(1161): handle this case. return isolate->Throw(isolate->heap()->illegal_argument_symbol()); } String* element = String::cast(element_obj); int increment = element->length(); if (increment > String::kMaxLength - length) { isolate->context()->mark_out_of_memory(); return Failure::OutOfMemoryException(); } length += increment; } Object* object; { MaybeObject* maybe_object = isolate->heap()->AllocateRawTwoByteString(length); if (!maybe_object->ToObject(&object)) return maybe_object; } SeqTwoByteString* answer = SeqTwoByteString::cast(object); uc16* sink = answer->GetChars(); #ifdef DEBUG uc16* end = sink + length; #endif String* first = String::cast(fixed_array->get(0)); int first_length = first->length(); String::WriteToFlat(first, sink, 0, first_length); sink += first_length; for (int i = 1; i < array_length; i++) { ASSERT(sink + separator_length <= end); String::WriteToFlat(separator, sink, 0, separator_length); sink += separator_length; String* element = String::cast(fixed_array->get(i)); int element_length = element->length(); ASSERT(sink + element_length <= end); String::WriteToFlat(element, sink, 0, element_length); sink += element_length; } ASSERT(sink == end); ASSERT(!answer->HasOnlyAsciiChars()); // Use %_FastAsciiArrayJoin instead. return answer; } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberOr) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); return isolate->heap()->NumberFromInt32(x | y); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberAnd) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); return isolate->heap()->NumberFromInt32(x & y); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberXor) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); return isolate->heap()->NumberFromInt32(x ^ y); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberNot) { NoHandleAllocation ha; ASSERT(args.length() == 1); CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); return isolate->heap()->NumberFromInt32(~x); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberShl) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); return isolate->heap()->NumberFromInt32(x << (y & 0x1f)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberShr) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_NUMBER_CHECKED(uint32_t, x, Uint32, args[0]); CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); return isolate->heap()->NumberFromUint32(x >> (y & 0x1f)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberSar) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); return isolate->heap()->NumberFromInt32(ArithmeticShiftRight(x, y & 0x1f)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberEquals) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_DOUBLE_CHECKED(x, args[0]); CONVERT_DOUBLE_CHECKED(y, args[1]); if (isnan(x)) return Smi::FromInt(NOT_EQUAL); if (isnan(y)) return Smi::FromInt(NOT_EQUAL); if (x == y) return Smi::FromInt(EQUAL); Object* result; if ((fpclassify(x) == FP_ZERO) && (fpclassify(y) == FP_ZERO)) { result = Smi::FromInt(EQUAL); } else { result = Smi::FromInt(NOT_EQUAL); } return result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringEquals) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_CHECKED(String, x, args[0]); CONVERT_CHECKED(String, y, args[1]); bool not_equal = !x->Equals(y); // This is slightly convoluted because the value that signifies // equality is 0 and inequality is 1 so we have to negate the result // from String::Equals. ASSERT(not_equal == 0 || not_equal == 1); STATIC_CHECK(EQUAL == 0); STATIC_CHECK(NOT_EQUAL == 1); return Smi::FromInt(not_equal); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberCompare) { NoHandleAllocation ha; ASSERT(args.length() == 3); CONVERT_DOUBLE_CHECKED(x, args[0]); CONVERT_DOUBLE_CHECKED(y, args[1]); if (isnan(x) || isnan(y)) return args[2]; if (x == y) return Smi::FromInt(EQUAL); if (isless(x, y)) return Smi::FromInt(LESS); return Smi::FromInt(GREATER); } // Compare two Smis as if they were converted to strings and then // compared lexicographically. RUNTIME_FUNCTION(MaybeObject*, Runtime_SmiLexicographicCompare) { NoHandleAllocation ha; ASSERT(args.length() == 2); // Extract the integer values from the Smis. CONVERT_CHECKED(Smi, x, args[0]); CONVERT_CHECKED(Smi, y, args[1]); int x_value = x->value(); int y_value = y->value(); // If the integers are equal so are the string representations. if (x_value == y_value) return Smi::FromInt(EQUAL); // If one of the integers are zero the normal integer order is the // same as the lexicographic order of the string representations. if (x_value == 0 || y_value == 0) return Smi::FromInt(x_value - y_value); // If only one of the integers is negative the negative number is // smallest because the char code of '-' is less than the char code // of any digit. Otherwise, we make both values positive. if (x_value < 0 || y_value < 0) { if (y_value >= 0) return Smi::FromInt(LESS); if (x_value >= 0) return Smi::FromInt(GREATER); x_value = -x_value; y_value = -y_value; } // Arrays for the individual characters of the two Smis. Smis are // 31 bit integers and 10 decimal digits are therefore enough. // TODO(isolates): maybe we should simply allocate 20 bytes on the stack. int* x_elms = isolate->runtime_state()->smi_lexicographic_compare_x_elms(); int* y_elms = isolate->runtime_state()->smi_lexicographic_compare_y_elms(); // Convert the integers to arrays of their decimal digits. int x_index = 0; int y_index = 0; while (x_value > 0) { x_elms[x_index++] = x_value % 10; x_value /= 10; } while (y_value > 0) { y_elms[y_index++] = y_value % 10; y_value /= 10; } // Loop through the arrays of decimal digits finding the first place // where they differ. while (--x_index >= 0 && --y_index >= 0) { int diff = x_elms[x_index] - y_elms[y_index]; if (diff != 0) return Smi::FromInt(diff); } // If one array is a suffix of the other array, the longest array is // the representation of the largest of the Smis in the // lexicographic ordering. return Smi::FromInt(x_index - y_index); } static Object* StringInputBufferCompare(RuntimeState* state, String* x, String* y) { StringInputBuffer& bufx = *state->string_input_buffer_compare_bufx(); StringInputBuffer& bufy = *state->string_input_buffer_compare_bufy(); bufx.Reset(x); bufy.Reset(y); while (bufx.has_more() && bufy.has_more()) { int d = bufx.GetNext() - bufy.GetNext(); if (d < 0) return Smi::FromInt(LESS); else if (d > 0) return Smi::FromInt(GREATER); } // x is (non-trivial) prefix of y: if (bufy.has_more()) return Smi::FromInt(LESS); // y is prefix of x: return Smi::FromInt(bufx.has_more() ? GREATER : EQUAL); } static Object* FlatStringCompare(String* x, String* y) { ASSERT(x->IsFlat()); ASSERT(y->IsFlat()); Object* equal_prefix_result = Smi::FromInt(EQUAL); int prefix_length = x->length(); if (y->length() < prefix_length) { prefix_length = y->length(); equal_prefix_result = Smi::FromInt(GREATER); } else if (y->length() > prefix_length) { equal_prefix_result = Smi::FromInt(LESS); } int r; if (x->IsAsciiRepresentation()) { Vector<const char> x_chars = x->ToAsciiVector(); if (y->IsAsciiRepresentation()) { Vector<const char> y_chars = y->ToAsciiVector(); r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); } else { Vector<const uc16> y_chars = y->ToUC16Vector(); r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); } } else { Vector<const uc16> x_chars = x->ToUC16Vector(); if (y->IsAsciiRepresentation()) { Vector<const char> y_chars = y->ToAsciiVector(); r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); } else { Vector<const uc16> y_chars = y->ToUC16Vector(); r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); } } Object* result; if (r == 0) { result = equal_prefix_result; } else { result = (r < 0) ? Smi::FromInt(LESS) : Smi::FromInt(GREATER); } ASSERT(result == StringInputBufferCompare(Isolate::Current()->runtime_state(), x, y)); return result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_StringCompare) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_CHECKED(String, x, args[0]); CONVERT_CHECKED(String, y, args[1]); isolate->counters()->string_compare_runtime()->Increment(); // A few fast case tests before we flatten. if (x == y) return Smi::FromInt(EQUAL); if (y->length() == 0) { if (x->length() == 0) return Smi::FromInt(EQUAL); return Smi::FromInt(GREATER); } else if (x->length() == 0) { return Smi::FromInt(LESS); } int d = x->Get(0) - y->Get(0); if (d < 0) return Smi::FromInt(LESS); else if (d > 0) return Smi::FromInt(GREATER); Object* obj; { MaybeObject* maybe_obj = isolate->heap()->PrepareForCompare(x); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } { MaybeObject* maybe_obj = isolate->heap()->PrepareForCompare(y); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } return (x->IsFlat() && y->IsFlat()) ? FlatStringCompare(x, y) : StringInputBufferCompare(isolate->runtime_state(), x, y); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_acos) { NoHandleAllocation ha; ASSERT(args.length() == 1); isolate->counters()->math_acos()->Increment(); CONVERT_DOUBLE_CHECKED(x, args[0]); return isolate->transcendental_cache()->Get(TranscendentalCache::ACOS, x); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_asin) { NoHandleAllocation ha; ASSERT(args.length() == 1); isolate->counters()->math_asin()->Increment(); CONVERT_DOUBLE_CHECKED(x, args[0]); return isolate->transcendental_cache()->Get(TranscendentalCache::ASIN, x); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_atan) { NoHandleAllocation ha; ASSERT(args.length() == 1); isolate->counters()->math_atan()->Increment(); CONVERT_DOUBLE_CHECKED(x, args[0]); return isolate->transcendental_cache()->Get(TranscendentalCache::ATAN, x); } static const double kPiDividedBy4 = 0.78539816339744830962; RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_atan2) { NoHandleAllocation ha; ASSERT(args.length() == 2); isolate->counters()->math_atan2()->Increment(); CONVERT_DOUBLE_CHECKED(x, args[0]); CONVERT_DOUBLE_CHECKED(y, args[1]); double result; if (isinf(x) && isinf(y)) { // Make sure that the result in case of two infinite arguments // is a multiple of Pi / 4. The sign of the result is determined // by the first argument (x) and the sign of the second argument // determines the multiplier: one or three. int multiplier = (x < 0) ? -1 : 1; if (y < 0) multiplier *= 3; result = multiplier * kPiDividedBy4; } else { result = atan2(x, y); } return isolate->heap()->AllocateHeapNumber(result); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_ceil) { NoHandleAllocation ha; ASSERT(args.length() == 1); isolate->counters()->math_ceil()->Increment(); CONVERT_DOUBLE_CHECKED(x, args[0]); return isolate->heap()->NumberFromDouble(ceiling(x)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_cos) { NoHandleAllocation ha; ASSERT(args.length() == 1); isolate->counters()->math_cos()->Increment(); CONVERT_DOUBLE_CHECKED(x, args[0]); return isolate->transcendental_cache()->Get(TranscendentalCache::COS, x); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_exp) { NoHandleAllocation ha; ASSERT(args.length() == 1); isolate->counters()->math_exp()->Increment(); CONVERT_DOUBLE_CHECKED(x, args[0]); return isolate->transcendental_cache()->Get(TranscendentalCache::EXP, x); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_floor) { NoHandleAllocation ha; ASSERT(args.length() == 1); isolate->counters()->math_floor()->Increment(); CONVERT_DOUBLE_CHECKED(x, args[0]); return isolate->heap()->NumberFromDouble(floor(x)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_log) { NoHandleAllocation ha; ASSERT(args.length() == 1); isolate->counters()->math_log()->Increment(); CONVERT_DOUBLE_CHECKED(x, args[0]); return isolate->transcendental_cache()->Get(TranscendentalCache::LOG, x); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_pow) { NoHandleAllocation ha; ASSERT(args.length() == 2); isolate->counters()->math_pow()->Increment(); CONVERT_DOUBLE_CHECKED(x, args[0]); // If the second argument is a smi, it is much faster to call the // custom powi() function than the generic pow(). if (args[1]->IsSmi()) { int y = Smi::cast(args[1])->value(); return isolate->heap()->NumberFromDouble(power_double_int(x, y)); } CONVERT_DOUBLE_CHECKED(y, args[1]); return isolate->heap()->AllocateHeapNumber(power_double_double(x, y)); } // Fast version of Math.pow if we know that y is not an integer and // y is not -0.5 or 0.5. Used as slowcase from codegen. RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_pow_cfunction) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_DOUBLE_CHECKED(x, args[0]); CONVERT_DOUBLE_CHECKED(y, args[1]); if (y == 0) { return Smi::FromInt(1); } else if (isnan(y) || ((x == 1 || x == -1) && isinf(y))) { return isolate->heap()->nan_value(); } else { return isolate->heap()->AllocateHeapNumber(pow(x, y)); } } RUNTIME_FUNCTION(MaybeObject*, Runtime_RoundNumber) { NoHandleAllocation ha; ASSERT(args.length() == 1); isolate->counters()->math_round()->Increment(); if (!args[0]->IsHeapNumber()) { // Must be smi. Return the argument unchanged for all the other types // to make fuzz-natives test happy. return args[0]; } HeapNumber* number = reinterpret_cast<HeapNumber*>(args[0]); double value = number->value(); int exponent = number->get_exponent(); int sign = number->get_sign(); // We compare with kSmiValueSize - 3 because (2^30 - 0.1) has exponent 29 and // should be rounded to 2^30, which is not smi. if (!sign && exponent <= kSmiValueSize - 3) { return Smi::FromInt(static_cast<int>(value + 0.5)); } // If the magnitude is big enough, there's no place for fraction part. If we // try to add 0.5 to this number, 1.0 will be added instead. if (exponent >= 52) { return number; } if (sign && value >= -0.5) return isolate->heap()->minus_zero_value(); // Do not call NumberFromDouble() to avoid extra checks. return isolate->heap()->AllocateHeapNumber(floor(value + 0.5)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_sin) { NoHandleAllocation ha; ASSERT(args.length() == 1); isolate->counters()->math_sin()->Increment(); CONVERT_DOUBLE_CHECKED(x, args[0]); return isolate->transcendental_cache()->Get(TranscendentalCache::SIN, x); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_sqrt) { NoHandleAllocation ha; ASSERT(args.length() == 1); isolate->counters()->math_sqrt()->Increment(); CONVERT_DOUBLE_CHECKED(x, args[0]); return isolate->heap()->AllocateHeapNumber(sqrt(x)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_tan) { NoHandleAllocation ha; ASSERT(args.length() == 1); isolate->counters()->math_tan()->Increment(); CONVERT_DOUBLE_CHECKED(x, args[0]); return isolate->transcendental_cache()->Get(TranscendentalCache::TAN, x); } static int MakeDay(int year, int month, int day) { static const int day_from_month[] = {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334}; static const int day_from_month_leap[] = {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335}; year += month / 12; month %= 12; if (month < 0) { year--; month += 12; } ASSERT(month >= 0); ASSERT(month < 12); // year_delta is an arbitrary number such that: // a) year_delta = -1 (mod 400) // b) year + year_delta > 0 for years in the range defined by // ECMA 262 - 15.9.1.1, i.e. upto 100,000,000 days on either side of // Jan 1 1970. This is required so that we don't run into integer // division of negative numbers. // c) there shouldn't be an overflow for 32-bit integers in the following // operations. static const int year_delta = 399999; static const int base_day = 365 * (1970 + year_delta) + (1970 + year_delta) / 4 - (1970 + year_delta) / 100 + (1970 + year_delta) / 400; int year1 = year + year_delta; int day_from_year = 365 * year1 + year1 / 4 - year1 / 100 + year1 / 400 - base_day; if (year % 4 || (year % 100 == 0 && year % 400 != 0)) { return day_from_year + day_from_month[month] + day - 1; } return day_from_year + day_from_month_leap[month] + day - 1; } RUNTIME_FUNCTION(MaybeObject*, Runtime_DateMakeDay) { NoHandleAllocation ha; ASSERT(args.length() == 3); CONVERT_SMI_CHECKED(year, args[0]); CONVERT_SMI_CHECKED(month, args[1]); CONVERT_SMI_CHECKED(date, args[2]); return Smi::FromInt(MakeDay(year, month, date)); } static const int kDays4Years[] = {0, 365, 2 * 365, 3 * 365 + 1}; static const int kDaysIn4Years = 4 * 365 + 1; static const int kDaysIn100Years = 25 * kDaysIn4Years - 1; static const int kDaysIn400Years = 4 * kDaysIn100Years + 1; static const int kDays1970to2000 = 30 * 365 + 7; static const int kDaysOffset = 1000 * kDaysIn400Years + 5 * kDaysIn400Years - kDays1970to2000; static const int kYearsOffset = 400000; static const char kDayInYear[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}; static const char kMonthInYear[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11}; // This function works for dates from 1970 to 2099. static inline void DateYMDFromTimeAfter1970(int date, int& year, int& month, int& day) { #ifdef DEBUG int save_date = date; // Need this for ASSERT in the end. #endif year = 1970 + (4 * date + 2) / kDaysIn4Years; date %= kDaysIn4Years; month = kMonthInYear[date]; day = kDayInYear[date]; ASSERT(MakeDay(year, month, day) == save_date); } static inline void DateYMDFromTimeSlow(int date, int& year, int& month, int& day) { #ifdef DEBUG int save_date = date; // Need this for ASSERT in the end. #endif date += kDaysOffset; year = 400 * (date / kDaysIn400Years) - kYearsOffset; date %= kDaysIn400Years; ASSERT(MakeDay(year, 0, 1) + date == save_date); date--; int yd1 = date / kDaysIn100Years; date %= kDaysIn100Years; year += 100 * yd1; date++; int yd2 = date / kDaysIn4Years; date %= kDaysIn4Years; year += 4 * yd2; date--; int yd3 = date / 365; date %= 365; year += yd3; bool is_leap = (!yd1 || yd2) && !yd3; ASSERT(date >= -1); ASSERT(is_leap || (date >= 0)); ASSERT((date < 365) || (is_leap && (date < 366))); ASSERT(is_leap == ((year % 4 == 0) && (year % 100 || (year % 400 == 0)))); ASSERT(is_leap || ((MakeDay(year, 0, 1) + date) == save_date)); ASSERT(!is_leap || ((MakeDay(year, 0, 1) + date + 1) == save_date)); if (is_leap) { day = kDayInYear[2*365 + 1 + date]; month = kMonthInYear[2*365 + 1 + date]; } else { day = kDayInYear[date]; month = kMonthInYear[date]; } ASSERT(MakeDay(year, month, day) == save_date); } static inline void DateYMDFromTime(int date, int& year, int& month, int& day) { if (date >= 0 && date < 32 * kDaysIn4Years) { DateYMDFromTimeAfter1970(date, year, month, day); } else { DateYMDFromTimeSlow(date, year, month, day); } } RUNTIME_FUNCTION(MaybeObject*, Runtime_DateYMDFromTime) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_DOUBLE_CHECKED(t, args[0]); CONVERT_CHECKED(JSArray, res_array, args[1]); int year, month, day; DateYMDFromTime(static_cast<int>(floor(t / 86400000)), year, month, day); RUNTIME_ASSERT(res_array->elements()->map() == isolate->heap()->fixed_array_map()); FixedArray* elms = FixedArray::cast(res_array->elements()); RUNTIME_ASSERT(elms->length() == 3); elms->set(0, Smi::FromInt(year)); elms->set(1, Smi::FromInt(month)); elms->set(2, Smi::FromInt(day)); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NewArgumentsFast) { NoHandleAllocation ha; ASSERT(args.length() == 3); JSFunction* callee = JSFunction::cast(args[0]); Object** parameters = reinterpret_cast<Object**>(args[1]); const int length = Smi::cast(args[2])->value(); Object* result; { MaybeObject* maybe_result = isolate->heap()->AllocateArgumentsObject(callee, length); if (!maybe_result->ToObject(&result)) return maybe_result; } // Allocate the elements if needed. if (length > 0) { // Allocate the fixed array. Object* obj; { MaybeObject* maybe_obj = isolate->heap()->AllocateRawFixedArray(length); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } AssertNoAllocation no_gc; FixedArray* array = reinterpret_cast<FixedArray*>(obj); array->set_map(isolate->heap()->fixed_array_map()); array->set_length(length); WriteBarrierMode mode = array->GetWriteBarrierMode(no_gc); for (int i = 0; i < length; i++) { array->set(i, *--parameters, mode); } JSObject::cast(result)->set_elements(FixedArray::cast(obj)); } return result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_NewClosure) { HandleScope scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_CHECKED(Context, context, 0); CONVERT_ARG_CHECKED(SharedFunctionInfo, shared, 1); CONVERT_BOOLEAN_CHECKED(pretenure, args[2]); // Allocate global closures in old space and allocate local closures // in new space. Additionally pretenure closures that are assigned // directly to properties. pretenure = pretenure || (context->global_context() == *context); PretenureFlag pretenure_flag = pretenure ? TENURED : NOT_TENURED; Handle<JSFunction> result = isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context, pretenure_flag); return *result; } static SmartPointer<Object**> GetNonBoundArguments(int bound_argc, int* total_argc) { // Find frame containing arguments passed to the caller. JavaScriptFrameIterator it; JavaScriptFrame* frame = it.frame(); List<JSFunction*> functions(2); frame->GetFunctions(&functions); if (functions.length() > 1) { int inlined_frame_index = functions.length() - 1; JSFunction* inlined_function = functions[inlined_frame_index]; int args_count = inlined_function->shared()->formal_parameter_count(); ScopedVector<SlotRef> args_slots(args_count); SlotRef::ComputeSlotMappingForArguments(frame, inlined_frame_index, &args_slots); *total_argc = bound_argc + args_count; SmartPointer<Object**> param_data(NewArray<Object**>(*total_argc)); for (int i = 0; i < args_count; i++) { Handle<Object> val = args_slots[i].GetValue(); param_data[bound_argc + i] = val.location(); } return param_data; } else { it.AdvanceToArgumentsFrame(); frame = it.frame(); int args_count = frame->ComputeParametersCount(); *total_argc = bound_argc + args_count; SmartPointer<Object**> param_data(NewArray<Object**>(*total_argc)); for (int i = 0; i < args_count; i++) { Handle<Object> val = Handle<Object>(frame->GetParameter(i)); param_data[bound_argc + i] = val.location(); } return param_data; } } RUNTIME_FUNCTION(MaybeObject*, Runtime_NewObjectFromBound) { HandleScope scope(isolate); ASSERT(args.length() == 2); // First argument is a function to use as a constructor. CONVERT_ARG_CHECKED(JSFunction, function, 0); // Second argument is either null or an array of bound arguments. Handle<FixedArray> bound_args; int bound_argc = 0; if (!args[1]->IsNull()) { CONVERT_ARG_CHECKED(JSArray, params, 1); RUNTIME_ASSERT(params->HasFastElements()); bound_args = Handle<FixedArray>(FixedArray::cast(params->elements())); bound_argc = Smi::cast(params->length())->value(); } int total_argc = 0; SmartPointer<Object**> param_data = GetNonBoundArguments(bound_argc, &total_argc); for (int i = 0; i < bound_argc; i++) { Handle<Object> val = Handle<Object>(bound_args->get(i)); param_data[i] = val.location(); } bool exception = false; Handle<Object> result = Execution::New(function, total_argc, *param_data, &exception); if (exception) { return Failure::Exception(); } ASSERT(!result.is_null()); return *result; } static void TrySettingInlineConstructStub(Isolate* isolate, Handle<JSFunction> function) { Handle<Object> prototype = isolate->factory()->null_value(); if (function->has_instance_prototype()) { prototype = Handle<Object>(function->instance_prototype(), isolate); } if (function->shared()->CanGenerateInlineConstructor(*prototype)) { ConstructStubCompiler compiler; MaybeObject* code = compiler.CompileConstructStub(*function); if (!code->IsFailure()) { function->shared()->set_construct_stub( Code::cast(code->ToObjectUnchecked())); } } } RUNTIME_FUNCTION(MaybeObject*, Runtime_NewObject) { HandleScope scope(isolate); ASSERT(args.length() == 1); Handle<Object> constructor = args.at<Object>(0); // If the constructor isn't a proper function we throw a type error. if (!constructor->IsJSFunction()) { Vector< Handle<Object> > arguments = HandleVector(&constructor, 1); Handle<Object> type_error = isolate->factory()->NewTypeError("not_constructor", arguments); return isolate->Throw(*type_error); } Handle<JSFunction> function = Handle<JSFunction>::cast(constructor); // If function should not have prototype, construction is not allowed. In this // case generated code bailouts here, since function has no initial_map. if (!function->should_have_prototype()) { Vector< Handle<Object> > arguments = HandleVector(&constructor, 1); Handle<Object> type_error = isolate->factory()->NewTypeError("not_constructor", arguments); return isolate->Throw(*type_error); } #ifdef ENABLE_DEBUGGER_SUPPORT Debug* debug = isolate->debug(); // Handle stepping into constructors if step into is active. if (debug->StepInActive()) { debug->HandleStepIn(function, Handle<Object>::null(), 0, true); } #endif if (function->has_initial_map()) { if (function->initial_map()->instance_type() == JS_FUNCTION_TYPE) { // The 'Function' function ignores the receiver object when // called using 'new' and creates a new JSFunction object that // is returned. The receiver object is only used for error // reporting if an error occurs when constructing the new // JSFunction. FACTORY->NewJSObject() should not be used to // allocate JSFunctions since it does not properly initialize // the shared part of the function. Since the receiver is // ignored anyway, we use the global object as the receiver // instead of a new JSFunction object. This way, errors are // reported the same way whether or not 'Function' is called // using 'new'. return isolate->context()->global(); } } // The function should be compiled for the optimization hints to be // available. We cannot use EnsureCompiled because that forces a // compilation through the shared function info which makes it // impossible for us to optimize. Handle<SharedFunctionInfo> shared(function->shared(), isolate); if (!function->is_compiled()) CompileLazy(function, CLEAR_EXCEPTION); if (!function->has_initial_map() && shared->IsInobjectSlackTrackingInProgress()) { // The tracking is already in progress for another function. We can only // track one initial_map at a time, so we force the completion before the // function is called as a constructor for the first time. shared->CompleteInobjectSlackTracking(); } bool first_allocation = !shared->live_objects_may_exist(); Handle<JSObject> result = isolate->factory()->NewJSObject(function); RETURN_IF_EMPTY_HANDLE(isolate, result); // Delay setting the stub if inobject slack tracking is in progress. if (first_allocation && !shared->IsInobjectSlackTrackingInProgress()) { TrySettingInlineConstructStub(isolate, function); } isolate->counters()->constructed_objects()->Increment(); isolate->counters()->constructed_objects_runtime()->Increment(); return *result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_FinalizeInstanceSize) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, function, 0); function->shared()->CompleteInobjectSlackTracking(); TrySettingInlineConstructStub(isolate, function); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_LazyCompile) { HandleScope scope(isolate); ASSERT(args.length() == 1); Handle<JSFunction> function = args.at<JSFunction>(0); #ifdef DEBUG if (FLAG_trace_lazy && !function->shared()->is_compiled()) { PrintF("[lazy: "); function->PrintName(); PrintF("]\n"); } #endif // Compile the target function. Here we compile using CompileLazyInLoop in // order to get the optimized version. This helps code like delta-blue // that calls performance-critical routines through constructors. A // constructor call doesn't use a CallIC, it uses a LoadIC followed by a // direct call. Since the in-loop tracking takes place through CallICs // this means that things called through constructors are never known to // be in loops. We compile them as if they are in loops here just in case. ASSERT(!function->is_compiled()); if (!CompileLazyInLoop(function, KEEP_EXCEPTION)) { return Failure::Exception(); } // All done. Return the compiled code. ASSERT(function->is_compiled()); return function->code(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_LazyRecompile) { HandleScope scope(isolate); ASSERT(args.length() == 1); Handle<JSFunction> function = args.at<JSFunction>(0); // If the function is not optimizable or debugger is active continue using the // code from the full compiler. if (!function->shared()->code()->optimizable() || isolate->debug()->has_break_points()) { if (FLAG_trace_opt) { PrintF("[failed to optimize "); function->PrintName(); PrintF(": is code optimizable: %s, is debugger enabled: %s]\n", function->shared()->code()->optimizable() ? "T" : "F", isolate->debug()->has_break_points() ? "T" : "F"); } function->ReplaceCode(function->shared()->code()); return function->code(); } if (CompileOptimized(function, AstNode::kNoNumber, CLEAR_EXCEPTION)) { return function->code(); } if (FLAG_trace_opt) { PrintF("[failed to optimize "); function->PrintName(); PrintF(": optimized compilation failed]\n"); } function->ReplaceCode(function->shared()->code()); return function->code(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NotifyDeoptimized) { HandleScope scope(isolate); ASSERT(args.length() == 1); RUNTIME_ASSERT(args[0]->IsSmi()); Deoptimizer::BailoutType type = static_cast<Deoptimizer::BailoutType>(Smi::cast(args[0])->value()); Deoptimizer* deoptimizer = Deoptimizer::Grab(isolate); ASSERT(isolate->heap()->IsAllocationAllowed()); int frames = deoptimizer->output_count(); deoptimizer->MaterializeHeapNumbers(); delete deoptimizer; JavaScriptFrameIterator it(isolate); JavaScriptFrame* frame = NULL; for (int i = 0; i < frames - 1; i++) it.Advance(); frame = it.frame(); RUNTIME_ASSERT(frame->function()->IsJSFunction()); Handle<JSFunction> function(JSFunction::cast(frame->function()), isolate); Handle<Object> arguments; for (int i = frame->ComputeExpressionsCount() - 1; i >= 0; --i) { if (frame->GetExpression(i) == isolate->heap()->arguments_marker()) { if (arguments.is_null()) { // FunctionGetArguments can't throw an exception, so cast away the // doubt with an assert. arguments = Handle<Object>( Accessors::FunctionGetArguments(*function, NULL)->ToObjectUnchecked()); ASSERT(*arguments != isolate->heap()->null_value()); ASSERT(*arguments != isolate->heap()->undefined_value()); } frame->SetExpression(i, *arguments); } } isolate->compilation_cache()->MarkForLazyOptimizing(function); if (type == Deoptimizer::EAGER) { RUNTIME_ASSERT(function->IsOptimized()); } else { RUNTIME_ASSERT(!function->IsOptimized()); } // Avoid doing too much work when running with --always-opt and keep // the optimized code around. if (FLAG_always_opt || type == Deoptimizer::LAZY) { return isolate->heap()->undefined_value(); } // Count the number of optimized activations of the function. int activations = 0; while (!it.done()) { JavaScriptFrame* frame = it.frame(); if (frame->is_optimized() && frame->function() == *function) { activations++; } it.Advance(); } // TODO(kasperl): For now, we cannot support removing the optimized // code when we have recursive invocations of the same function. if (activations == 0) { if (FLAG_trace_deopt) { PrintF("[removing optimized code for: "); function->PrintName(); PrintF("]\n"); } function->ReplaceCode(function->shared()->code()); } return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NotifyOSR) { Deoptimizer* deoptimizer = Deoptimizer::Grab(isolate); delete deoptimizer; return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DeoptimizeFunction) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, function, 0); if (!function->IsOptimized()) return isolate->heap()->undefined_value(); Deoptimizer::DeoptimizeFunction(*function); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_OptimizeFunctionOnNextCall) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, function, 0); if (!function->IsOptimizable()) return isolate->heap()->undefined_value(); function->MarkForLazyRecompilation(); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_CompileForOnStackReplacement) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, function, 0); // We're not prepared to handle a function with arguments object. ASSERT(!function->shared()->scope_info()->HasArgumentsShadow()); // We have hit a back edge in an unoptimized frame for a function that was // selected for on-stack replacement. Find the unoptimized code object. Handle<Code> unoptimized(function->shared()->code(), isolate); // Keep track of whether we've succeeded in optimizing. bool succeeded = unoptimized->optimizable(); if (succeeded) { // If we are trying to do OSR when there are already optimized // activations of the function, it means (a) the function is directly or // indirectly recursive and (b) an optimized invocation has been // deoptimized so that we are currently in an unoptimized activation. // Check for optimized activations of this function. JavaScriptFrameIterator it(isolate); while (succeeded && !it.done()) { JavaScriptFrame* frame = it.frame(); succeeded = !frame->is_optimized() || frame->function() != *function; it.Advance(); } } int ast_id = AstNode::kNoNumber; if (succeeded) { // The top JS function is this one, the PC is somewhere in the // unoptimized code. JavaScriptFrameIterator it(isolate); JavaScriptFrame* frame = it.frame(); ASSERT(frame->function() == *function); ASSERT(frame->LookupCode() == *unoptimized); ASSERT(unoptimized->contains(frame->pc())); // Use linear search of the unoptimized code's stack check table to find // the AST id matching the PC. Address start = unoptimized->instruction_start(); unsigned target_pc_offset = static_cast<unsigned>(frame->pc() - start); Address table_cursor = start + unoptimized->stack_check_table_offset(); uint32_t table_length = Memory::uint32_at(table_cursor); table_cursor += kIntSize; for (unsigned i = 0; i < table_length; ++i) { // Table entries are (AST id, pc offset) pairs. uint32_t pc_offset = Memory::uint32_at(table_cursor + kIntSize); if (pc_offset == target_pc_offset) { ast_id = static_cast<int>(Memory::uint32_at(table_cursor)); break; } table_cursor += 2 * kIntSize; } ASSERT(ast_id != AstNode::kNoNumber); if (FLAG_trace_osr) { PrintF("[replacing on-stack at AST id %d in ", ast_id); function->PrintName(); PrintF("]\n"); } // Try to compile the optimized code. A true return value from // CompileOptimized means that compilation succeeded, not necessarily // that optimization succeeded. if (CompileOptimized(function, ast_id, CLEAR_EXCEPTION) && function->IsOptimized()) { DeoptimizationInputData* data = DeoptimizationInputData::cast( function->code()->deoptimization_data()); if (data->OsrPcOffset()->value() >= 0) { if (FLAG_trace_osr) { PrintF("[on-stack replacement offset %d in optimized code]\n", data->OsrPcOffset()->value()); } ASSERT(data->OsrAstId()->value() == ast_id); } else { // We may never generate the desired OSR entry if we emit an // early deoptimize. succeeded = false; } } else { succeeded = false; } } // Revert to the original stack checks in the original unoptimized code. if (FLAG_trace_osr) { PrintF("[restoring original stack checks in "); function->PrintName(); PrintF("]\n"); } StackCheckStub check_stub; Handle<Code> check_code = check_stub.GetCode(); Handle<Code> replacement_code = isolate->builtins()->OnStackReplacement(); Deoptimizer::RevertStackCheckCode(*unoptimized, *check_code, *replacement_code); // Allow OSR only at nesting level zero again. unoptimized->set_allow_osr_at_loop_nesting_level(0); // If the optimization attempt succeeded, return the AST id tagged as a // smi. This tells the builtin that we need to translate the unoptimized // frame to an optimized one. if (succeeded) { ASSERT(function->code()->kind() == Code::OPTIMIZED_FUNCTION); return Smi::FromInt(ast_id); } else { if (function->IsMarkedForLazyRecompilation()) { function->ReplaceCode(function->shared()->code()); } return Smi::FromInt(-1); } } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFunctionDelegate) { HandleScope scope(isolate); ASSERT(args.length() == 1); RUNTIME_ASSERT(!args[0]->IsJSFunction()); return *Execution::GetFunctionDelegate(args.at<Object>(0)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetConstructorDelegate) { HandleScope scope(isolate); ASSERT(args.length() == 1); RUNTIME_ASSERT(!args[0]->IsJSFunction()); return *Execution::GetConstructorDelegate(args.at<Object>(0)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_NewContext) { NoHandleAllocation ha; ASSERT(args.length() == 1); CONVERT_CHECKED(JSFunction, function, args[0]); int length = function->shared()->scope_info()->NumberOfContextSlots(); Object* result; { MaybeObject* maybe_result = isolate->heap()->AllocateFunctionContext(length, function); if (!maybe_result->ToObject(&result)) return maybe_result; } isolate->set_context(Context::cast(result)); return result; // non-failure } MUST_USE_RESULT static MaybeObject* PushContextHelper(Isolate* isolate, Object* object, bool is_catch_context) { // Convert the object to a proper JavaScript object. Object* js_object = object; if (!js_object->IsJSObject()) { MaybeObject* maybe_js_object = js_object->ToObject(); if (!maybe_js_object->ToObject(&js_object)) { if (!Failure::cast(maybe_js_object)->IsInternalError()) { return maybe_js_object; } HandleScope scope(isolate); Handle<Object> handle(object, isolate); Handle<Object> result = isolate->factory()->NewTypeError("with_expression", HandleVector(&handle, 1)); return isolate->Throw(*result); } } Object* result; { MaybeObject* maybe_result = isolate->heap()->AllocateWithContext( isolate->context(), JSObject::cast(js_object), is_catch_context); if (!maybe_result->ToObject(&result)) return maybe_result; } Context* context = Context::cast(result); isolate->set_context(context); return result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_PushContext) { NoHandleAllocation ha; ASSERT(args.length() == 1); return PushContextHelper(isolate, args[0], false); } RUNTIME_FUNCTION(MaybeObject*, Runtime_PushCatchContext) { NoHandleAllocation ha; ASSERT(args.length() == 1); return PushContextHelper(isolate, args[0], true); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DeleteContextSlot) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(Context, context, 0); CONVERT_ARG_CHECKED(String, name, 1); int index; PropertyAttributes attributes; ContextLookupFlags flags = FOLLOW_CHAINS; Handle<Object> holder = context->Lookup(name, flags, &index, &attributes); // If the slot was not found the result is true. if (holder.is_null()) { return isolate->heap()->true_value(); } // If the slot was found in a context, it should be DONT_DELETE. if (holder->IsContext()) { return isolate->heap()->false_value(); } // The slot was found in a JSObject, either a context extension object, // the global object, or an arguments object. Try to delete it // (respecting DONT_DELETE). For consistency with V8's usual behavior, // which allows deleting all parameters in functions that mention // 'arguments', we do this even for the case of slots found on an // arguments object. The slot was found on an arguments object if the // index is non-negative. Handle<JSObject> object = Handle<JSObject>::cast(holder); if (index >= 0) { return object->DeleteElement(index, JSObject::NORMAL_DELETION); } else { return object->DeleteProperty(*name, JSObject::NORMAL_DELETION); } } // A mechanism to return a pair of Object pointers in registers (if possible). // How this is achieved is calling convention-dependent. // All currently supported x86 compiles uses calling conventions that are cdecl // variants where a 64-bit value is returned in two 32-bit registers // (edx:eax on ia32, r1:r0 on ARM). // In AMD-64 calling convention a struct of two pointers is returned in rdx:rax. // In Win64 calling convention, a struct of two pointers is returned in memory, // allocated by the caller, and passed as a pointer in a hidden first parameter. #ifdef V8_HOST_ARCH_64_BIT struct ObjectPair { MaybeObject* x; MaybeObject* y; }; static inline ObjectPair MakePair(MaybeObject* x, MaybeObject* y) { ObjectPair result = {x, y}; // Pointers x and y returned in rax and rdx, in AMD-x64-abi. // In Win64 they are assigned to a hidden first argument. return result; } #else typedef uint64_t ObjectPair; static inline ObjectPair MakePair(MaybeObject* x, MaybeObject* y) { return reinterpret_cast<uint32_t>(x) | (reinterpret_cast<ObjectPair>(y) << 32); } #endif static inline MaybeObject* Unhole(Heap* heap, MaybeObject* x, PropertyAttributes attributes) { ASSERT(!x->IsTheHole() || (attributes & READ_ONLY) != 0); USE(attributes); return x->IsTheHole() ? heap->undefined_value() : x; } static JSObject* ComputeReceiverForNonGlobal(Isolate* isolate, JSObject* holder) { ASSERT(!holder->IsGlobalObject()); Context* top = isolate->context(); // Get the context extension function. JSFunction* context_extension_function = top->global_context()->context_extension_function(); // If the holder isn't a context extension object, we just return it // as the receiver. This allows arguments objects to be used as // receivers, but only if they are put in the context scope chain // explicitly via a with-statement. Object* constructor = holder->map()->constructor(); if (constructor != context_extension_function) return holder; // Fall back to using the global object as the receiver if the // property turns out to be a local variable allocated in a context // extension object - introduced via eval. return top->global()->global_receiver(); } static ObjectPair LoadContextSlotHelper(Arguments args, Isolate* isolate, bool throw_error) { HandleScope scope(isolate); ASSERT_EQ(2, args.length()); if (!args[0]->IsContext() || !args[1]->IsString()) { return MakePair(isolate->ThrowIllegalOperation(), NULL); } Handle<Context> context = args.at<Context>(0); Handle<String> name = args.at<String>(1); int index; PropertyAttributes attributes; ContextLookupFlags flags = FOLLOW_CHAINS; Handle<Object> holder = context->Lookup(name, flags, &index, &attributes); // If the index is non-negative, the slot has been found in a local // variable or a parameter. Read it from the context object or the // arguments object. if (index >= 0) { // If the "property" we were looking for is a local variable or an // argument in a context, the receiver is the global object; see // ECMA-262, 3rd., 10.1.6 and 10.2.3. JSObject* receiver = isolate->context()->global()->global_receiver(); MaybeObject* value = (holder->IsContext()) ? Context::cast(*holder)->get(index) : JSObject::cast(*holder)->GetElement(index); return MakePair(Unhole(isolate->heap(), value, attributes), receiver); } // If the holder is found, we read the property from it. if (!holder.is_null() && holder->IsJSObject()) { ASSERT(Handle<JSObject>::cast(holder)->HasProperty(*name)); JSObject* object = JSObject::cast(*holder); JSObject* receiver; if (object->IsGlobalObject()) { receiver = GlobalObject::cast(object)->global_receiver(); } else if (context->is_exception_holder(*holder)) { receiver = isolate->context()->global()->global_receiver(); } else { receiver = ComputeReceiverForNonGlobal(isolate, object); } // No need to unhole the value here. This is taken care of by the // GetProperty function. MaybeObject* value = object->GetProperty(*name); return MakePair(value, receiver); } if (throw_error) { // The property doesn't exist - throw exception. Handle<Object> reference_error = isolate->factory()->NewReferenceError("not_defined", HandleVector(&name, 1)); return MakePair(isolate->Throw(*reference_error), NULL); } else { // The property doesn't exist - return undefined return MakePair(isolate->heap()->undefined_value(), isolate->heap()->undefined_value()); } } RUNTIME_FUNCTION(ObjectPair, Runtime_LoadContextSlot) { return LoadContextSlotHelper(args, isolate, true); } RUNTIME_FUNCTION(ObjectPair, Runtime_LoadContextSlotNoReferenceError) { return LoadContextSlotHelper(args, isolate, false); } RUNTIME_FUNCTION(MaybeObject*, Runtime_StoreContextSlot) { HandleScope scope(isolate); ASSERT(args.length() == 4); Handle<Object> value(args[0], isolate); CONVERT_ARG_CHECKED(Context, context, 1); CONVERT_ARG_CHECKED(String, name, 2); CONVERT_SMI_CHECKED(strict_unchecked, args[3]); RUNTIME_ASSERT(strict_unchecked == kStrictMode || strict_unchecked == kNonStrictMode); StrictModeFlag strict_mode = static_cast<StrictModeFlag>(strict_unchecked); int index; PropertyAttributes attributes; ContextLookupFlags flags = FOLLOW_CHAINS; Handle<Object> holder = context->Lookup(name, flags, &index, &attributes); if (index >= 0) { if (holder->IsContext()) { // Ignore if read_only variable. if ((attributes & READ_ONLY) == 0) { // Context is a fixed array and set cannot fail. Context::cast(*holder)->set(index, *value); } else if (strict_mode == kStrictMode) { // Setting read only property in strict mode. Handle<Object> error = isolate->factory()->NewTypeError("strict_cannot_assign", HandleVector(&name, 1)); return isolate->Throw(*error); } } else { ASSERT((attributes & READ_ONLY) == 0); Handle<Object> result = SetElement(Handle<JSObject>::cast(holder), index, value, strict_mode); if (result.is_null()) { ASSERT(isolate->has_pending_exception()); return Failure::Exception(); } } return *value; } // Slow case: The property is not in a FixedArray context. // It is either in an JSObject extension context or it was not found. Handle<JSObject> context_ext; if (!holder.is_null()) { // The property exists in the extension context. context_ext = Handle<JSObject>::cast(holder); } else { // The property was not found. ASSERT(attributes == ABSENT); if (strict_mode == kStrictMode) { // Throw in strict mode (assignment to undefined variable). Handle<Object> error = isolate->factory()->NewReferenceError( "not_defined", HandleVector(&name, 1)); return isolate->Throw(*error); } // In non-strict mode, the property is stored in the global context. attributes = NONE; context_ext = Handle<JSObject>(isolate->context()->global()); } // Set the property, but ignore if read_only variable on the context // extension object itself. if ((attributes & READ_ONLY) == 0 || (context_ext->GetLocalPropertyAttribute(*name) == ABSENT)) { RETURN_IF_EMPTY_HANDLE( isolate, SetProperty(context_ext, name, value, NONE, strict_mode)); } else if (strict_mode == kStrictMode && (attributes & READ_ONLY) != 0) { // Setting read only property in strict mode. Handle<Object> error = isolate->factory()->NewTypeError( "strict_cannot_assign", HandleVector(&name, 1)); return isolate->Throw(*error); } return *value; } RUNTIME_FUNCTION(MaybeObject*, Runtime_Throw) { HandleScope scope(isolate); ASSERT(args.length() == 1); return isolate->Throw(args[0]); } RUNTIME_FUNCTION(MaybeObject*, Runtime_ReThrow) { HandleScope scope(isolate); ASSERT(args.length() == 1); return isolate->ReThrow(args[0]); } RUNTIME_FUNCTION(MaybeObject*, Runtime_PromoteScheduledException) { ASSERT_EQ(0, args.length()); return isolate->PromoteScheduledException(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_ThrowReferenceError) { HandleScope scope(isolate); ASSERT(args.length() == 1); Handle<Object> name(args[0], isolate); Handle<Object> reference_error = isolate->factory()->NewReferenceError("not_defined", HandleVector(&name, 1)); return isolate->Throw(*reference_error); } RUNTIME_FUNCTION(MaybeObject*, Runtime_StackGuard) { ASSERT(args.length() == 0); // First check if this is a real stack overflow. if (isolate->stack_guard()->IsStackOverflow()) { NoHandleAllocation na; return isolate->StackOverflow(); } return Execution::HandleStackGuardInterrupt(); } // NOTE: These PrintXXX functions are defined for all builds (not just // DEBUG builds) because we may want to be able to trace function // calls in all modes. static void PrintString(String* str) { // not uncommon to have empty strings if (str->length() > 0) { SmartPointer<char> s = str->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL); PrintF("%s", *s); } } static void PrintObject(Object* obj) { if (obj->IsSmi()) { PrintF("%d", Smi::cast(obj)->value()); } else if (obj->IsString() || obj->IsSymbol()) { PrintString(String::cast(obj)); } else if (obj->IsNumber()) { PrintF("%g", obj->Number()); } else if (obj->IsFailure()) { PrintF("<failure>"); } else if (obj->IsUndefined()) { PrintF("<undefined>"); } else if (obj->IsNull()) { PrintF("<null>"); } else if (obj->IsTrue()) { PrintF("<true>"); } else if (obj->IsFalse()) { PrintF("<false>"); } else { PrintF("%p", reinterpret_cast<void*>(obj)); } } static int StackSize() { int n = 0; for (JavaScriptFrameIterator it; !it.done(); it.Advance()) n++; return n; } static void PrintTransition(Object* result) { // indentation { const int nmax = 80; int n = StackSize(); if (n <= nmax) PrintF("%4d:%*s", n, n, ""); else PrintF("%4d:%*s", n, nmax, "..."); } if (result == NULL) { // constructor calls JavaScriptFrameIterator it; JavaScriptFrame* frame = it.frame(); if (frame->IsConstructor()) PrintF("new "); // function name Object* fun = frame->function(); if (fun->IsJSFunction()) { PrintObject(JSFunction::cast(fun)->shared()->name()); } else { PrintObject(fun); } // function arguments // (we are intentionally only printing the actually // supplied parameters, not all parameters required) PrintF("(this="); PrintObject(frame->receiver()); const int length = frame->ComputeParametersCount(); for (int i = 0; i < length; i++) { PrintF(", "); PrintObject(frame->GetParameter(i)); } PrintF(") {\n"); } else { // function result PrintF("} -> "); PrintObject(result); PrintF("\n"); } } RUNTIME_FUNCTION(MaybeObject*, Runtime_TraceEnter) { ASSERT(args.length() == 0); NoHandleAllocation ha; PrintTransition(NULL); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_TraceExit) { NoHandleAllocation ha; PrintTransition(args[0]); return args[0]; // return TOS } RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugPrint) { NoHandleAllocation ha; ASSERT(args.length() == 1); #ifdef DEBUG if (args[0]->IsString()) { // If we have a string, assume it's a code "marker" // and print some interesting cpu debugging info. JavaScriptFrameIterator it(isolate); JavaScriptFrame* frame = it.frame(); PrintF("fp = %p, sp = %p, caller_sp = %p: ", frame->fp(), frame->sp(), frame->caller_sp()); } else { PrintF("DebugPrint: "); } args[0]->Print(); if (args[0]->IsHeapObject()) { PrintF("\n"); HeapObject::cast(args[0])->map()->Print(); } #else // ShortPrint is available in release mode. Print is not. args[0]->ShortPrint(); #endif PrintF("\n"); Flush(); return args[0]; // return TOS } RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugTrace) { ASSERT(args.length() == 0); NoHandleAllocation ha; isolate->PrintStack(); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DateCurrentTime) { NoHandleAllocation ha; ASSERT(args.length() == 0); // According to ECMA-262, section 15.9.1, page 117, the precision of // the number in a Date object representing a particular instant in // time is milliseconds. Therefore, we floor the result of getting // the OS time. double millis = floor(OS::TimeCurrentMillis()); return isolate->heap()->NumberFromDouble(millis); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DateParseString) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(String, str, 0); FlattenString(str); CONVERT_ARG_CHECKED(JSArray, output, 1); RUNTIME_ASSERT(output->HasFastElements()); AssertNoAllocation no_allocation; FixedArray* output_array = FixedArray::cast(output->elements()); RUNTIME_ASSERT(output_array->length() >= DateParser::OUTPUT_SIZE); bool result; if (str->IsAsciiRepresentation()) { result = DateParser::Parse(str->ToAsciiVector(), output_array, isolate->unicode_cache()); } else { ASSERT(str->IsTwoByteRepresentation()); result = DateParser::Parse(str->ToUC16Vector(), output_array, isolate->unicode_cache()); } if (result) { return *output; } else { return isolate->heap()->null_value(); } } RUNTIME_FUNCTION(MaybeObject*, Runtime_DateLocalTimezone) { NoHandleAllocation ha; ASSERT(args.length() == 1); CONVERT_DOUBLE_CHECKED(x, args[0]); const char* zone = OS::LocalTimezone(x); return isolate->heap()->AllocateStringFromUtf8(CStrVector(zone)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DateLocalTimeOffset) { NoHandleAllocation ha; ASSERT(args.length() == 0); return isolate->heap()->NumberFromDouble(OS::LocalTimeOffset()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DateDaylightSavingsOffset) { NoHandleAllocation ha; ASSERT(args.length() == 1); CONVERT_DOUBLE_CHECKED(x, args[0]); return isolate->heap()->NumberFromDouble(OS::DaylightSavingsOffset(x)); } RUNTIME_FUNCTION(MaybeObject*, Runtime_GlobalReceiver) { ASSERT(args.length() == 1); Object* global = args[0]; if (!global->IsJSGlobalObject()) return isolate->heap()->null_value(); return JSGlobalObject::cast(global)->global_receiver(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_ParseJson) { HandleScope scope(isolate); ASSERT_EQ(1, args.length()); CONVERT_ARG_CHECKED(String, source, 0); Handle<Object> result = JsonParser::Parse(source); if (result.is_null()) { // Syntax error or stack overflow in scanner. ASSERT(isolate->has_pending_exception()); return Failure::Exception(); } return *result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_CompileString) { HandleScope scope(isolate); ASSERT_EQ(1, args.length()); CONVERT_ARG_CHECKED(String, source, 0); // Compile source string in the global context. Handle<Context> context(isolate->context()->global_context()); Handle<SharedFunctionInfo> shared = Compiler::CompileEval(source, context, true, kNonStrictMode); if (shared.is_null()) return Failure::Exception(); Handle<JSFunction> fun = isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context, NOT_TENURED); return *fun; } static ObjectPair CompileGlobalEval(Isolate* isolate, Handle<String> source, Handle<Object> receiver, StrictModeFlag strict_mode) { // Deal with a normal eval call with a string argument. Compile it // and return the compiled function bound in the local context. Handle<SharedFunctionInfo> shared = Compiler::CompileEval( source, Handle<Context>(isolate->context()), isolate->context()->IsGlobalContext(), strict_mode); if (shared.is_null()) return MakePair(Failure::Exception(), NULL); Handle<JSFunction> compiled = isolate->factory()->NewFunctionFromSharedFunctionInfo( shared, Handle<Context>(isolate->context()), NOT_TENURED); return MakePair(*compiled, *receiver); } RUNTIME_FUNCTION(ObjectPair, Runtime_ResolvePossiblyDirectEval) { ASSERT(args.length() == 4); HandleScope scope(isolate); Handle<Object> callee = args.at<Object>(0); Handle<Object> receiver; // Will be overwritten. // Compute the calling context. Handle<Context> context = Handle<Context>(isolate->context(), isolate); #ifdef DEBUG // Make sure Isolate::context() agrees with the old code that traversed // the stack frames to compute the context. StackFrameLocator locator; JavaScriptFrame* frame = locator.FindJavaScriptFrame(0); ASSERT(Context::cast(frame->context()) == *context); #endif // Find where the 'eval' symbol is bound. It is unaliased only if // it is bound in the global context. int index = -1; PropertyAttributes attributes = ABSENT; while (true) { receiver = context->Lookup(isolate->factory()->eval_symbol(), FOLLOW_PROTOTYPE_CHAIN, &index, &attributes); // Stop search when eval is found or when the global context is // reached. if (attributes != ABSENT || context->IsGlobalContext()) break; if (context->is_function_context()) { context = Handle<Context>(Context::cast(context->closure()->context()), isolate); } else { context = Handle<Context>(context->previous(), isolate); } } // If eval could not be resolved, it has been deleted and we need to // throw a reference error. if (attributes == ABSENT) { Handle<Object> name = isolate->factory()->eval_symbol(); Handle<Object> reference_error = isolate->factory()->NewReferenceError("not_defined", HandleVector(&name, 1)); return MakePair(isolate->Throw(*reference_error), NULL); } if (!context->IsGlobalContext()) { // 'eval' is not bound in the global context. Just call the function // with the given arguments. This is not necessarily the global eval. if (receiver->IsContext()) { context = Handle<Context>::cast(receiver); receiver = Handle<Object>(context->get(index), isolate); } else if (receiver->IsJSContextExtensionObject()) { receiver = Handle<JSObject>( isolate->context()->global()->global_receiver(), isolate); } return MakePair(*callee, *receiver); } // 'eval' is bound in the global context, but it may have been overwritten. // Compare it to the builtin 'GlobalEval' function to make sure. if (*callee != isolate->global_context()->global_eval_fun() || !args[1]->IsString()) { return MakePair(*callee, isolate->context()->global()->global_receiver()); } ASSERT(args[3]->IsSmi()); return CompileGlobalEval(isolate, args.at<String>(1), args.at<Object>(2), static_cast<StrictModeFlag>( Smi::cast(args[3])->value())); } RUNTIME_FUNCTION(ObjectPair, Runtime_ResolvePossiblyDirectEvalNoLookup) { ASSERT(args.length() == 4); HandleScope scope(isolate); Handle<Object> callee = args.at<Object>(0); // 'eval' is bound in the global context, but it may have been overwritten. // Compare it to the builtin 'GlobalEval' function to make sure. if (*callee != isolate->global_context()->global_eval_fun() || !args[1]->IsString()) { return MakePair(*callee, isolate->context()->global()->global_receiver()); } ASSERT(args[3]->IsSmi()); return CompileGlobalEval(isolate, args.at<String>(1), args.at<Object>(2), static_cast<StrictModeFlag>( Smi::cast(args[3])->value())); } RUNTIME_FUNCTION(MaybeObject*, Runtime_SetNewFunctionAttributes) { // This utility adjusts the property attributes for newly created Function // object ("new Function(...)") by changing the map. // All it does is changing the prototype property to enumerable // as specified in ECMA262, 15.3.5.2. HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, func, 0); Handle<Map> map = func->shared()->strict_mode() ? isolate->strict_mode_function_instance_map() : isolate->function_instance_map(); ASSERT(func->map()->instance_type() == map->instance_type()); ASSERT(func->map()->instance_size() == map->instance_size()); func->set_map(*map); return *func; } RUNTIME_FUNCTION(MaybeObject*, Runtime_AllocateInNewSpace) { // Allocate a block of memory in NewSpace (filled with a filler). // Use as fallback for allocation in generated code when NewSpace // is full. ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(Smi, size_smi, 0); int size = size_smi->value(); RUNTIME_ASSERT(IsAligned(size, kPointerSize)); RUNTIME_ASSERT(size > 0); Heap* heap = isolate->heap(); const int kMinFreeNewSpaceAfterGC = heap->InitialSemiSpaceSize() * 3/4; RUNTIME_ASSERT(size <= kMinFreeNewSpaceAfterGC); Object* allocation; { MaybeObject* maybe_allocation = heap->new_space()->AllocateRaw(size); if (maybe_allocation->ToObject(&allocation)) { heap->CreateFillerObjectAt(HeapObject::cast(allocation)->address(), size); } return maybe_allocation; } } // Push an object unto an array of objects if it is not already in the // array. Returns true if the element was pushed on the stack and // false otherwise. RUNTIME_FUNCTION(MaybeObject*, Runtime_PushIfAbsent) { ASSERT(args.length() == 2); CONVERT_CHECKED(JSArray, array, args[0]); CONVERT_CHECKED(JSObject, element, args[1]); RUNTIME_ASSERT(array->HasFastElements()); int length = Smi::cast(array->length())->value(); FixedArray* elements = FixedArray::cast(array->elements()); for (int i = 0; i < length; i++) { if (elements->get(i) == element) return isolate->heap()->false_value(); } Object* obj; // Strict not needed. Used for cycle detection in Array join implementation. { MaybeObject* maybe_obj = array->SetFastElement(length, element, kNonStrictMode); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } return isolate->heap()->true_value(); } /** * A simple visitor visits every element of Array's. * The backend storage can be a fixed array for fast elements case, * or a dictionary for sparse array. Since Dictionary is a subtype * of FixedArray, the class can be used by both fast and slow cases. * The second parameter of the constructor, fast_elements, specifies * whether the storage is a FixedArray or Dictionary. * * An index limit is used to deal with the situation that a result array * length overflows 32-bit non-negative integer. */ class ArrayConcatVisitor { public: ArrayConcatVisitor(Isolate* isolate, Handle<FixedArray> storage, bool fast_elements) : isolate_(isolate), storage_(Handle<FixedArray>::cast( isolate->global_handles()->Create(*storage))), index_offset_(0u), fast_elements_(fast_elements) { } ~ArrayConcatVisitor() { clear_storage(); } void visit(uint32_t i, Handle<Object> elm) { if (i >= JSObject::kMaxElementCount - index_offset_) return; uint32_t index = index_offset_ + i; if (fast_elements_) { if (index < static_cast<uint32_t>(storage_->length())) { storage_->set(index, *elm); return; } // Our initial estimate of length was foiled, possibly by // getters on the arrays increasing the length of later arrays // during iteration. // This shouldn't happen in anything but pathological cases. SetDictionaryMode(index); // Fall-through to dictionary mode. } ASSERT(!fast_elements_); Handle<NumberDictionary> dict(NumberDictionary::cast(*storage_)); Handle<NumberDictionary> result = isolate_->factory()->DictionaryAtNumberPut(dict, index, elm); if (!result.is_identical_to(dict)) { // Dictionary needed to grow. clear_storage(); set_storage(*result); } } void increase_index_offset(uint32_t delta) { if (JSObject::kMaxElementCount - index_offset_ < delta) { index_offset_ = JSObject::kMaxElementCount; } else { index_offset_ += delta; } } Handle<JSArray> ToArray() { Handle<JSArray> array = isolate_->factory()->NewJSArray(0); Handle<Object> length = isolate_->factory()->NewNumber(static_cast<double>(index_offset_)); Handle<Map> map; if (fast_elements_) { map = isolate_->factory()->GetFastElementsMap(Handle<Map>(array->map())); } else { map = isolate_->factory()->GetSlowElementsMap(Handle<Map>(array->map())); } array->set_map(*map); array->set_length(*length); array->set_elements(*storage_); return array; } private: // Convert storage to dictionary mode. void SetDictionaryMode(uint32_t index) { ASSERT(fast_elements_); Handle<FixedArray> current_storage(*storage_); Handle<NumberDictionary> slow_storage( isolate_->factory()->NewNumberDictionary(current_storage->length())); uint32_t current_length = static_cast<uint32_t>(current_storage->length()); for (uint32_t i = 0; i < current_length; i++) { HandleScope loop_scope; Handle<Object> element(current_storage->get(i)); if (!element->IsTheHole()) { Handle<NumberDictionary> new_storage = isolate_->factory()->DictionaryAtNumberPut(slow_storage, i, element); if (!new_storage.is_identical_to(slow_storage)) { slow_storage = loop_scope.CloseAndEscape(new_storage); } } } clear_storage(); set_storage(*slow_storage); fast_elements_ = false; } inline void clear_storage() { isolate_->global_handles()->Destroy( Handle<Object>::cast(storage_).location()); } inline void set_storage(FixedArray* storage) { storage_ = Handle<FixedArray>::cast( isolate_->global_handles()->Create(storage)); } Isolate* isolate_; Handle<FixedArray> storage_; // Always a global handle. // Index after last seen index. Always less than or equal to // JSObject::kMaxElementCount. uint32_t index_offset_; bool fast_elements_; }; static uint32_t EstimateElementCount(Handle<JSArray> array) { uint32_t length = static_cast<uint32_t>(array->length()->Number()); int element_count = 0; switch (array->GetElementsKind()) { case JSObject::FAST_ELEMENTS: { // Fast elements can't have lengths that are not representable by // a 32-bit signed integer. ASSERT(static_cast<int32_t>(FixedArray::kMaxLength) >= 0); int fast_length = static_cast<int>(length); Handle<FixedArray> elements(FixedArray::cast(array->elements())); for (int i = 0; i < fast_length; i++) { if (!elements->get(i)->IsTheHole()) element_count++; } break; } case JSObject::DICTIONARY_ELEMENTS: { Handle<NumberDictionary> dictionary( NumberDictionary::cast(array->elements())); int capacity = dictionary->Capacity(); for (int i = 0; i < capacity; i++) { Handle<Object> key(dictionary->KeyAt(i)); if (dictionary->IsKey(*key)) { element_count++; } } break; } default: // External arrays are always dense. return length; } // As an estimate, we assume that the prototype doesn't contain any // inherited elements. return element_count; } template<class ExternalArrayClass, class ElementType> static void IterateExternalArrayElements(Isolate* isolate, Handle<JSObject> receiver, bool elements_are_ints, bool elements_are_guaranteed_smis, ArrayConcatVisitor* visitor) { Handle<ExternalArrayClass> array( ExternalArrayClass::cast(receiver->elements())); uint32_t len = static_cast<uint32_t>(array->length()); ASSERT(visitor != NULL); if (elements_are_ints) { if (elements_are_guaranteed_smis) { for (uint32_t j = 0; j < len; j++) { HandleScope loop_scope; Handle<Smi> e(Smi::FromInt(static_cast<int>(array->get(j)))); visitor->visit(j, e); } } else { for (uint32_t j = 0; j < len; j++) { HandleScope loop_scope; int64_t val = static_cast<int64_t>(array->get(j)); if (Smi::IsValid(static_cast<intptr_t>(val))) { Handle<Smi> e(Smi::FromInt(static_cast<int>(val))); visitor->visit(j, e); } else { Handle<Object> e = isolate->factory()->NewNumber(static_cast<ElementType>(val)); visitor->visit(j, e); } } } } else { for (uint32_t j = 0; j < len; j++) { HandleScope loop_scope(isolate); Handle<Object> e = isolate->factory()->NewNumber(array->get(j)); visitor->visit(j, e); } } } // Used for sorting indices in a List<uint32_t>. static int compareUInt32(const uint32_t* ap, const uint32_t* bp) { uint32_t a = *ap; uint32_t b = *bp; return (a == b) ? 