// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_MIPS_VIRTUAL_FRAME_MIPS_H_ #define V8_MIPS_VIRTUAL_FRAME_MIPS_H_ #include "register-allocator.h" namespace v8 { namespace internal { // This dummy class is only used to create invalid virtual frames. extern class InvalidVirtualFrameInitializer {}* kInvalidVirtualFrameInitializer; // ------------------------------------------------------------------------- // Virtual frames // // The virtual frame is an abstraction of the physical stack frame. It // encapsulates the parameters, frame-allocated locals, and the expression // stack. It supports push/pop operations on the expression stack, as well // as random access to the expression stack elements, locals, and // parameters. class VirtualFrame : public ZoneObject { public: class RegisterAllocationScope; // A utility class to introduce a scope where the virtual frame is // expected to remain spilled. The constructor spills the code // generator's current frame, and keeps it spilled. class SpilledScope BASE_EMBEDDED { public: explicit SpilledScope(VirtualFrame* frame) : old_is_spilled_( Isolate::Current()->is_virtual_frame_in_spilled_scope()) { if (frame != NULL) { if (!old_is_spilled_) { frame->SpillAll(); } else { frame->AssertIsSpilled(); } } Isolate::Current()->set_is_virtual_frame_in_spilled_scope(true); } ~SpilledScope() { Isolate::Current()->set_is_virtual_frame_in_spilled_scope( old_is_spilled_); } static bool is_spilled() { return Isolate::Current()->is_virtual_frame_in_spilled_scope(); } private: int old_is_spilled_; SpilledScope() {} friend class RegisterAllocationScope; }; class RegisterAllocationScope BASE_EMBEDDED { public: // A utility class to introduce a scope where the virtual frame // is not spilled, ie. where register allocation occurs. Eventually // when RegisterAllocationScope is ubiquitous it can be removed // along with the (by then unused) SpilledScope class. inline explicit RegisterAllocationScope(CodeGenerator* cgen); inline ~RegisterAllocationScope(); private: CodeGenerator* cgen_; bool old_is_spilled_; RegisterAllocationScope() {} }; // An illegal index into the virtual frame. static const int kIllegalIndex = -1; // Construct an initial virtual frame on entry to a JS function. inline VirtualFrame(); // Construct an invalid virtual frame, used by JumpTargets. explicit inline VirtualFrame(InvalidVirtualFrameInitializer* dummy); // Construct a virtual frame as a clone of an existing one. explicit inline VirtualFrame(VirtualFrame* original); inline CodeGenerator* cgen() const; inline MacroAssembler* masm(); // The number of elements on the virtual frame. int element_count() const { return element_count_; } // The height of the virtual expression stack. inline int height() const; bool is_used(int num) { switch (num) { case 0: { // a0. return kA0InUse[top_of_stack_state_]; } case 1: { // a1. return kA1InUse[top_of_stack_state_]; } case 2: case 3: case 4: case 5: case 6: { // a2 to a3, t0 to t2. ASSERT(num - kFirstAllocatedRegister < kNumberOfAllocatedRegisters); ASSERT(num >= kFirstAllocatedRegister); if ((register_allocation_map_ & (1 << (num - kFirstAllocatedRegister))) == 0) { return false; } else { return true; } } default: { ASSERT(num < kFirstAllocatedRegister || num >= kFirstAllocatedRegister + kNumberOfAllocatedRegisters); return false; } } } // Add extra in-memory elements to the top of the frame to match an actual // frame (eg, the frame after an exception handler is pushed). No code is // emitted. void Adjust(int count); // Forget elements from the top of the frame to match an actual frame (eg, // the frame after a runtime call). No code is emitted except to bring the // frame to a spilled state. void Forget(int count); // Spill all values from the frame to memory. void SpillAll(); void AssertIsSpilled() const { ASSERT(top_of_stack_state_ == NO_TOS_REGISTERS); ASSERT(register_allocation_map_ == 0); } void AssertIsNotSpilled() { ASSERT(!SpilledScope::is_spilled()); } // Spill all occurrences of a specific register from the frame. void Spill(Register reg) { UNIMPLEMENTED(); } // Spill all occurrences of an arbitrary register if possible. Return the // register spilled or no_reg if it was not possible to free any register // (ie, they all have frame-external references). Unimplemented. Register SpillAnyRegister(); // Make this virtual frame have a state identical to an expected virtual // frame. As a side effect, code may be emitted to make this frame match // the expected one. void MergeTo(const VirtualFrame* expected, Condition cond = al, Register r1 = no_reg, const Operand& r2 = Operand(no_reg)); void MergeTo(VirtualFrame* expected, Condition cond = al, Register r1 = no_reg, const Operand& r2 = Operand(no_reg)); // Checks whether this frame can be branched to by the other frame. bool IsCompatibleWith(const VirtualFrame* other) const { return (tos_known_smi_map_ & (~other->tos_known_smi_map_)) == 0; } inline void ForgetTypeInfo() { tos_known_smi_map_ = 0; } // Detach a frame from its code generator, perhaps temporarily. This // tells the register allocator that it is free to use frame-internal // registers. Used when the code generator's frame is switched from this // one to NULL by an unconditional jump. void DetachFromCodeGenerator() { } // (Re)attach a frame to its code generator. This informs the register // allocator that the frame-internal register references are active again. // Used when a code generator's frame is switched from NULL to this one by // binding a label. void AttachToCodeGenerator() { } // Emit code for the physical JS entry and exit frame sequences. After // calling Enter, the virtual frame is ready for use; and after calling // Exit it should not be used. Note that Enter does not allocate space in // the physical frame for storing frame-allocated locals. void Enter(); void Exit(); // Prepare for returning from the frame by elements in the virtual frame. // This avoids generating unnecessary merge code when jumping to the shared // return site. No spill code emitted. Value to return should be in v0. inline void PrepareForReturn(); // Number of local variables after when we use a loop for allocating. static const int kLocalVarBound = 5; // Allocate and initialize the frame-allocated locals. void AllocateStackSlots(); // The current top of the expression stack as an assembly operand. MemOperand Top() { AssertIsSpilled(); return MemOperand(sp, 0); } // An element of the expression stack as an assembly operand. MemOperand ElementAt(int index) { int adjusted_index = index - kVirtualElements[top_of_stack_state_]; ASSERT(adjusted_index >= 0); return MemOperand(sp, adjusted_index * kPointerSize); } bool KnownSmiAt(int index) { if (index >= kTOSKnownSmiMapSize) return false; return (tos_known_smi_map_ & (1 << index)) != 0; } // A frame-allocated local as an assembly operand. inline MemOperand LocalAt(