0 : (a < b) ? -1 : 1; } static void CollectElementIndices(Handle<JSObject> object, uint32_t range, List<uint32_t>* indices) { JSObject::ElementsKind kind = object->GetElementsKind(); switch (kind) { case JSObject::FAST_ELEMENTS: { Handle<FixedArray> elements(FixedArray::cast(object->elements())); uint32_t length = static_cast<uint32_t>(elements->length()); if (range < length) length = range; for (uint32_t i = 0; i < length; i++) { if (!elements->get(i)->IsTheHole()) { indices->Add(i); } } break; } case JSObject::DICTIONARY_ELEMENTS: { Handle<NumberDictionary> dict(NumberDictionary::cast(object->elements())); uint32_t capacity = dict->Capacity(); for (uint32_t j = 0; j < capacity; j++) { HandleScope loop_scope; Handle<Object> k(dict->KeyAt(j)); if (dict->IsKey(*k)) { ASSERT(k->IsNumber()); uint32_t index = static_cast<uint32_t>(k->Number()); if (index < range) { indices->Add(index); } } } break; } default: { int dense_elements_length; switch (kind) { case JSObject::EXTERNAL_PIXEL_ELEMENTS: { dense_elements_length = ExternalPixelArray::cast(object->elements())->length(); break; } case JSObject::EXTERNAL_BYTE_ELEMENTS: { dense_elements_length = ExternalByteArray::cast(object->elements())->length(); break; } case JSObject::EXTERNAL_UNSIGNED_BYTE_ELEMENTS: { dense_elements_length = ExternalUnsignedByteArray::cast(object->elements())->length(); break; } case JSObject::EXTERNAL_SHORT_ELEMENTS: { dense_elements_length = ExternalShortArray::cast(object->elements())->length(); break; } case JSObject::EXTERNAL_UNSIGNED_SHORT_ELEMENTS: { dense_elements_length = ExternalUnsignedShortArray::cast(object->elements())->length(); break; } case JSObject::EXTERNAL_INT_ELEMENTS: { dense_elements_length = ExternalIntArray::cast(object->elements())->length(); break; } case JSObject::EXTERNAL_UNSIGNED_INT_ELEMENTS: { dense_elements_length = ExternalUnsignedIntArray::cast(object->elements())->length(); break; } case JSObject::EXTERNAL_FLOAT_ELEMENTS: { dense_elements_length = ExternalFloatArray::cast(object->elements())->length(); break; } default: UNREACHABLE(); dense_elements_length = 0; break; } uint32_t length = static_cast<uint32_t>(dense_elements_length); if (range <= length) { length = range; // We will add all indices, so we might as well clear it first // and avoid duplicates. indices->Clear(); } for (uint32_t i = 0; i < length; i++) { indices->Add(i); } if (length == range) return; // All indices accounted for already. break; } } Handle<Object> prototype(object->GetPrototype()); if (prototype->IsJSObject()) { // The prototype will usually have no inherited element indices, // but we have to check. CollectElementIndices(Handle<JSObject>::cast(prototype), range, indices); } } /** * A helper function that visits elements of a JSArray in numerical * order. * * The visitor argument called for each existing element in the array * with the element index and the element's value. * Afterwards it increments the base-index of the visitor by the array * length. * Returns false if any access threw an exception, otherwise true. */ static bool IterateElements(Isolate* isolate, Handle<JSArray> receiver, ArrayConcatVisitor* visitor) { uint32_t length = static_cast<uint32_t>(receiver->length()->Number()); switch (receiver->GetElementsKind()) { case JSObject::FAST_ELEMENTS: { // Run through the elements FixedArray and use HasElement and GetElement // to check the prototype for missing elements. Handle<FixedArray> elements(FixedArray::cast(receiver->elements())); int fast_length = static_cast<int>(length); ASSERT(fast_length <= elements->length()); for (int j = 0; j < fast_length; j++) { HandleScope loop_scope(isolate); Handle<Object> element_value(elements->get(j), isolate); if (!element_value->IsTheHole()) { visitor->visit(j, element_value); } else if (receiver->HasElement(j)) { // Call GetElement on receiver, not its prototype, or getters won't // have the correct receiver. element_value = GetElement(receiver, j); if (element_value.is_null()) return false; visitor->visit(j, element_value); } } break; } case JSObject::DICTIONARY_ELEMENTS: { Handle<NumberDictionary> dict(receiver->element_dictionary()); List<uint32_t> indices(dict->Capacity() / 2); // Collect all indices in the object and the prototypes less // than length. This might introduce duplicates in the indices list. CollectElementIndices(receiver, length, &indices); indices.Sort(&compareUInt32); int j = 0; int n = indices.length(); while (j < n) { HandleScope loop_scope; uint32_t index = indices[j]; Handle<Object> element = GetElement(receiver, index); if (element.is_null()) return false; visitor->visit(index, element); // Skip to next different index (i.e., omit duplicates). do { j++; } while (j < n && indices[j] == index); } break; } case JSObject::EXTERNAL_PIXEL_ELEMENTS: { Handle<ExternalPixelArray> pixels(ExternalPixelArray::cast( receiver->elements())); for (uint32_t j = 0; j < length; j++) { Handle<Smi> e(Smi::FromInt(pixels->get(j))); visitor->visit(j, e); } break; } case JSObject::EXTERNAL_BYTE_ELEMENTS: { IterateExternalArrayElements<ExternalByteArray, int8_t>( isolate, receiver, true, true, visitor); break; } case JSObject::EXTERNAL_UNSIGNED_BYTE_ELEMENTS: { IterateExternalArrayElements<ExternalUnsignedByteArray, uint8_t>( isolate, receiver, true, true, visitor); break; } case JSObject::EXTERNAL_SHORT_ELEMENTS: { IterateExternalArrayElements<ExternalShortArray, int16_t>( isolate, receiver, true, true, visitor); break; } case JSObject::EXTERNAL_UNSIGNED_SHORT_ELEMENTS: { IterateExternalArrayElements<ExternalUnsignedShortArray, uint16_t>( isolate, receiver, true, true, visitor); break; } case JSObject::EXTERNAL_INT_ELEMENTS: { IterateExternalArrayElements<ExternalIntArray, int32_t>( isolate, receiver, true, false, visitor); break; } case JSObject::EXTERNAL_UNSIGNED_INT_ELEMENTS: { IterateExternalArrayElements<ExternalUnsignedIntArray, uint32_t>( isolate, receiver, true, false, visitor); break; } case JSObject::EXTERNAL_FLOAT_ELEMENTS: { IterateExternalArrayElements<ExternalFloatArray, float>( isolate, receiver, false, false, visitor); break; } default: UNREACHABLE(); break; } visitor->increase_index_offset(length); return true; } /** * Array::concat implementation. * See ECMAScript 262, 15.4.4.4. * TODO(581): Fix non-compliance for very large concatenations and update to * following the ECMAScript 5 specification. */ RUNTIME_FUNCTION(MaybeObject*, Runtime_ArrayConcat) { ASSERT(args.length() == 1); HandleScope handle_scope(isolate); CONVERT_ARG_CHECKED(JSArray, arguments, 0); int argument_count = static_cast<int>(arguments->length()->Number()); RUNTIME_ASSERT(arguments->HasFastElements()); Handle<FixedArray> elements(FixedArray::cast(arguments->elements())); // Pass 1: estimate the length and number of elements of the result. // The actual length can be larger if any of the arguments have getters // that mutate other arguments (but will otherwise be precise). // The number of elements is precise if there are no inherited elements. uint32_t estimate_result_length = 0; uint32_t estimate_nof_elements = 0; { for (int i = 0; i < argument_count; i++) { HandleScope loop_scope; Handle<Object> obj(elements->get(i)); uint32_t length_estimate; uint32_t element_estimate; if (obj->IsJSArray()) { Handle<JSArray> array(Handle<JSArray>::cast(obj)); length_estimate = static_cast<uint32_t>(array->length()->Number()); element_estimate = EstimateElementCount(array); } else { length_estimate = 1; element_estimate = 1; } // Avoid overflows by capping at kMaxElementCount. if (JSObject::kMaxElementCount - estimate_result_length < length_estimate) { estimate_result_length = JSObject::kMaxElementCount; } else { estimate_result_length += length_estimate; } if (JSObject::kMaxElementCount - estimate_nof_elements < element_estimate) { estimate_nof_elements = JSObject::kMaxElementCount; } else { estimate_nof_elements += element_estimate; } } } // If estimated number of elements is more than half of length, a // fixed array (fast case) is more time and space-efficient than a // dictionary. bool fast_case = (estimate_nof_elements * 2) >= estimate_result_length; Handle<FixedArray> storage; if (fast_case) { // The backing storage array must have non-existing elements to // preserve holes across concat operations. storage = isolate->factory()->NewFixedArrayWithHoles( estimate_result_length); } else { // TODO(126): move 25% pre-allocation logic into Dictionary::Allocate uint32_t at_least_space_for = estimate_nof_elements + (estimate_nof_elements >> 2); storage = Handle<FixedArray>::cast( isolate->factory()->NewNumberDictionary(at_least_space_for)); } ArrayConcatVisitor visitor(isolate, storage, fast_case); for (int i = 0; i < argument_count; i++) { Handle<Object> obj(elements->get(i)); if (obj->IsJSArray()) { Handle<JSArray> array = Handle<JSArray>::cast(obj); if (!IterateElements(isolate, array, &visitor)) { return Failure::Exception(); } } else { visitor.visit(0, obj); visitor.increase_index_offset(1); } } return *visitor.ToArray(); } // This will not allocate (flatten the string), but it may run // very slowly for very deeply nested ConsStrings. For debugging use only. RUNTIME_FUNCTION(MaybeObject*, Runtime_GlobalPrint) { NoHandleAllocation ha; ASSERT(args.length() == 1); CONVERT_CHECKED(String, string, args[0]); StringInputBuffer buffer(string); while (buffer.has_more()) { uint16_t character = buffer.GetNext(); PrintF("%c", character); } return string; } // Moves all own elements of an object, that are below a limit, to positions // starting at zero. All undefined values are placed after non-undefined values, // and are followed by non-existing element. Does not change the length // property. // Returns the number of non-undefined elements collected. RUNTIME_FUNCTION(MaybeObject*, Runtime_RemoveArrayHoles) { ASSERT(args.length() == 2); CONVERT_CHECKED(JSObject, object, args[0]); CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]); return object->PrepareElementsForSort(limit); } // Move contents of argument 0 (an array) to argument 1 (an array) RUNTIME_FUNCTION(MaybeObject*, Runtime_MoveArrayContents) { ASSERT(args.length() == 2); CONVERT_CHECKED(JSArray, from, args[0]); CONVERT_CHECKED(JSArray, to, args[1]); HeapObject* new_elements = from->elements(); MaybeObject* maybe_new_map; if (new_elements->map() == isolate->heap()->fixed_array_map() || new_elements->map() == isolate->heap()->fixed_cow_array_map()) { maybe_new_map = to->map()->GetFastElementsMap(); } else { maybe_new_map = to->map()->GetSlowElementsMap(); } Object* new_map; if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; to->set_map(Map::cast(new_map)); to->set_elements(new_elements); to->set_length(from->length()); Object* obj; { MaybeObject* maybe_obj = from->ResetElements(); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } from->set_length(Smi::FromInt(0)); return to; } // How many elements does this object/array have? RUNTIME_FUNCTION(MaybeObject*, Runtime_EstimateNumberOfElements) { ASSERT(args.length() == 1); CONVERT_CHECKED(JSObject, object, args[0]); HeapObject* elements = object->elements(); if (elements->IsDictionary()) { return Smi::FromInt(NumberDictionary::cast(elements)->NumberOfElements()); } else if (object->IsJSArray()) { return JSArray::cast(object)->length(); } else { return Smi::FromInt(FixedArray::cast(elements)->length()); } } RUNTIME_FUNCTION(MaybeObject*, Runtime_SwapElements) { HandleScope handle_scope(isolate); ASSERT_EQ(3, args.length()); CONVERT_ARG_CHECKED(JSObject, object, 0); Handle<Object> key1 = args.at<Object>(1); Handle<Object> key2 = args.at<Object>(2); uint32_t index1, index2; if (!key1->ToArrayIndex(&index1) || !key2->ToArrayIndex(&index2)) { return isolate->ThrowIllegalOperation(); } Handle<JSObject> jsobject = Handle<JSObject>::cast(object); Handle<Object> tmp1 = GetElement(jsobject, index1); RETURN_IF_EMPTY_HANDLE(isolate, tmp1); Handle<Object> tmp2 = GetElement(jsobject, index2); RETURN_IF_EMPTY_HANDLE(isolate, tmp2); RETURN_IF_EMPTY_HANDLE(isolate, SetElement(jsobject, index1, tmp2, kStrictMode)); RETURN_IF_EMPTY_HANDLE(isolate, SetElement(jsobject, index2, tmp1, kStrictMode)); return isolate->heap()->undefined_value(); } // Returns an array that tells you where in the [0, length) interval an array // might have elements. Can either return keys (positive integers) or // intervals (pair of a negative integer (-start-1) followed by a // positive (length)) or undefined values. // Intervals can span over some keys that are not in the object. RUNTIME_FUNCTION(MaybeObject*, Runtime_GetArrayKeys) { ASSERT(args.length() == 2); HandleScope scope(isolate); CONVERT_ARG_CHECKED(JSObject, array, 0); CONVERT_NUMBER_CHECKED(uint32_t, length, Uint32, args[1]); if (array->elements()->IsDictionary()) { // Create an array and get all the keys into it, then remove all the // keys that are not integers in the range 0 to length-1. Handle<FixedArray> keys = GetKeysInFixedArrayFor(array, INCLUDE_PROTOS); int keys_length = keys->length(); for (int i = 0; i < keys_length; i++) { Object* key = keys->get(i); uint32_t index = 0; if (!key->ToArrayIndex(&index) || index >= length) { // Zap invalid keys. keys->set_undefined(i); } } return *isolate->factory()->NewJSArrayWithElements(keys); } else { ASSERT(array->HasFastElements()); Handle<FixedArray> single_interval = isolate->factory()->NewFixedArray(2); // -1 means start of array. single_interval->set(0, Smi::FromInt(-1)); uint32_t actual_length = static_cast<uint32_t>(FixedArray::cast(array->elements())->length()); uint32_t min_length = actual_length < length ? actual_length : length; Handle<Object> length_object = isolate->factory()->NewNumber(static_cast<double>(min_length)); single_interval->set(1, *length_object); return *isolate->factory()->NewJSArrayWithElements(single_interval); } } // DefineAccessor takes an optional final argument which is the // property attributes (eg, DONT_ENUM, DONT_DELETE). IMPORTANT: due // to the way accessors are implemented, it is set for both the getter // and setter on the first call to DefineAccessor and ignored on // subsequent calls. RUNTIME_FUNCTION(MaybeObject*, Runtime_DefineAccessor) { RUNTIME_ASSERT(args.length() == 4 || args.length() == 5); // Compute attributes. PropertyAttributes attributes = NONE; if (args.length() == 5) { CONVERT_CHECKED(Smi, attrs, args[4]); int value = attrs->value(); // Only attribute bits should be set. ASSERT((value & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0); attributes = static_cast<PropertyAttributes>(value); } CONVERT_CHECKED(JSObject, obj, args[0]); CONVERT_CHECKED(String, name, args[1]); CONVERT_CHECKED(Smi, flag, args[2]); CONVERT_CHECKED(JSFunction, fun, args[3]); return obj->DefineAccessor(name, flag->value() == 0, fun, attributes); } RUNTIME_FUNCTION(MaybeObject*, Runtime_LookupAccessor) { ASSERT(args.length() == 3); CONVERT_CHECKED(JSObject, obj, args[0]); CONVERT_CHECKED(String, name, args[1]); CONVERT_CHECKED(Smi, flag, args[2]); return obj->LookupAccessor(name, flag->value() == 0); } #ifdef ENABLE_DEBUGGER_SUPPORT RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugBreak) { ASSERT(args.length() == 0); return Execution::DebugBreakHelper(); } // Helper functions for wrapping and unwrapping stack frame ids. static Smi* WrapFrameId(StackFrame::Id id) { ASSERT(IsAligned(OffsetFrom(id), static_cast<intptr_t>(4))); return Smi::FromInt(id >> 2); } static StackFrame::Id UnwrapFrameId(Smi* wrapped) { return static_cast<StackFrame::Id>(wrapped->value() << 2); } // Adds a JavaScript function as a debug event listener. // args[0]: debug event listener function to set or null or undefined for // clearing the event listener function // args[1]: object supplied during callback RUNTIME_FUNCTION(MaybeObject*, Runtime_SetDebugEventListener) { ASSERT(args.length() == 2); RUNTIME_ASSERT(args[0]->IsJSFunction() || args[0]->IsUndefined() || args[0]->IsNull()); Handle<Object> callback = args.at<Object>(0); Handle<Object> data = args.at<Object>(1); isolate->debugger()->SetEventListener(callback, data); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Break) { ASSERT(args.length() == 0); isolate->stack_guard()->DebugBreak(); return isolate->heap()->undefined_value(); } static MaybeObject* DebugLookupResultValue(Heap* heap, Object* receiver, String* name, LookupResult* result, bool* caught_exception) { Object* value; switch (result->type()) { case NORMAL: value = result->holder()->GetNormalizedProperty(result); if (value->IsTheHole()) { return heap->undefined_value(); } return value; case FIELD: value = JSObject::cast( result->holder())->FastPropertyAt(result->GetFieldIndex()); if (value->IsTheHole()) { return heap->undefined_value(); } return value; case CONSTANT_FUNCTION: return result->GetConstantFunction(); case CALLBACKS: { Object* structure = result->GetCallbackObject(); if (structure->IsProxy() || structure->IsAccessorInfo()) { MaybeObject* maybe_value = receiver->GetPropertyWithCallback( receiver, structure, name, result->holder()); if (!maybe_value->ToObject(&value)) { if (maybe_value->IsRetryAfterGC()) return maybe_value; ASSERT(maybe_value->IsException()); maybe_value = heap->isolate()->pending_exception(); heap->isolate()->clear_pending_exception(); if (caught_exception != NULL) { *caught_exception = true; } return maybe_value; } return value; } else { return heap->undefined_value(); } } case INTERCEPTOR: case MAP_TRANSITION: case EXTERNAL_ARRAY_TRANSITION: case CONSTANT_TRANSITION: case NULL_DESCRIPTOR: return heap->undefined_value(); default: UNREACHABLE(); } UNREACHABLE(); return heap->undefined_value(); } // Get debugger related details for an object property. // args[0]: object holding property // args[1]: name of the property // // The array returned contains the following information: // 0: Property value // 1: Property details // 2: Property value is exception // 3: Getter function if defined // 4: Setter function if defined // Items 2-4 are only filled if the property has either a getter or a setter // defined through __defineGetter__ and/or __defineSetter__. RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugGetPropertyDetails) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(JSObject, obj, 0); CONVERT_ARG_CHECKED(String, name, 1); // Make sure to set the current context to the context before the debugger was // entered (if the debugger is entered). The reason for switching context here // is that for some property lookups (accessors and interceptors) callbacks // into the embedding application can occour, and the embedding application // could have the assumption that its own global context is the current // context and not some internal debugger context. SaveContext save(isolate); if (isolate->debug()->InDebugger()) { isolate->set_context(*isolate->debug()->debugger_entry()->GetContext()); } // Skip the global proxy as it has no properties and always delegates to the // real global object. if (obj->IsJSGlobalProxy()) { obj = Handle<JSObject>(JSObject::cast(obj->GetPrototype())); } // Check if the name is trivially convertible to an index and get the element // if so. uint32_t index; if (name->AsArrayIndex(&index)) { Handle<FixedArray> details = isolate->factory()->NewFixedArray(2); Object* element_or_char; { MaybeObject* maybe_element_or_char = Runtime::GetElementOrCharAt(isolate, obj, index); if (!maybe_element_or_char->ToObject(&element_or_char)) { return maybe_element_or_char; } } details->set(0, element_or_char); details->set(1, PropertyDetails(NONE, NORMAL).AsSmi()); return *isolate->factory()->NewJSArrayWithElements(details); } // Find the number of objects making up this. int length = LocalPrototypeChainLength(*obj); // Try local lookup on each of the objects. Handle<JSObject> jsproto = obj; for (int i = 0; i < length; i++) { LookupResult result; jsproto->LocalLookup(*name, &result); if (result.IsProperty()) { // LookupResult is not GC safe as it holds raw object pointers. // GC can happen later in this code so put the required fields into // local variables using handles when required for later use. PropertyType result_type = result.type(); Handle<Object> result_callback_obj; if (result_type == CALLBACKS) { result_callback_obj = Handle<Object>(result.GetCallbackObject(), isolate); } Smi* property_details = result.GetPropertyDetails().AsSmi(); // DebugLookupResultValue can cause GC so details from LookupResult needs // to be copied to handles before this. bool caught_exception = false; Object* raw_value; { MaybeObject* maybe_raw_value = DebugLookupResultValue(isolate->heap(), *obj, *name, &result, &caught_exception); if (!maybe_raw_value->ToObject(&raw_value)) return maybe_raw_value; } Handle<Object> value(raw_value, isolate); // If the callback object is a fixed array then it contains JavaScript // getter and/or setter. bool hasJavaScriptAccessors = result_type == CALLBACKS && result_callback_obj->IsFixedArray(); Handle<FixedArray> details = isolate->factory()->NewFixedArray(hasJavaScriptAccessors ? 5 : 2); details->set(0, *value); details->set(1, property_details); if (hasJavaScriptAccessors) { details->set(2, caught_exception ? isolate->heap()->true_value() : isolate->heap()->false_value()); details->set(3, FixedArray::cast(*result_callback_obj)->get(0)); details->set(4, FixedArray::cast(*result_callback_obj)->get(1)); } return *isolate->factory()->NewJSArrayWithElements(details); } if (i < length - 1) { jsproto = Handle<JSObject>(JSObject::cast(jsproto->GetPrototype())); } } return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugGetProperty) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(JSObject, obj, 0); CONVERT_ARG_CHECKED(String, name, 1); LookupResult result; obj->Lookup(*name, &result); if (result.IsProperty()) { return DebugLookupResultValue(isolate->heap(), *obj, *name, &result, NULL); } return isolate->heap()->undefined_value(); } // Return the property type calculated from the property details. // args[0]: smi with property details. RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugPropertyTypeFromDetails) { ASSERT(args.length() == 1); CONVERT_CHECKED(Smi, details, args[0]); PropertyType type = PropertyDetails(details).type(); return Smi::FromInt(static_cast<int>(type)); } // Return the property attribute calculated from the property details. // args[0]: smi with property details. RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugPropertyAttributesFromDetails) { ASSERT(args.length() == 1); CONVERT_CHECKED(Smi, details, args[0]); PropertyAttributes attributes = PropertyDetails(details).attributes(); return Smi::FromInt(static_cast<int>(attributes)); } // Return the property insertion index calculated from the property details. // args[0]: smi with property details. RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugPropertyIndexFromDetails) { ASSERT(args.length() == 1); CONVERT_CHECKED(Smi, details, args[0]); int index = PropertyDetails(details).index(); return Smi::FromInt(index); } // Return property value from named interceptor. // args[0]: object // args[1]: property name RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugNamedInterceptorPropertyValue) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(JSObject, obj, 0); RUNTIME_ASSERT(obj->HasNamedInterceptor()); CONVERT_ARG_CHECKED(String, name, 1); PropertyAttributes attributes; return obj->GetPropertyWithInterceptor(*obj, *name, &attributes); } // Return element value from indexed interceptor. // args[0]: object // args[1]: index RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugIndexedInterceptorElementValue) { HandleScope scope(isolate); ASSERT(args.length() == 2); CONVERT_ARG_CHECKED(JSObject, obj, 0); RUNTIME_ASSERT(obj->HasIndexedInterceptor()); CONVERT_NUMBER_CHECKED(uint32_t, index, Uint32, args[1]); return obj->GetElementWithInterceptor(*obj, index); } RUNTIME_FUNCTION(MaybeObject*, Runtime_CheckExecutionState) { ASSERT(args.length() >= 1); CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]); // Check that the break id is valid. if (isolate->debug()->break_id() == 0 || break_id != isolate->debug()->break_id()) { return isolate->Throw( isolate->heap()->illegal_execution_state_symbol()); } return isolate->heap()->true_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFrameCount) { HandleScope scope(isolate); ASSERT(args.length() == 1); // Check arguments. Object* result; { MaybeObject* maybe_result = Runtime_CheckExecutionState( RUNTIME_ARGUMENTS(isolate, args)); if (!maybe_result->ToObject(&result)) return maybe_result; } // Count all frames which are relevant to debugging stack trace. int n = 0; StackFrame::Id id = isolate->debug()->break_frame_id(); if (id == StackFrame::NO_ID) { // If there is no JavaScript stack frame count is 0. return Smi::FromInt(0); } for (JavaScriptFrameIterator it(isolate, id); !it.done(); it.Advance()) n++; return Smi::FromInt(n); } static const int kFrameDetailsFrameIdIndex = 0; static const int kFrameDetailsReceiverIndex = 1; static const int kFrameDetailsFunctionIndex = 2; static const int kFrameDetailsArgumentCountIndex = 3; static const int kFrameDetailsLocalCountIndex = 4; static const int kFrameDetailsSourcePositionIndex = 5; static const int kFrameDetailsConstructCallIndex = 6; static const int kFrameDetailsAtReturnIndex = 7; static const int kFrameDetailsDebuggerFrameIndex = 8; static const int kFrameDetailsFirstDynamicIndex = 9; // Return an array with frame details // args[0]: number: break id // args[1]: number: frame index // // The array returned contains the following information: // 0: Frame id // 1: Receiver // 2: Function // 3: Argument count // 4: Local count // 5: Source position // 6: Constructor call // 7: Is at return // 8: Debugger frame // Arguments name, value // Locals name, value // Return value if any RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFrameDetails) { HandleScope scope(isolate); ASSERT(args.length() == 2); // Check arguments. Object* check; { MaybeObject* maybe_check = Runtime_CheckExecutionState( RUNTIME_ARGUMENTS(isolate, args)); if (!maybe_check->ToObject(&check)) return maybe_check; } CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]); Heap* heap = isolate->heap(); // Find the relevant frame with the requested index. StackFrame::Id id = isolate->debug()->break_frame_id(); if (id == StackFrame::NO_ID) { // If there are no JavaScript stack frames return undefined. return heap->undefined_value(); } int count = 0; JavaScriptFrameIterator it(isolate, id); for (; !it.done(); it.Advance()) { if (count == index) break; count++; } if (it.done()) return heap->undefined_value(); bool is_optimized_frame = it.frame()->LookupCode()->kind() == Code::OPTIMIZED_FUNCTION; // Traverse the saved contexts chain to find the active context for the // selected frame. SaveContext* save = isolate->save_context(); while (save != NULL && !save->below(it.frame())) { save = save->prev(); } ASSERT(save != NULL); // Get the frame id. Handle<Object> frame_id(WrapFrameId(it.frame()->id()), isolate); // Find source position. int position = it.frame()->LookupCode()->SourcePosition(it.frame()->pc()); // Check for constructor frame. bool constructor = it.frame()->IsConstructor(); // Get scope info and read from it for local variable information. Handle<JSFunction> function(JSFunction::cast(it.frame()->function())); Handle<SerializedScopeInfo> scope_info(function->shared()->scope_info()); ScopeInfo<> info(*scope_info); // Get the context. Handle<Context> context(Context::cast(it.frame()->context())); // Get the locals names and values into a temporary array. // // TODO(1240907): Hide compiler-introduced stack variables // (e.g. .result)? For users of the debugger, they will probably be // confusing. Handle<FixedArray> locals = isolate->factory()->NewFixedArray(info.NumberOfLocals() * 2); // Fill in the names of the locals. for (int i = 0; i < info.NumberOfLocals(); i++) { locals->set(i * 2, *info.LocalName(i)); } // Fill in the values of the locals. for (int i = 0; i < info.NumberOfLocals(); i++) { if (is_optimized_frame) { // If we are inspecting an optimized frame use undefined as the // value for all locals. // // TODO(1140): We should be able to get the correct values // for locals in optimized frames. locals->set(i * 2 + 1, isolate->heap()->undefined_value()); } else if (i < info.number_of_stack_slots()) { // Get the value from the stack. locals->set(i * 2 + 1, it.frame()->GetExpression(i)); } else { // Traverse the context chain to the function context as all local // variables stored in the context will be on the function context. Handle<String> name = info.LocalName(i); while (!context->is_function_context()) { context = Handle<Context>(context->previous()); } ASSERT(context->is_function_context()); locals->set(i * 2 + 1, context->get(scope_info->ContextSlotIndex(*name, NULL))); } } // Check whether this frame is positioned at return. If not top // frame or if the frame is optimized it cannot be at a return. bool at_return = false; if (!is_optimized_frame && index == 0) { at_return = isolate->debug()->IsBreakAtReturn(it.frame()); } // If positioned just before return find the value to be returned and add it // to the frame information. Handle<Object> return_value = isolate->factory()->undefined_value(); if (at_return) { StackFrameIterator it2(isolate); Address internal_frame_sp = NULL; while (!it2.done()) { if (it2.frame()->is_internal()) { internal_frame_sp = it2.frame()->sp(); } else { if (it2.frame()->is_java_script()) { if (it2.frame()->id() == it.frame()->id()) { // The internal frame just before the JavaScript frame contains the // value to return on top. A debug break at return will create an // internal frame to store the return value (eax/rax/r0) before // entering the debug break exit frame. if (internal_frame_sp != NULL) { return_value = Handle<Object>(Memory::Object_at(internal_frame_sp), isolate); break; } } } // Indicate that the previous frame was not an internal frame. internal_frame_sp = NULL; } it2.Advance(); } } // Now advance to the arguments adapter frame (if any). It contains all // the provided parameters whereas the function frame always have the number // of arguments matching the functions parameters. The rest of the // information (except for what is collected above) is the same. it.AdvanceToArgumentsFrame(); // Find the number of arguments to fill. At least fill the number of // parameters for the function and fill more if more parameters are provided. int argument_count = info.number_of_parameters(); if (argument_count < it.frame()->ComputeParametersCount()) { argument_count = it.frame()->ComputeParametersCount(); } // Calculate the size of the result. int details_size = kFrameDetailsFirstDynamicIndex + 2 * (argument_count + info.NumberOfLocals()) + (at_return ? 1 : 0); Handle<FixedArray> details = isolate->factory()->NewFixedArray(details_size); // Add the frame id. details->set(kFrameDetailsFrameIdIndex, *frame_id); // Add the function (same as in function frame). details->set(kFrameDetailsFunctionIndex, it.frame()->function()); // Add the arguments count. details->set(kFrameDetailsArgumentCountIndex, Smi::FromInt(argument_count)); // Add the locals count details->set(kFrameDetailsLocalCountIndex, Smi::FromInt(info.NumberOfLocals())); // Add the source position. if (position != RelocInfo::kNoPosition) { details->set(kFrameDetailsSourcePositionIndex, Smi::FromInt(position)); } else { details->set(kFrameDetailsSourcePositionIndex, heap->undefined_value()); } // Add the constructor information. details->set(kFrameDetailsConstructCallIndex, heap->ToBoolean(constructor)); // Add the at return information. details->set(kFrameDetailsAtReturnIndex, heap->ToBoolean(at_return)); // Add information on whether this frame is invoked in the debugger context. details->set(kFrameDetailsDebuggerFrameIndex, heap->ToBoolean(*save->context() == *isolate->debug()->debug_context())); // Fill the dynamic part. int details_index = kFrameDetailsFirstDynamicIndex; // Add arguments name and value. for (int i = 0; i < argument_count; i++) { // Name of the argument. if (i < info.number_of_parameters()) { details->set(details_index++, *info.parameter_name(i)); } else { details->set(details_index++, heap->undefined_value()); } // Parameter value. If we are inspecting an optimized frame, use // undefined as the value. // // TODO(3141533): We should be able to get the actual parameter // value for optimized frames. if (!is_optimized_frame && (i < it.frame()->ComputeParametersCount())) { details->set(details_index++, it.frame()->GetParameter(i)); } else { details->set(details_index++, heap->undefined_value()); } } // Add locals name and value from the temporary copy from the function frame. for (int i = 0; i < info.NumberOfLocals() * 2; i++) { details->set(details_index++, locals->get(i)); } // Add the value being returned. if (at_return) { details->set(details_index++, *return_value); } // Add the receiver (same as in function frame). // THIS MUST BE DONE LAST SINCE WE MIGHT ADVANCE // THE FRAME ITERATOR TO WRAP THE RECEIVER. Handle<Object> receiver(it.frame()->receiver(), isolate); if (!receiver->IsJSObject()) { // If the receiver is NOT a JSObject we have hit an optimization // where a value object is not converted into a wrapped JS objects. // To hide this optimization from the debugger, we wrap the receiver // by creating correct wrapper object based on the calling frame's // global context. it.Advance(); Handle<Context> calling_frames_global_context( Context::cast(Context::cast(it.frame()->context())->global_context())); receiver = isolate->factory()->ToObject(receiver, calling_frames_global_context); } details->set(kFrameDetailsReceiverIndex, *receiver); ASSERT_EQ(details_size, details_index); return *isolate->factory()->NewJSArrayWithElements(details); } // Copy all the context locals into an object used to materialize a scope. static bool CopyContextLocalsToScopeObject( Isolate* isolate, Handle<SerializedScopeInfo> serialized_scope_info, ScopeInfo<>& scope_info, Handle<Context> context, Handle<JSObject> scope_object) { // Fill all context locals to the context extension. for (int i = Context::MIN_CONTEXT_SLOTS; i < scope_info.number_of_context_slots(); i++) { int context_index = serialized_scope_info->ContextSlotIndex( *scope_info.context_slot_name(i), NULL); // Don't include the arguments shadow (.arguments) context variable. if (*scope_info.context_slot_name(i) != isolate->heap()->arguments_shadow_symbol()) { RETURN_IF_EMPTY_HANDLE_VALUE( isolate, SetProperty(scope_object, scope_info.context_slot_name(i), Handle<Object>(context->get(context_index), isolate), NONE, kNonStrictMode), false); } } return true; } // Create a plain JSObject which materializes the local scope for the specified // frame. static Handle<JSObject> MaterializeLocalScope(Isolate* isolate, JavaScriptFrame* frame) { Handle<JSFunction> function(JSFunction::cast(frame->function())); Handle<SharedFunctionInfo> shared(function->shared()); Handle<SerializedScopeInfo> serialized_scope_info(shared->scope_info()); ScopeInfo<> scope_info(*serialized_scope_info); // Allocate and initialize a JSObject with all the arguments, stack locals // heap locals and extension properties of the debugged function. Handle<JSObject> local_scope = isolate->factory()->NewJSObject(isolate->object_function()); // First fill all parameters. for (int i = 0; i < scope_info.number_of_parameters(); ++i) { RETURN_IF_EMPTY_HANDLE_VALUE( isolate, SetProperty(local_scope, scope_info.parameter_name(i), Handle<Object>(frame->GetParameter(i), isolate), NONE, kNonStrictMode), Handle<JSObject>()); } // Second fill all stack locals. for (int i = 0; i < scope_info.number_of_stack_slots(); i++) { RETURN_IF_EMPTY_HANDLE_VALUE( isolate, SetProperty(local_scope, scope_info.stack_slot_name(i), Handle<Object>(frame->GetExpression(i), isolate), NONE, kNonStrictMode), Handle<JSObject>()); } // Third fill all context locals. Handle<Context> frame_context(Context::cast(frame->context())); Handle<Context> function_context(frame_context->fcontext()); if (!CopyContextLocalsToScopeObject(isolate, serialized_scope_info, scope_info, function_context, local_scope)) { return Handle<JSObject>(); } // Finally copy any properties from the function context extension. This will // be variables introduced by eval. if (function_context->closure() == *function) { if (function_context->has_extension() && !function_context->IsGlobalContext()) { Handle<JSObject> ext(JSObject::cast(function_context->extension())); Handle<FixedArray> keys = GetKeysInFixedArrayFor(ext, INCLUDE_PROTOS); for (int i = 0; i < keys->length(); i++) { // Names of variables introduced by eval are strings. ASSERT(keys->get(i)->IsString()); Handle<String> key(String::cast(keys->get(i))); RETURN_IF_EMPTY_HANDLE_VALUE( isolate, SetProperty(local_scope, key, GetProperty(ext, key), NONE, kNonStrictMode), Handle<JSObject>()); } } } return local_scope; } // Create a plain JSObject which materializes the closure content for the // context. static Handle<JSObject> MaterializeClosure(Isolate* isolate, Handle<Context> context) { ASSERT(context->is_function_context()); Handle<SharedFunctionInfo> shared(context->closure()->shared()); Handle<SerializedScopeInfo> serialized_scope_info(shared->scope_info()); ScopeInfo<> scope_info(*serialized_scope_info); // Allocate and initialize a JSObject with all the content of theis function // closure. Handle<JSObject> closure_scope = isolate->factory()->NewJSObject(isolate->object_function()); // Check whether the arguments shadow object exists. int arguments_shadow_index = shared->scope_info()->ContextSlotIndex( isolate->heap()->arguments_shadow_symbol(), NULL); if (arguments_shadow_index >= 0) { // In this case all the arguments are available in the arguments shadow // object. Handle<JSObject> arguments_shadow( JSObject::cast(context->get(arguments_shadow_index))); for (int i = 0; i < scope_info.number_of_parameters(); ++i) { // We don't expect exception-throwing getters on the arguments shadow. Object* element = arguments_shadow->GetElement(i)->ToObjectUnchecked(); RETURN_IF_EMPTY_HANDLE_VALUE( isolate, SetProperty(closure_scope, scope_info.parameter_name(i), Handle<Object>(element, isolate), NONE, kNonStrictMode), Handle<JSObject>()); } } // Fill all context locals to the context extension. if (!CopyContextLocalsToScopeObject(isolate, serialized_scope_info, scope_info, context, closure_scope)) { return Handle<JSObject>(); } // Finally copy any properties from the function context extension. This will // be variables introduced by eval. if (context->has_extension()) { Handle<JSObject> ext(JSObject::cast(context->extension())); Handle<FixedArray> keys = GetKeysInFixedArrayFor(ext, INCLUDE_PROTOS); for (int i = 0; i < keys->length(); i++) { // Names of variables introduced by eval are strings. ASSERT(keys->get(i)->IsString()); Handle<String> key(String::cast(keys->get(i))); RETURN_IF_EMPTY_HANDLE_VALUE( isolate, SetProperty(closure_scope, key, GetProperty(ext, key), NONE, kNonStrictMode), Handle<JSObject>()); } } return closure_scope; } // Iterate over the actual scopes visible from a stack frame. All scopes are // backed by an actual context except the local scope, which is inserted // "artifically" in the context chain. class ScopeIterator { public: enum ScopeType { ScopeTypeGlobal = 0, ScopeTypeLocal, ScopeTypeWith, ScopeTypeClosure, // Every catch block contains an implicit with block (its parameter is // a JSContextExtensionObject) that extends current scope with a variable // holding exception object. Such with blocks are treated as scopes of their // own type. ScopeTypeCatch }; ScopeIterator(Isolate* isolate, JavaScriptFrame* frame) : isolate_(isolate), frame_(frame), function_(JSFunction::cast(frame->function())), context_(Context::cast(frame->context())), local_done_(false), at_local_(false) { // Check whether the first scope is actually a local scope. if (context_->IsGlobalContext()) { // If there is a stack slot for .result then this local scope has been // created for evaluating top level code and it is not a real local scope. // Checking for the existence of .result seems fragile, but the scope info // saved with the code object does not otherwise have that information. int index = function_->shared()->scope_info()-> StackSlotIndex(isolate_->heap()->result_symbol()); at_local_ = index < 0; } else if (context_->is_function_context()) { at_local_ = true; } else if (context_->closure() != *function_) { // The context_ is a with block from the outer function. ASSERT(context_->has_extension()); at_local_ = true; } } // More scopes? bool Done() { return context_.is_null(); } // Move to the next scope. void Next() { // If at a local scope mark the local scope as passed. if (at_local_) { at_local_ = false; local_done_ = true; // If the current context is not associated with the local scope the // current context is the next real scope, so don't move to the next // context in this case. if (context_->closure() != *function_) { return; } } // The global scope is always the last in the chain. if (context_->IsGlobalContext()) { context_ = Handle<Context>(); return; } // Move to the next context. if (context_->is_function_context()) { context_ = Handle<Context>(Context::cast(context_->closure()->context())); } else { context_ = Handle<Context>(context_->previous()); } // If passing the local scope indicate that the current scope is now the // local scope. if (!local_done_ && (context_->IsGlobalContext() || (context_->is_function_context()))) { at_local_ = true; } } // Return the type of the current scope. int Type() { if (at_local_) { return ScopeTypeLocal; } if (context_->IsGlobalContext()) { ASSERT(context_->global()->IsGlobalObject()); return ScopeTypeGlobal; } if (context_->is_function_context()) { return ScopeTypeClosure; } ASSERT(context_->has_extension()); // Current scope is either an explicit with statement or a with statement // implicitely generated for a catch block. // If the extension object here is a JSContextExtensionObject then // current with statement is one frome a catch block otherwise it's a // regular with statement. if (context_->extension()->IsJSContextExtensionObject()) { return ScopeTypeCatch; } return ScopeTypeWith; } // Return the JavaScript object with the content of the current scope. Handle<JSObject> ScopeObject() { switch (Type()) { case ScopeIterator::ScopeTypeGlobal: return Handle<JSObject>(CurrentContext()->global()); break; case ScopeIterator::ScopeTypeLocal: // Materialize the content of the local scope into a JSObject. return MaterializeLocalScope(isolate_, frame_); break; case ScopeIterator::ScopeTypeWith: case ScopeIterator::ScopeTypeCatch: // Return the with object. return Handle<JSObject>(CurrentContext()->extension()); break; case ScopeIterator::ScopeTypeClosure: // Materialize the content of the closure scope into a JSObject. return MaterializeClosure(isolate_, CurrentContext()); break; } UNREACHABLE(); return Handle<JSObject>(); } // Return the context for this scope. For the local context there might not // be an actual context. Handle<Context> CurrentContext() { if (at_local_ && context_->closure() != *function_) { return Handle<Context>(); } return context_; } #ifdef DEBUG // Debug print of the content of the current scope. void DebugPrint() { switch (Type()) { case ScopeIterator::ScopeTypeGlobal: PrintF("Global:\n"); CurrentContext()->Print(); break; case ScopeIterator::ScopeTypeLocal: { PrintF("Local:\n"); ScopeInfo<> scope_info(function_->shared()->scope_info()); scope_info.Print(); if (!CurrentContext().is_null()) { CurrentContext()->Print(); if (CurrentContext()->has_extension()) { Handle<JSObject> extension = Handle<JSObject>(CurrentContext()->extension()); if (extension->IsJSContextExtensionObject()) { extension->Print(); } } } break; } case ScopeIterator::ScopeTypeWith: { PrintF("With:\n"); Handle<JSObject> extension = Handle<JSObject>(CurrentContext()->extension()); extension->Print(); break; } case ScopeIterator::ScopeTypeCatch: { PrintF("Catch:\n"); Handle<JSObject> extension = Handle<JSObject>(CurrentContext()->extension()); extension->Print(); break; } case ScopeIterator::ScopeTypeClosure: { PrintF("Closure:\n"); CurrentContext()->Print(); if (CurrentContext()->has_extension()) { Handle<JSObject> extension = Handle<JSObject>(CurrentContext()->extension()); if (extension->IsJSContextExtensionObject()) { extension->Print(); } } break; } default: UNREACHABLE(); } PrintF("\n"); } #endif private: Isolate* isolate_; JavaScriptFrame* frame_; Handle<JSFunction> function_; Handle<Context> context_; bool local_done_; bool at_local_; DISALLOW_IMPLICIT_CONSTRUCTORS(ScopeIterator); }; RUNTIME_FUNCTION(MaybeObject*, Runtime_GetScopeCount) { HandleScope scope(isolate); ASSERT(args.length() == 2); // Check arguments. Object* check; { MaybeObject* maybe_check = Runtime_CheckExecutionState( RUNTIME_ARGUMENTS(isolate, args)); if (!maybe_check->ToObject(&check)) return maybe_check; } CONVERT_CHECKED(Smi, wrapped_id, args[1]); // Get the frame where the debugging is performed. StackFrame::Id id = UnwrapFrameId(wrapped_id); JavaScriptFrameIterator it(isolate, id); JavaScriptFrame* frame = it.frame(); // Count the visible scopes. int n = 0; for (ScopeIterator it(isolate, frame); !it.Done(); it.Next()) { n++; } return Smi::FromInt(n); } static const int kScopeDetailsTypeIndex = 0; static const int kScopeDetailsObjectIndex = 1; static const int kScopeDetailsSize = 2; // Return an array with scope details // args[0]: number: break id // args[1]: number: frame index // args[2]: number: scope index // // The array returned contains the following information: // 0: Scope type // 1: Scope object RUNTIME_FUNCTION(MaybeObject*, Runtime_GetScopeDetails) { HandleScope scope(isolate); ASSERT(args.length() == 3); // Check arguments. Object* check; { MaybeObject* maybe_check = Runtime_CheckExecutionState( RUNTIME_ARGUMENTS(isolate, args)); if (!maybe_check->ToObject(&check)) return maybe_check; } CONVERT_CHECKED(Smi, wrapped_id, args[1]); CONVERT_NUMBER_CHECKED(int, index, Int32, args[2]); // Get the frame where the debugging is performed. StackFrame::Id id = UnwrapFrameId(wrapped_id); JavaScriptFrameIterator frame_it(isolate, id); JavaScriptFrame* frame = frame_it.frame(); // Find the requested scope. int n = 0; ScopeIterator it(isolate, frame); for (; !it.Done() && n < index; it.Next()) { n++; } if (it.Done()) { return isolate->heap()->undefined_value(); } // Calculate the size of the result. int details_size = kScopeDetailsSize; Handle<FixedArray> details = isolate->factory()->NewFixedArray(details_size); // Fill in scope details. details->set(kScopeDetailsTypeIndex, Smi::FromInt(it.Type())); Handle<JSObject> scope_object = it.ScopeObject(); RETURN_IF_EMPTY_HANDLE(isolate, scope_object); details->set(kScopeDetailsObjectIndex, *scope_object); return *isolate->factory()->NewJSArrayWithElements(details); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugPrintScopes) { HandleScope scope(isolate); ASSERT(args.length() == 0); #ifdef DEBUG // Print the scopes for the top frame. StackFrameLocator locator; JavaScriptFrame* frame = locator.FindJavaScriptFrame(0); for (ScopeIterator it(isolate, frame); !it.Done(); it.Next()) { it.DebugPrint(); } #endif return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetThreadCount) { HandleScope scope(isolate); ASSERT(args.length() == 1); // Check arguments. Object* result; { MaybeObject* maybe_result = Runtime_CheckExecutionState( RUNTIME_ARGUMENTS(isolate, args)); if (!maybe_result->ToObject(&result)) return maybe_result; } // Count all archived V8 threads. int n = 0; for (ThreadState* thread = isolate->thread_manager()->FirstThreadStateInUse(); thread != NULL; thread = thread->Next()) { n++; } // Total number of threads is current thread and archived threads. return Smi::FromInt(n + 1); } static const int kThreadDetailsCurrentThreadIndex = 0; static const int kThreadDetailsThreadIdIndex = 1; static const int kThreadDetailsSize = 2; // Return an array with thread details // args[0]: number: break id // args[1]: number: thread index // // The array returned contains the following information: // 0: Is current thread? // 1: Thread id RUNTIME_FUNCTION(MaybeObject*, Runtime_GetThreadDetails) { HandleScope scope(isolate); ASSERT(args.length() == 2); // Check arguments. Object* check; { MaybeObject* maybe_check = Runtime_CheckExecutionState( RUNTIME_ARGUMENTS(isolate, args)); if (!maybe_check->ToObject(&check)) return maybe_check; } CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]); // Allocate array for result. Handle<FixedArray> details = isolate->factory()->NewFixedArray(kThreadDetailsSize); // Thread index 0 is current thread. if (index == 0) { // Fill the details. details->set(kThreadDetailsCurrentThreadIndex, isolate->heap()->true_value()); details->set(kThreadDetailsThreadIdIndex, Smi::FromInt(ThreadId::Current().ToInteger())); } else { // Find the thread with the requested index. int n = 1; ThreadState* thread = isolate->thread_manager()->FirstThreadStateInUse(); while (index != n && thread != NULL) { thread = thread->Next(); n++; } if (thread == NULL) { return isolate->heap()->undefined_value(); } // Fill the details. details->set(kThreadDetailsCurrentThreadIndex, isolate->heap()->false_value()); details->set(kThreadDetailsThreadIdIndex, Smi::FromInt(thread->id().ToInteger())); } // Convert to JS array and return. return *isolate->factory()->NewJSArrayWithElements(details); } // Sets the disable break state // args[0]: disable break state RUNTIME_FUNCTION(MaybeObject*, Runtime_SetDisableBreak) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_BOOLEAN_CHECKED(disable_break, args[0]); isolate->debug()->set_disable_break(disable_break); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetBreakLocations) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, fun, 0); Handle<SharedFunctionInfo> shared(fun->shared()); // Find the number of break points Handle<Object> break_locations = Debug::GetSourceBreakLocations(shared); if (break_locations->IsUndefined()) return isolate->heap()->undefined_value(); // Return array as JS array return *isolate->factory()->NewJSArrayWithElements( Handle<FixedArray>::cast(break_locations)); } // Set a break point in a function // args[0]: function // args[1]: number: break source position (within the function source) // args[2]: number: break point object RUNTIME_FUNCTION(MaybeObject*, Runtime_SetFunctionBreakPoint) { HandleScope scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_CHECKED(JSFunction, fun, 0); Handle<SharedFunctionInfo> shared(fun->shared()); CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]); RUNTIME_ASSERT(source_position >= 0); Handle<Object> break_point_object_arg = args.at<Object>(2); // Set break point. isolate->debug()->SetBreakPoint(shared, break_point_object_arg, &source_position); return Smi::FromInt(source_position); } Object* Runtime::FindSharedFunctionInfoInScript(Isolate* isolate, Handle<Script> script, int position) { // Iterate the heap looking for SharedFunctionInfo generated from the // script. The inner most SharedFunctionInfo containing the source position // for the requested break point is found. // NOTE: This might require several heap iterations. If the SharedFunctionInfo // which is found is not compiled it is compiled and the heap is iterated // again as the compilation might create inner functions from the newly // compiled function and the actual requested break point might be in one of // these functions. bool done = false; // The current candidate for the source position: int target_start_position = RelocInfo::kNoPosition; Handle<SharedFunctionInfo> target; while (!done) { HeapIterator iterator; for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { if (obj->IsSharedFunctionInfo()) { Handle<SharedFunctionInfo> shared(SharedFunctionInfo::cast(obj)); if (shared->script() == *script) { // If the SharedFunctionInfo found has the requested script data and // contains the source position it is a candidate. int start_position = shared->function_token_position(); if (start_position == RelocInfo::kNoPosition) { start_position = shared->start_position(); } if (start_position <= position && position <= shared->end_position()) { // If there is no candidate or this function is within the current // candidate this is the new candidate. if (target.is_null()) { target_start_position = start_position; target = shared; } else { if (target_start_position == start_position && shared->end_position() == target->end_position()) { // If a top-level function contain only one function // declartion the source for the top-level and the function is // the same. In that case prefer the non top-level function. if (!shared->is_toplevel()) { target_start_position = start_position; target = shared; } } else if (target_start_position <= start_position && shared->end_position() <= target->end_position()) { // This containment check includes equality as a function inside // a top-level function can share either start or end position // with the top-level function. target_start_position = start_position; target = shared; } } } } } } if (target.is_null()) { return isolate->heap()->undefined_value(); } // If the candidate found is compiled we are done. NOTE: when lazy // compilation of inner functions is introduced some additional checking // needs to be done here to compile inner functions. done = target->is_compiled(); if (!done) { // If the candidate is not compiled compile it to reveal any inner // functions which might contain the requested source position. CompileLazyShared(target, KEEP_EXCEPTION); } } return *target; } // Changes the state of a break point in a script and returns source position // where break point was set. NOTE: Regarding performance see the NOTE for // GetScriptFromScriptData. // args[0]: script to set break point in // args[1]: number: break source position (within the script source) // args[2]: number: break point object RUNTIME_FUNCTION(MaybeObject*, Runtime_SetScriptBreakPoint) { HandleScope scope(isolate); ASSERT(args.length() == 3); CONVERT_ARG_CHECKED(JSValue, wrapper, 0); CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]); RUNTIME_ASSERT(source_position >= 0); Handle<Object> break_point_object_arg = args.at<Object>(2); // Get the script from the script wrapper. RUNTIME_ASSERT(wrapper->value()->IsScript()); Handle<Script> script(Script::cast(wrapper->value())); Object* result = Runtime::FindSharedFunctionInfoInScript( isolate, script, source_position); if (!result->IsUndefined()) { Handle<SharedFunctionInfo> shared(SharedFunctionInfo::cast(result)); // Find position within function. The script position might be before the // source position of the first function. int position; if (shared->start_position() > source_position) { position = 0; } else { position = source_position - shared->start_position(); } isolate->debug()->SetBreakPoint(shared, break_point_object_arg, &position); position += shared->start_position(); return Smi::FromInt(position); } return isolate->heap()->undefined_value(); } // Clear a break point // args[0]: number: break point object RUNTIME_FUNCTION(MaybeObject*, Runtime_ClearBreakPoint) { HandleScope scope(isolate); ASSERT(args.length() == 1); Handle<Object> break_point_object_arg = args.at<Object>(0); // Clear break point. isolate->debug()->ClearBreakPoint(break_point_object_arg); return isolate->heap()->undefined_value(); } // Change the state of break on exceptions. // args[0]: Enum value indicating whether to affect caught/uncaught exceptions. // args[1]: Boolean indicating on/off. RUNTIME_FUNCTION(MaybeObject*, Runtime_ChangeBreakOnException) { HandleScope scope(isolate); ASSERT(args.length() == 2); RUNTIME_ASSERT(args[0]->IsNumber()); CONVERT_BOOLEAN_CHECKED(enable, args[1]); // If the number doesn't match an enum value, the ChangeBreakOnException // function will default to affecting caught exceptions. ExceptionBreakType type = static_cast<ExceptionBreakType>(NumberToUint32(args[0])); // Update break point state. isolate->debug()->ChangeBreakOnException(type, enable); return isolate->heap()->undefined_value(); } // Returns the state of break on exceptions // args[0]: boolean indicating uncaught exceptions RUNTIME_FUNCTION(MaybeObject*, Runtime_IsBreakOnException) { HandleScope scope(isolate); ASSERT(args.length() == 1); RUNTIME_ASSERT(args[0]->IsNumber()); ExceptionBreakType type = static_cast<ExceptionBreakType>(NumberToUint32(args[0])); bool result = isolate->debug()->IsBreakOnException(type); return Smi::FromInt(result); } // Prepare for stepping // args[0]: break id for checking execution state // args[1]: step action from the enumeration StepAction // args[2]: number of times to perform the step, for step out it is the number // of frames to step down. RUNTIME_FUNCTION(MaybeObject*, Runtime_PrepareStep) { HandleScope scope(isolate); ASSERT(args.length() == 3); // Check arguments. Object* check; { MaybeObject* maybe_check = Runtime_CheckExecutionState( RUNTIME_ARGUMENTS(isolate, args)); if (!maybe_check->ToObject(&check)) return maybe_check; } if (!args[1]->IsNumber() || !args[2]->IsNumber()) { return isolate->Throw(isolate->heap()->illegal_argument_symbol()); } // Get the step action and check validity. StepAction step_action = static_cast<StepAction>(NumberToInt32(args[1])); if (step_action != StepIn && step_action != StepNext && step_action != StepOut && step_action != StepInMin && step_action != StepMin) { return isolate->Throw(isolate->heap()->illegal_argument_symbol()); } // Get the number of steps. int step_count = NumberToInt32(args[2]); if (step_count < 1) { return isolate->Throw(isolate->heap()->illegal_argument_symbol()); } // Clear all current stepping setup. isolate->debug()->ClearStepping(); // Prepare step. isolate->debug()->PrepareStep(static_cast<StepAction>(step_action), step_count); return isolate->heap()->undefined_value(); } // Clear all stepping set by PrepareStep. RUNTIME_FUNCTION(MaybeObject*, Runtime_ClearStepping) { HandleScope scope(isolate); ASSERT(args.length() == 0); isolate->debug()->ClearStepping(); return isolate->heap()->undefined_value(); } // Creates a copy of the with context chain. The copy of the context chain is // is linked to the function context supplied. static Handle<Context> CopyWithContextChain(Handle<Context> context_chain, Handle<Context> function_context) { // At the bottom of the chain. Return the function context to link to. if (context_chain->is_function_context()) { return function_context; } // Recursively copy the with contexts. Handle<Context> previous(context_chain->previous()); Handle<JSObject> extension(JSObject::cast(context_chain->extension())); Handle<Context> context = CopyWithContextChain(function_context, previous); return context->GetIsolate()->factory()->NewWithContext( context, extension, context_chain->IsCatchContext()); } // Helper function to find or create the arguments object for // Runtime_DebugEvaluate. static Handle<Object> GetArgumentsObject(Isolate* isolate, JavaScriptFrame* frame, Handle<JSFunction> function, Handle<SerializedScopeInfo> scope_info, const ScopeInfo<>* sinfo, Handle<Context> function_context) { // Try to find the value of 'arguments' to pass as parameter. If it is not // found (that is the debugged function does not reference 'arguments' and // does not support eval) then create an 'arguments' object. int index; if (sinfo->number_of_stack_slots() > 0) { index = scope_info->StackSlotIndex(isolate->heap()->arguments_symbol()); if (index != -1) { return Handle<Object>(frame->GetExpression(index), isolate); } } if (sinfo->number_of_context_slots() > Context::MIN_CONTEXT_SLOTS) { index = scope_info->ContextSlotIndex(isolate->heap()->arguments_symbol(), NULL); if (index != -1) { return Handle<Object>(function_context->get(index), isolate); } } const int length = frame->ComputeParametersCount(); Handle<JSObject> arguments = isolate->factory()->NewArgumentsObject(function, length); Handle<FixedArray> array = isolate->factory()->NewFixedArray(length); AssertNoAllocation no_gc; WriteBarrierMode mode = array->GetWriteBarrierMode(no_gc); for (int i = 0; i < length; i++) { array->set(i, frame->GetParameter(i), mode); } arguments->set_elements(*array); return arguments; } static const char kSourceStr[] = "(function(arguments,__source__){return eval(__source__);})"; // Evaluate a piece of JavaScript in the context of a stack frame for // debugging. This is accomplished by creating a new context which in its // extension part has all the parameters and locals of the function on the // stack frame. A function which calls eval with the code to evaluate is then // compiled in this context and called in this context. As this context // replaces the context of the function on the stack frame a new (empty) // function is created as well to be used as the closure for the context. // This function and the context acts as replacements for the function on the // stack frame presenting the same view of the values of parameters and // local variables as if the piece of JavaScript was evaluated at the point // where the function on the stack frame is currently stopped. RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugEvaluate) { HandleScope scope(isolate); // Check the execution state and decode arguments frame and source to be // evaluated. ASSERT(args.length() == 5); Object* check_result; { MaybeObject* maybe_check_result = Runtime_CheckExecutionState( RUNTIME_ARGUMENTS(isolate, args)); if (!maybe_check_result->ToObject(&check_result)) { return maybe_check_result; } } CONVERT_CHECKED(Smi, wrapped_id, args[1]); CONVERT_ARG_CHECKED(String, source, 2); CONVERT_BOOLEAN_CHECKED(disable_break, args[3]); Handle<Object> additional_context(args[4]); // Handle the processing of break. DisableBreak disable_break_save(disable_break); // Get the frame where the debugging is performed. StackFrame::Id id = UnwrapFrameId(wrapped_id); JavaScriptFrameIterator it(isolate, id); JavaScriptFrame* frame = it.frame(); Handle<JSFunction> function(JSFunction::cast(frame->function())); Handle<SerializedScopeInfo> scope_info(function->shared()->scope_info()); ScopeInfo<> sinfo(*scope_info); // Traverse the saved contexts chain to find the active context for the // selected frame. SaveContext* save = isolate->save_context(); while (save != NULL && !save->below(frame)) { save = save->prev(); } ASSERT(save != NULL); SaveContext savex(isolate); isolate->set_context(*(save->context())); // Create the (empty) function replacing the function on the stack frame for // the purpose of evaluating in the context created below. It is important // that this function does not describe any parameters and local variables // in the context. If it does then this will cause problems with the lookup // in Context::Lookup, where context slots for parameters and local variables // are looked at before the extension object. Handle<JSFunction> go_between = isolate->factory()->NewFunction(isolate->factory()->empty_string(), isolate->factory()->undefined_value()); go_between->set_context(function->context()); #ifdef DEBUG ScopeInfo<> go_between_sinfo(go_between->shared()->scope_info()); ASSERT(go_between_sinfo.number_of_parameters() == 0); ASSERT(go_between_sinfo.number_of_context_slots() == 0); #endif // Materialize the content of the local scope into a JSObject. Handle<JSObject> local_scope = MaterializeLocalScope(isolate, frame); RETURN_IF_EMPTY_HANDLE(isolate, local_scope); // Allocate a new context for the debug evaluation and set the extension // object build. Handle<Context> context = isolate->factory()->NewFunctionContext(Context::MIN_CONTEXT_SLOTS, go_between); context->set_extension(*local_scope); // Copy any with contexts present and chain them in front of this context. Handle<Context> frame_context(Context::cast(frame->context())); Handle<Context> function_context(frame_context->fcontext()); context = CopyWithContextChain(frame_context, context); if (additional_context->IsJSObject()) { context = isolate->factory()->NewWithContext(context, Handle<JSObject>::cast(additional_context), false); } // Wrap the evaluation statement in a new function compiled in the newly // created context. The function has one parameter which has to be called // 'arguments'. This it to have access to what would have been 'arguments' in // the function being debugged. // function(arguments,__source__) {return eval(__source__);} Handle<String> function_source = isolate->factory()->NewStringFromAscii( Vector<const char>(kSourceStr, sizeof(kSourceStr) - 1)); // Currently, the eval code will be executed in non-strict mode, // even in the strict code context. Handle<SharedFunctionInfo> shared = Compiler::CompileEval(function_source, context, context->IsGlobalContext(), kNonStrictMode); if (shared.is_null()) return Failure::Exception(); Handle<JSFunction> compiled_function = isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context); // Invoke the result of the compilation to get the evaluation function. bool has_pending_exception; Handle<Object> receiver(frame->receiver(), isolate); Handle<Object> evaluation_function = Execution::Call(compiled_function, receiver, 0, NULL, &has_pending_exception); if (has_pending_exception) return Failure::Exception(); Handle<Object> arguments = GetArgumentsObject(isolate, frame, function, scope_info, &sinfo, function_context); // Invoke the evaluation function and return the result. const int argc = 2; Object** argv[argc] = { arguments.location(), Handle<Object>::cast(source).location() }; Handle<Object> result = Execution::Call(Handle<JSFunction>::cast(evaluation_function), receiver, argc, argv, &has_pending_exception); if (has_pending_exception) return Failure::Exception(); // Skip the global proxy as it has no properties and always delegates to the // real global object. if (result->IsJSGlobalProxy()) { result = Handle<JSObject>(JSObject::cast(result->GetPrototype())); } return *result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugEvaluateGlobal) { HandleScope scope(isolate); // Check the execution state and decode arguments frame and source to be // evaluated. ASSERT(args.length() == 4); Object* check_result; { MaybeObject* maybe_check_result = Runtime_CheckExecutionState( RUNTIME_ARGUMENTS(isolate, args)); if (!maybe_check_result->ToObject(&check_result)) { return maybe_check_result; } } CONVERT_ARG_CHECKED(String, source, 1); CONVERT_BOOLEAN_CHECKED(disable_break, args[2]); Handle<Object> additional_context(args[3]); // Handle the processing of break. DisableBreak disable_break_save(disable_break); // Enter the top context from before the debugger was invoked. SaveContext save(isolate); SaveContext* top = &save; while (top != NULL && *top->context() == *isolate->debug()->debug_context()) { top = top->prev(); } if (top != NULL) { isolate->set_context(*top->context()); } // Get the global context now set to the top context from before the // debugger was invoked. Handle<Context> context = isolate->global_context(); bool is_global = true; if (additional_context->IsJSObject()) { // Create a function context first, than put 'with' context on top of it. Handle<JSFunction> go_between = isolate->factory()->NewFunction( isolate->factory()->empty_string(), isolate->factory()->undefined_value()); go_between->set_context(*context); context = isolate->factory()->NewFunctionContext( Context::MIN_CONTEXT_SLOTS, go_between); context->set_extension(JSObject::cast(*additional_context)); is_global = false; } // Compile the source to be evaluated. // Currently, the eval code will be executed in non-strict mode, // even in the strict code context. Handle<SharedFunctionInfo> shared = Compiler::CompileEval(source, context, is_global, kNonStrictMode); if (shared.is_null()) return Failure::Exception(); Handle<JSFunction> compiled_function = Handle<JSFunction>( isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context)); // Invoke the result of the compilation to get the evaluation function. bool has_pending_exception; Handle<Object> receiver = isolate->global(); Handle<Object> result = Execution::Call(compiled_function, receiver, 0, NULL, &has_pending_exception); if (has_pending_exception) return Failure::Exception(); return *result; } RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugGetLoadedScripts) { HandleScope scope(isolate); ASSERT(args.length() == 0); // Fill the script objects. Handle<FixedArray> instances = isolate->debug()->GetLoadedScripts(); // Convert the script objects to proper JS objects. for (int i = 0; i < instances->length(); i++) { Handle<Script> script = Handle<Script>(Script::cast(instances->get(i))); // Get the script wrapper in a local handle before calling GetScriptWrapper, // because using // instances->set(i, *GetScriptWrapper(script)) // is unsafe as GetScriptWrapper might call GC and the C++ compiler might // already have deferenced the instances handle. Handle<JSValue> wrapper = GetScriptWrapper(script); instances->set(i, *wrapper); } // Return result as a JS array. Handle<JSObject> result = isolate->factory()->NewJSObject(isolate->array_function()); Handle<JSArray>::cast(result)->SetContent(*instances); return *result; } // Helper function used by Runtime_DebugReferencedBy below. static int DebugReferencedBy(JSObject* target, Object* instance_filter, int max_references, FixedArray* instances, int instances_size, JSFunction* arguments_function) { NoHandleAllocation ha; AssertNoAllocation no_alloc; // Iterate the heap. int count = 0; JSObject* last = NULL; HeapIterator iterator; HeapObject* heap_obj = NULL; while (((heap_obj = iterator.next()) != NULL) && (max_references == 0 || count < max_references)) { // Only look at all JSObjects. if (heap_obj->IsJSObject()) { // Skip context extension objects and argument arrays as these are // checked in the context of functions using them. JSObject* obj = JSObject::cast(heap_obj); if (obj->IsJSContextExtensionObject() || obj->map()->constructor() == arguments_function) { continue; } // Check if the JS object has a reference to the object looked for. if (obj->ReferencesObject(target)) { // Check instance filter if supplied. This is normally used to avoid // references from mirror objects (see Runtime_IsInPrototypeChain). if (!instance_filter->IsUndefined()) { Object* V = obj; while (true) { Object* prototype = V->GetPrototype(); if (prototype->IsNull()) { break; } if (instance_filter == prototype) { obj = NULL; // Don't add this object. break; } V = prototype; } } if (obj != NULL) { // Valid reference found add to instance array if supplied an update // count. if (instances != NULL && count < instances_size) { instances->set(count, obj); } last = obj; count++; } } } } // Check for circular reference only. This can happen when the object is only // referenced from mirrors and has a circular reference in which case the // object is not really alive and would have been garbage collected if not // referenced from the mirror. if (count == 1 && last == target) { count = 0; } // Return the number of referencing objects found. return count; } // Scan the heap for objects with direct references to an object // args[0]: the object to find references to // args[1]: constructor function for instances to exclude (Mirror) // args[2]: the the maximum number of objects to return RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugReferencedBy) { ASSERT(args.length() == 3); // First perform a full GC in order to avoid references from dead objects. isolate->heap()->CollectAllGarbage(false); // Check parameters. CONVERT_CHECKED(JSObject, target, args[0]); Object* instance_filter = args[1]; RUNTIME_ASSERT(instance_filter->IsUndefined() || instance_filter->IsJSObject()); CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[2]); RUNTIME_ASSERT(max_references >= 0); // Get the constructor function for context extension and arguments array. JSObject* arguments_boilerplate = isolate->context()->global_context()->arguments_boilerplate(); JSFunction* arguments_function = JSFunction::cast(arguments_boilerplate->map()->constructor()); // Get the number of referencing objects. int count; count = DebugReferencedBy(target, instance_filter, max_references, NULL, 0, arguments_function); // Allocate an array to hold the result. Object* object; { MaybeObject* maybe_object = isolate->heap()->AllocateFixedArray(count); if (!maybe_object->ToObject(&object)) return maybe_object; } FixedArray* instances = FixedArray::cast(object); // Fill the referencing objects. count = DebugReferencedBy(target, instance_filter, max_references, instances, count, arguments_function); // Return result as JS array. Object* result; { MaybeObject* maybe_result = isolate->heap()->AllocateJSObject( isolate->context()->global_context()->array_function()); if (!maybe_result->ToObject(&result)) return maybe_result; } JSArray::cast(result)->SetContent(instances); return result; } // Helper function used by Runtime_DebugConstructedBy below. static int DebugConstructedBy(JSFunction* constructor, int max_references, FixedArray* instances, int instances_size) { AssertNoAllocation no_alloc; // Iterate the heap. int count = 0; HeapIterator iterator; HeapObject* heap_obj = NULL; while (((heap_obj = iterator.next()) != NULL) && (max_references == 0 || count < max_references)) { // Only look at all JSObjects. if (heap_obj->IsJSObject()) { JSObject* obj = JSObject::cast(heap_obj); if (obj->map()->constructor() == constructor) { // Valid reference found add to instance array if supplied an update // count. if (instances != NULL && count < instances_size) { instances->set(count, obj); } count++; } } } // Return the number of referencing objects found. return count; } // Scan the heap for objects constructed by a specific function. // args[0]: the constructor to find instances of // args[1]: the the maximum number of objects to return RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugConstructedBy) { ASSERT(args.length() == 2); // First perform a full GC in order to avoid dead objects. isolate->heap()->CollectAllGarbage(false); // Check parameters. CONVERT_CHECKED(JSFunction, constructor, args[0]); CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[1]); RUNTIME_ASSERT(max_references >= 0); // Get the number of referencing objects. int count; count = DebugConstructedBy(constructor, max_references, NULL, 0); // Allocate an array to hold the result. Object* object; { MaybeObject* maybe_object = isolate->heap()->AllocateFixedArray(count); if (!maybe_object->ToObject(&object)) return maybe_object; } FixedArray* instances = FixedArray::cast(object); // Fill the referencing objects. count = DebugConstructedBy(constructor, max_references, instances, count); // Return result as JS array. Object* result; { MaybeObject* maybe_result = isolate->heap()->AllocateJSObject( isolate->context()->global_context()->array_function()); if (!maybe_result->ToObject(&result)) return maybe_result; } JSArray::cast(result)->SetContent(instances); return result; } // Find the effective prototype object as returned by __proto__. // args[0]: the object to find the prototype for. RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugGetPrototype) { ASSERT(args.length() == 1); CONVERT_CHECKED(JSObject, obj, args[0]); // Use the __proto__ accessor. return Accessors::ObjectPrototype.getter(obj, NULL); } RUNTIME_FUNCTION(MaybeObject*, Runtime_SystemBreak) { ASSERT(args.length() == 0); CPU::DebugBreak(); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugDisassembleFunction) { #ifdef DEBUG HandleScope scope(isolate); ASSERT(args.length() == 1); // Get the function and make sure it is compiled. CONVERT_ARG_CHECKED(JSFunction, func, 0); Handle<SharedFunctionInfo> shared(func->shared()); if (!EnsureCompiled(shared, KEEP_EXCEPTION)) { return Failure::Exception(); } func->code()->PrintLn(); #endif // DEBUG return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugDisassembleConstructor) { #ifdef DEBUG HandleScope scope(isolate); ASSERT(args.length() == 1); // Get the function and make sure it is compiled. CONVERT_ARG_CHECKED(JSFunction, func, 0); Handle<SharedFunctionInfo> shared(func->shared()); if (!EnsureCompiled(shared, KEEP_EXCEPTION)) { return Failure::Exception(); } shared->construct_stub()->PrintLn(); #endif // DEBUG return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetInferredName) { NoHandleAllocation ha; ASSERT(args.length() == 1); CONVERT_CHECKED(JSFunction, f, args[0]); return f->shared()->inferred_name(); } static int FindSharedFunctionInfosForScript(Script* script, FixedArray* buffer) { AssertNoAllocation no_allocations; int counter = 0; int buffer_size = buffer->length(); HeapIterator iterator; for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { ASSERT(obj != NULL); if (!obj->IsSharedFunctionInfo()) { continue; } SharedFunctionInfo* shared = SharedFunctionInfo::cast(obj); if (shared->script() != script) { continue; } if (counter < buffer_size) { buffer->set(counter, shared); } counter++; } return counter; } // For a script finds all SharedFunctionInfo's in the heap that points // to this script. Returns JSArray of SharedFunctionInfo wrapped // in OpaqueReferences. RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditFindSharedFunctionInfosForScript) { ASSERT(args.length() == 1); HandleScope scope(isolate); CONVERT_CHECKED(JSValue, script_value, args[0]); Handle<Script> script = Handle<Script>(Script::cast(script_value->value())); const int kBufferSize = 32; Handle<FixedArray> array; array = isolate->factory()->NewFixedArray(kBufferSize); int number = FindSharedFunctionInfosForScript(*script, *array); if (number > kBufferSize) { array = isolate->factory()->NewFixedArray(number); FindSharedFunctionInfosForScript(*script, *array); } Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(array); result->set_length(Smi::FromInt(number)); LiveEdit::WrapSharedFunctionInfos(result); return *result; } // For a script calculates compilation information about all its functions. // The script source is explicitly specified by the second argument. // The source of the actual script is not used, however it is important that // all generated code keeps references to this particular instance of script. // Returns a JSArray of compilation infos. The array is ordered so that // each function with all its descendant is always stored in a continues range // with the function itself going first. The root function is a script function. RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditGatherCompileInfo) { ASSERT(args.length() == 2); HandleScope scope(isolate); CONVERT_CHECKED(JSValue, script, args[0]); CONVERT_ARG_CHECKED(String, source, 1); Handle<Script> script_handle = Handle<Script>(Script::cast(script->value())); JSArray* result = LiveEdit::GatherCompileInfo(script_handle, source); if (isolate->has_pending_exception()) { return Failure::Exception(); } return result; } // Changes the source of the script to a new_source. // If old_script_name is provided (i.e. is a String), also creates a copy of // the script with its original source and sends notification to debugger. RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditReplaceScript) { ASSERT(args.length() == 3); HandleScope scope(isolate); CONVERT_CHECKED(JSValue, original_script_value, args[0]); CONVERT_ARG_CHECKED(String, new_source, 1); Handle<Object> old_script_name(args[2], isolate); CONVERT_CHECKED(Script, original_script_pointer, original_script_value->value()); Handle<Script> original_script(original_script_pointer); Object* old_script = LiveEdit::ChangeScriptSource(original_script, new_source, old_script_name); if (old_script->IsScript()) { Handle<Script> script_handle(Script::cast(old_script)); return *(GetScriptWrapper(script_handle)); } else { return isolate->heap()->null_value(); } } RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditFunctionSourceUpdated) { ASSERT(args.length() == 1); HandleScope scope(isolate); CONVERT_ARG_CHECKED(JSArray, shared_info, 0); return LiveEdit::FunctionSourceUpdated(shared_info); } // Replaces code of SharedFunctionInfo with a new one. RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditReplaceFunctionCode) { ASSERT(args.length() == 2); HandleScope scope(isolate); CONVERT_ARG_CHECKED(JSArray, new_compile_info, 0); CONVERT_ARG_CHECKED(JSArray, shared_info, 1); return LiveEdit::ReplaceFunctionCode(new_compile_info, shared_info); } // Connects SharedFunctionInfo to another script. RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditFunctionSetScript) { ASSERT(args.length() == 2); HandleScope scope(isolate); Handle<Object> function_object(args[0], isolate); Handle<Object> script_object(args[1], isolate); if (function_object->IsJSValue()) { Handle<JSValue> function_wrapper = Handle<JSValue>::cast(function_object); if (script_object->IsJSValue()) { CONVERT_CHECKED(Script, script, JSValue::cast(*script_object)->value()); script_object = Handle<Object>(script, isolate); } LiveEdit::SetFunctionScript(function_wrapper, script_object); } else { // Just ignore this. We may not have a SharedFunctionInfo for some functions // and we check it in this function. } return isolate->heap()->undefined_value(); } // In a code of a parent function replaces original function as embedded object // with a substitution one. RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditReplaceRefToNestedFunction) { ASSERT(args.length() == 3); HandleScope scope(isolate); CONVERT_ARG_CHECKED(JSValue, parent_wrapper, 0); CONVERT_ARG_CHECKED(JSValue, orig_wrapper, 1); CONVERT_ARG_CHECKED(JSValue, subst_wrapper, 2); LiveEdit::ReplaceRefToNestedFunction(parent_wrapper, orig_wrapper, subst_wrapper); return isolate->heap()->undefined_value(); } // Updates positions of a shared function info (first parameter) according // to script source change. Text change is described in second parameter as // array of groups of 3 numbers: // (change_begin, change_end, change_end_new_position). // Each group describes a change in text; groups are sorted by change_begin. RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditPatchFunctionPositions) { ASSERT(args.length() == 2); HandleScope scope(isolate); CONVERT_ARG_CHECKED(JSArray, shared_array, 0); CONVERT_ARG_CHECKED(JSArray, position_change_array, 1); return LiveEdit::PatchFunctionPositions(shared_array, position_change_array); } // For array of SharedFunctionInfo's (each wrapped in JSValue) // checks that none of them have activations on stacks (of any thread). // Returns array of the same length with corresponding results of // LiveEdit::FunctionPatchabilityStatus type. RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditCheckAndDropActivations) { ASSERT(args.length() == 2); HandleScope scope(isolate); CONVERT_ARG_CHECKED(JSArray, shared_array, 0); CONVERT_BOOLEAN_CHECKED(do_drop, args[1]); return *LiveEdit::CheckAndDropActivations(shared_array, do_drop); } // Compares 2 strings line-by-line, then token-wise and returns diff in form // of JSArray of triplets (pos1, pos1_end, pos2_end) describing list // of diff chunks. RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditCompareStrings) { ASSERT(args.length() == 2); HandleScope scope(isolate); CONVERT_ARG_CHECKED(String, s1, 0); CONVERT_ARG_CHECKED(String, s2, 1); return *LiveEdit::CompareStrings(s1, s2); } // A testing entry. Returns statement position which is the closest to // source_position. RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFunctionCodePositionFromSource) { ASSERT(args.length() == 2); HandleScope scope(isolate); CONVERT_ARG_CHECKED(JSFunction, function, 0); CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]); Handle<Code> code(function->code(), isolate); if (code->kind() != Code::FUNCTION && code->kind() != Code::OPTIMIZED_FUNCTION) { return isolate->heap()->undefined_value(); } RelocIterator it(*code, RelocInfo::ModeMask(RelocInfo::STATEMENT_POSITION)); int closest_pc = 0; int distance = kMaxInt; while (!it.done()) { int statement_position = static_cast<int>(it.rinfo()->data()); // Check if this break point is closer that what was previously found. if (source_position <= statement_position && statement_position - source_position < distance) { closest_pc = static_cast<int>(it.rinfo()->pc() - code->instruction_start()); distance = statement_position - source_position; // Check whether we can't get any closer. if (distance == 0) break; } it.next(); } return Smi::FromInt(closest_pc); } // Calls specified function with or without entering the debugger. // This is used in unit tests to run code as if debugger is entered or simply // to have a stack with C++ frame in the middle. RUNTIME_FUNCTION(MaybeObject*, Runtime_ExecuteInDebugContext) { ASSERT(args.length() == 2); HandleScope scope(isolate); CONVERT_ARG_CHECKED(JSFunction, function, 0); CONVERT_BOOLEAN_CHECKED(without_debugger, args[1]); Handle<Object> result; bool pending_exception; { if (without_debugger) { result = Execution::Call(function, isolate->global(), 0, NULL, &pending_exception); } else { EnterDebugger enter_debugger; result = Execution::Call(function, isolate->global(), 0, NULL, &pending_exception); } } if (!pending_exception) { return *result; } else { return Failure::Exception(); } } // Sets a v8 flag. RUNTIME_FUNCTION(MaybeObject*, Runtime_SetFlags) { CONVERT_CHECKED(String, arg, args[0]); SmartPointer<char> flags = arg->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL); FlagList::SetFlagsFromString(*flags, StrLength(*flags)); return isolate->heap()->undefined_value(); } // Performs a GC. // Presently, it only does a full GC. RUNTIME_FUNCTION(MaybeObject*, Runtime_CollectGarbage) { isolate->heap()->CollectAllGarbage(true); return isolate->heap()->undefined_value(); } // Gets the current heap usage. RUNTIME_FUNCTION(MaybeObject*, Runtime_GetHeapUsage) { int usage = static_cast<int>(isolate->heap()->SizeOfObjects()); if (!Smi::IsValid(usage)) { return *isolate->factory()->NewNumberFromInt(usage); } return Smi::FromInt(usage); } // Captures a live object list from the present heap. RUNTIME_FUNCTION(MaybeObject*, Runtime_HasLOLEnabled) { #ifdef LIVE_OBJECT_LIST return isolate->heap()->true_value(); #else return isolate->heap()->false_value(); #endif } // Captures a live object list from the present heap. RUNTIME_FUNCTION(MaybeObject*, Runtime_CaptureLOL) { #ifdef LIVE_OBJECT_LIST return LiveObjectList::Capture(); #else return isolate->heap()->undefined_value(); #endif } // Deletes the specified live object list. RUNTIME_FUNCTION(MaybeObject*, Runtime_DeleteLOL) { #ifdef LIVE_OBJECT_LIST CONVERT_SMI_CHECKED(id, args[0]); bool success = LiveObjectList::Delete(id); return success ? isolate->heap()->true_value() : isolate->heap()->false_value(); #else return isolate->heap()->undefined_value(); #endif } // Generates the response to a debugger request for a dump of the objects // contained in the difference between the captured live object lists // specified by id1 and id2. // If id1 is 0 (i.e. not a valid lol), then the whole of lol id2 will be // dumped. RUNTIME_FUNCTION(MaybeObject*, Runtime_DumpLOL) { #ifdef LIVE_OBJECT_LIST HandleScope scope; CONVERT_SMI_CHECKED(id1, args[0]); CONVERT_SMI_CHECKED(id2, args[1]); CONVERT_SMI_CHECKED(start, args[2]); CONVERT_SMI_CHECKED(count, args[3]); CONVERT_ARG_CHECKED(JSObject, filter_obj, 4); EnterDebugger enter_debugger; return LiveObjectList::Dump(id1, id2, start, count, filter_obj); #else return isolate->heap()->undefined_value(); #endif } // Gets the specified object as requested by the debugger. // This is only used for obj ids shown in live object lists. RUNTIME_FUNCTION(MaybeObject*, Runtime_GetLOLObj) { #ifdef LIVE_OBJECT_LIST CONVERT_SMI_CHECKED(obj_id, args[0]); Object* result = LiveObjectList::GetObj(obj_id); return result; #else return isolate->heap()->undefined_value(); #endif } // Gets the obj id for the specified address if valid. // This is only used for obj ids shown in live object lists. RUNTIME_FUNCTION(MaybeObject*, Runtime_GetLOLObjId) { #ifdef LIVE_OBJECT_LIST HandleScope scope; CONVERT_ARG_CHECKED(String, address, 0); Object* result = LiveObjectList::GetObjId(address); return result; #else return isolate->heap()->undefined_value(); #endif } // Gets the retainers that references the specified object alive. RUNTIME_FUNCTION(MaybeObject*, Runtime_GetLOLObjRetainers) { #ifdef LIVE_OBJECT_LIST HandleScope scope; CONVERT_SMI_CHECKED(obj_id, args[0]); RUNTIME_ASSERT(args[1]->IsUndefined() || args[1]->IsJSObject()); RUNTIME_ASSERT(args[2]->IsUndefined() || args[2]->IsBoolean()); RUNTIME_ASSERT(args[3]->IsUndefined() || args[3]->IsSmi()); RUNTIME_ASSERT(args[4]->IsUndefined() || args[4]->IsSmi()); CONVERT_ARG_CHECKED(JSObject, filter_obj, 5); Handle<JSObject> instance_filter; if (args[1]->IsJSObject()) { instance_filter = args.at<JSObject>(1); } bool verbose = false; if (args[2]->IsBoolean()) { verbose = args[2]->IsTrue(); } int start = 0; if (args[3]->IsSmi()) { start = Smi::cast(args[3])->value(); } int limit = Smi::kMaxValue; if (args[4]->IsSmi()) { limit = Smi::cast(args[4])->value(); } return LiveObjectList::GetObjRetainers(obj_id, instance_filter, verbose, start, limit, filter_obj); #else return isolate->heap()->undefined_value(); #endif } // Gets the reference path between 2 objects. RUNTIME_FUNCTION(MaybeObject*, Runtime_GetLOLPath) { #ifdef LIVE_OBJECT_LIST HandleScope scope; CONVERT_SMI_CHECKED(obj_id1, args[0]); CONVERT_SMI_CHECKED(obj_id2, args[1]); RUNTIME_ASSERT(args[2]->IsUndefined() || args[2]->IsJSObject()); Handle<JSObject> instance_filter; if (args[2]->IsJSObject()) { instance_filter = args.at<JSObject>(2); } Object* result = LiveObjectList::GetPath(obj_id1, obj_id2, instance_filter); return result; #else return isolate->heap()->undefined_value(); #endif } // Generates the response to a debugger request for a list of all // previously captured live object lists. RUNTIME_FUNCTION(MaybeObject*, Runtime_InfoLOL) { #ifdef LIVE_OBJECT_LIST CONVERT_SMI_CHECKED(start, args[0]); CONVERT_SMI_CHECKED(count, args[1]); return LiveObjectList::Info(start, count); #else return isolate->heap()->undefined_value(); #endif } // Gets a dump of the specified object as requested by the debugger. // This is only used for obj ids shown in live object lists. RUNTIME_FUNCTION(MaybeObject*, Runtime_PrintLOLObj) { #ifdef LIVE_OBJECT_LIST HandleScope scope; CONVERT_SMI_CHECKED(obj_id, args[0]); Object* result = LiveObjectList::PrintObj(obj_id); return result; #else return isolate->heap()->undefined_value(); #endif } // Resets and releases all previously captured live object lists. RUNTIME_FUNCTION(MaybeObject*, Runtime_ResetLOL) { #ifdef LIVE_OBJECT_LIST LiveObjectList::Reset(); return isolate->heap()->undefined_value(); #else return isolate->heap()->undefined_value(); #endif } // Generates the response to a debugger request for a summary of the types // of objects in the difference between the captured live object lists // specified by id1 and id2. // If id1 is 0 (i.e. not a valid lol), then the whole of lol id2 will be // summarized. RUNTIME_FUNCTION(MaybeObject*, Runtime_SummarizeLOL) { #ifdef LIVE_OBJECT_LIST HandleScope scope; CONVERT_SMI_CHECKED(id1, args[0]); CONVERT_SMI_CHECKED(id2, args[1]); CONVERT_ARG_CHECKED(JSObject, filter_obj, 2); EnterDebugger enter_debugger; return LiveObjectList::Summarize(id1, id2, filter_obj); #else return isolate->heap()->undefined_value(); #endif } #endif // ENABLE_DEBUGGER_SUPPORT #ifdef ENABLE_LOGGING_AND_PROFILING RUNTIME_FUNCTION(MaybeObject*, Runtime_ProfilerResume) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_CHECKED(Smi, smi_modules, args[0]); CONVERT_CHECKED(Smi, smi_tag, args[1]); v8::V8::ResumeProfilerEx(smi_modules->value(), smi_tag->value()); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_ProfilerPause) { NoHandleAllocation ha; ASSERT(args.length() == 2); CONVERT_CHECKED(Smi, smi_modules, args[0]); CONVERT_CHECKED(Smi, smi_tag, args[1]); v8::V8::PauseProfilerEx(smi_modules->value(), smi_tag->value()); return isolate->heap()->undefined_value(); } #endif // ENABLE_LOGGING_AND_PROFILING // Finds the script object from the script data. NOTE: This operation uses // heap traversal to find the function generated for the source position // for the requested break point. For lazily compiled functions several heap // traversals might be required rendering this operation as a rather slow // operation. However for setting break points which is normally done through // some kind of user interaction the performance is not crucial. static Handle<Object> Runtime_GetScriptFromScriptName( Handle<String> script_name) { // Scan the heap for Script objects to find the script with the requested // script data. Handle<Script> script; HeapIterator iterator; HeapObject* obj = NULL; while (script.is_null() && ((obj = iterator.next()) != NULL)) { // If a script is found check if it has the script data requested. if (obj->IsScript()) { if (Script::cast(obj)->name()->IsString()) { if (String::cast(Script::cast(obj)->name())->Equals(*script_name)) { script = Handle<Script>(Script::cast(obj)); } } } } // If no script with the requested script data is found return undefined. if (script.is_null()) return FACTORY->undefined_value(); // Return the script found. return GetScriptWrapper(script); } // Get the script object from script data. NOTE: Regarding performance // see the NOTE for GetScriptFromScriptData. // args[0]: script data for the script to find the source for RUNTIME_FUNCTION(MaybeObject*, Runtime_GetScript) { HandleScope scope(isolate); ASSERT(args.length() == 1); CONVERT_CHECKED(String, script_name, args[0]); // Find the requested script. Handle<Object> result = Runtime_GetScriptFromScriptName(Handle<String>(script_name)); return *result; } // Determines whether the given stack frame should be displayed in // a stack trace. The caller is the error constructor that asked // for the stack trace to be collected. The first time a construct // call to this function is encountered it is skipped. The seen_caller // in/out parameter is used to remember if the caller has been seen // yet. static bool ShowFrameInStackTrace(StackFrame* raw_frame, Object* caller, bool* seen_caller) { // Only display JS frames. if (!raw_frame->is_java_script()) return false; JavaScriptFrame* frame = JavaScriptFrame::cast(raw_frame); Object* raw_fun = frame->function(); // Not sure when this can happen but skip it just in case. if (!raw_fun->IsJSFunction()) return false; if ((raw_fun == caller) && !(*seen_caller)) { *seen_caller = true; return false; } // Skip all frames until we've seen the caller. Also, skip the most // obvious builtin calls. Some builtin calls (such as Number.ADD // which is invoked using 'call') are very difficult to recognize // so we're leaving them in for now. return *seen_caller && !frame->receiver()->IsJSBuiltinsObject(); } // Collect the raw data for a stack trace. Returns an array of 4 // element segments each containing a receiver, function, code and // native code offset. RUNTIME_FUNCTION(MaybeObject*, Runtime_CollectStackTrace) { ASSERT_EQ(args.length(), 2); Handle<Object> caller = args.at<Object>(0); CONVERT_NUMBER_CHECKED(int32_t, limit, Int32, args[1]); HandleScope scope(isolate); Factory* factory = isolate->factory(); limit = Max(limit, 0); // Ensure that limit is not negative. int initial_size = Min(limit, 10); Handle<FixedArray> elements = factory->NewFixedArrayWithHoles(initial_size * 4); StackFrameIterator iter(isolate); // If the caller parameter is a function we skip frames until we're // under it before starting to collect. bool seen_caller = !caller->IsJSFunction(); int cursor = 0; int frames_seen = 0; while (!iter.done() && frames_seen < limit) { StackFrame* raw_frame = iter.frame(); if (ShowFrameInStackTrace(raw_frame, *caller, &seen_caller)) { frames_seen++; JavaScriptFrame* frame = JavaScriptFrame::cast(raw_frame); // Set initial size to the maximum inlining level + 1 for the outermost // function. List<FrameSummary> frames(Compiler::kMaxInliningLevels + 1); frame->Summarize(&frames); for (int i = frames.length() - 1; i >= 0; i--) { if (cursor + 4 > elements->length()) { int new_capacity = JSObject::NewElementsCapacity(elements->length()); Handle<FixedArray> new_elements = factory->NewFixedArrayWithHoles(new_capacity); for (int i = 0; i < cursor; i++) { new_elements->set(i, elements->get(i)); } elements = new_elements; } ASSERT(cursor + 4 <= elements->length()); Handle<Object> recv = frames[i].receiver(); Handle<JSFunction> fun = frames[i].function(); Handle<Code> code = frames[i].code(); Handle<Smi> offset(Smi::FromInt(frames[i].offset())); elements->set(cursor++, *recv); elements->set(cursor++, *fun); elements->set(cursor++, *code); elements->set(cursor++, *offset); } } iter.Advance(); } Handle<JSArray> result = factory->NewJSArrayWithElements(elements); result->set_length(Smi::FromInt(cursor)); return *result; } // Returns V8 version as a string. RUNTIME_FUNCTION(MaybeObject*, Runtime_GetV8Version) { ASSERT_EQ(args.length(), 0); NoHandleAllocation ha; const char* version_string = v8::V8::GetVersion(); return isolate->heap()->AllocateStringFromAscii(CStrVector(version_string), NOT_TENURED); } RUNTIME_FUNCTION(MaybeObject*, Runtime_Abort) { ASSERT(args.length() == 2); OS::PrintError("abort: %s\n", reinterpret_cast<char*>(args[0]) + Smi::cast(args[1])->value()); isolate->PrintStack(); OS::Abort(); UNREACHABLE(); return NULL; } RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFromCache) { // This is only called from codegen, so checks might be more lax. CONVERT_CHECKED(JSFunctionResultCache, cache, args[0]); Object* key = args[1]; int finger_index = cache->finger_index(); Object* o = cache->get(finger_index); if (o == key) { // The fastest case: hit the same place again. return cache->get(finger_index + 1); } for (int i = finger_index - 2; i >= JSFunctionResultCache::kEntriesIndex; i -= 2) { o = cache->get(i); if (o == key) { cache->set_finger_index(i); return cache->get(i + 1); } } int size = cache->size(); ASSERT(size <= cache->length()); for (int i = size - 2; i > finger_index; i -= 2) { o = cache->get(i); if (o == key) { cache->set_finger_index(i); return cache->get(i + 1); } } // There is no value in the cache. Invoke the function and cache result. HandleScope scope(isolate); Handle<JSFunctionResultCache> cache_handle(cache); Handle<Object> key_handle(key); Handle<Object> value; { Handle<JSFunction> factory(JSFunction::cast( cache_handle->get(JSFunctionResultCache::kFactoryIndex))); // TODO(antonm): consider passing a receiver when constructing a cache. Handle<Object> receiver(isolate->global_context()->global()); // This handle is nor shared, nor used later, so it's safe. Object** argv[] = { key_handle.location() }; bool pending_exception = false; value = Execution::Call(factory, receiver, 1, argv, &pending_exception); if (pending_exception) return Failure::Exception(); } #ifdef DEBUG cache_handle->JSFunctionResultCacheVerify(); #endif // Function invocation may have cleared the cache. Reread all the data. finger_index = cache_handle->finger_index(); size = cache_handle->size(); // If we have spare room, put new data into it, otherwise evict post finger // entry which is likely to be the least recently used. int index = -1; if (size < cache_handle->length()) { cache_handle->set_size(size + JSFunctionResultCache::kEntrySize); index = size; } else { index = finger_index + JSFunctionResultCache::kEntrySize; if (index == cache_handle->length()) { index = JSFunctionResultCache::kEntriesIndex; } } ASSERT(index % 2 == 0); ASSERT(index >= JSFunctionResultCache::kEntriesIndex); ASSERT(index < cache_handle->length()); cache_handle->set(index, *key_handle); cache_handle->set(index + 1, *value); cache_handle->set_finger_index(index); #ifdef DEBUG cache_handle->JSFunctionResultCacheVerify(); #endif return *value; } RUNTIME_FUNCTION(MaybeObject*, Runtime_NewMessageObject) { HandleScope scope(isolate); CONVERT_ARG_CHECKED(String, type, 0); CONVERT_ARG_CHECKED(JSArray, arguments, 1); return *isolate->factory()->NewJSMessageObject( type, arguments, 0, 0, isolate->factory()->undefined_value(), isolate->factory()->undefined_value(), isolate->factory()->undefined_value()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_MessageGetType) { CONVERT_CHECKED(JSMessageObject, message, args[0]); return message->type(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_MessageGetArguments) { CONVERT_CHECKED(JSMessageObject, message, args[0]); return message->arguments(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_MessageGetStartPosition) { CONVERT_CHECKED(JSMessageObject, message, args[0]); return Smi::FromInt(message->start_position()); } RUNTIME_FUNCTION(MaybeObject*, Runtime_MessageGetScript) { CONVERT_CHECKED(JSMessageObject, message, args[0]); return message->script(); } #ifdef DEBUG // ListNatives is ONLY used by the fuzz-natives.js in debug mode // Exclude the code in release mode. RUNTIME_FUNCTION(MaybeObject*, Runtime_ListNatives) { ASSERT(args.length() == 0); HandleScope scope; #define COUNT_ENTRY(Name, argc, ressize) + 1 int entry_count = 0 RUNTIME_FUNCTION_LIST(COUNT_ENTRY) INLINE_FUNCTION_LIST(COUNT_ENTRY) INLINE_RUNTIME_FUNCTION_LIST(COUNT_ENTRY); #undef COUNT_ENTRY Factory* factory = isolate->factory(); Handle<FixedArray> elements = factory->NewFixedArray(entry_count); int index = 0; bool inline_runtime_functions = false; #define ADD_ENTRY(Name, argc, ressize) \ { \ HandleScope inner; \ Handle<String> name; \ /* Inline runtime functions have an underscore in front of the name. */ \ if (inline_runtime_functions) { \ name = factory->NewStringFromAscii( \ Vector<const char>("_" #Name, StrLength("_" #Name))); \ } else { \ name = factory->NewStringFromAscii( \ Vector<const char>(#Name, StrLength(#Name))); \ } \ Handle<FixedArray> pair_elements = factory->NewFixedArray(2); \ pair_elements->set(0, *name); \ pair_elements->set(1, Smi::FromInt(argc)); \ Handle<JSArray> pair = factory->NewJSArrayWithElements(pair_elements); \ elements->set(index++, *pair); \ } inline_runtime_functions = false; RUNTIME_FUNCTION_LIST(ADD_ENTRY) inline_runtime_functions = true; INLINE_FUNCTION_LIST(ADD_ENTRY) INLINE_RUNTIME_FUNCTION_LIST(ADD_ENTRY) #undef ADD_ENTRY ASSERT_EQ(index, entry_count); Handle<JSArray> result = factory->NewJSArrayWithElements(elements); return *result; } #endif RUNTIME_FUNCTION(MaybeObject*, Runtime_Log) { ASSERT(args.length() == 2); CONVERT_CHECKED(String, format, args[0]); CONVERT_CHECKED(JSArray, elms, args[1]); Vector<const char> chars = format->ToAsciiVector(); LOGGER->LogRuntime(chars, elms); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(MaybeObject*, Runtime_IS_VAR) { UNREACHABLE(); // implemented as macro in the parser return NULL; } // ---------------------------------------------------------------------------- // Implementation of Runtime #define F(name, number_of_args, result_size) \ { Runtime::k##name, Runtime::RUNTIME, #name, \ FUNCTION_ADDR(Runtime_##name), number_of_args, result_size }, #define I(name, number_of_args, result_size) \ { Runtime::kInline##name, Runtime::INLINE, \ "_" #name, NULL, number_of_args, result_size }, static const Runtime::Function kIntrinsicFunctions[] = { RUNTIME_FUNCTION_LIST(F) INLINE_FUNCTION_LIST(I) INLINE_RUNTIME_FUNCTION_LIST(I) }; MaybeObject* Runtime::InitializeIntrinsicFunctionNames(Heap* heap, Object* dictionary) { ASSERT(Isolate::Current()->heap() == heap); ASSERT(dictionary != NULL); ASSERT(StringDictionary::cast(dictionary)->NumberOfElements() == 0); for (int i = 0; i < kNumFunctions; ++i) { Object* name_symbol; { MaybeObject* maybe_name_symbol = heap->LookupAsciiSymbol(kIntrinsicFunctions[i].name); if (!maybe_name_symbol->ToObject(&name_symbol)) return maybe_name_symbol; } StringDictionary* string_dictionary = StringDictionary::cast(dictionary); { MaybeObject* maybe_dictionary = string_dictionary->Add( String::cast(name_symbol), Smi::FromInt(i), PropertyDetails(NONE, NORMAL)); if (!maybe_dictionary->ToObject(&dictionary)) { // Non-recoverable failure. Calling code must restart heap // initialization. return maybe_dictionary; } } } return dictionary; } const Runtime::Function* Runtime::FunctionForSymbol(Handle<String> name) { Heap* heap = name->GetHeap(); int entry = heap->intrinsic_function_names()->FindEntry(*name); if (entry != kNotFound) { Object* smi_index = heap->intrinsic_function_names()->ValueAt(entry); int function_index = Smi::cast(smi_index)->value(); return &(kIntrinsicFunctions[function_index]); } return NULL; } const Runtime::Function* Runtime::FunctionForId(Runtime::FunctionId id) { return &(kIntrinsicFunctions[static_cast<int>(id)]); } void Runtime::PerformGC(Object* result) { Isolate* isolate = Isolate::Current(); Failure* failure = Failure::cast(result); if (failure->IsRetryAfterGC()) { // Try to do a garbage collection; ignore it if it fails. The C // entry stub will throw an out-of-memory exception in that case. isolate->heap()->CollectGarbage(failure->allocation_space()); } else { // Handle last resort GC and make sure to allow future allocations // to grow the heap without causing GCs (if possible). isolate->counters()->gc_last_resort_from_js()->Increment(); isolate->heap()->CollectAllGarbage(false); } } } } // namespace v8::internal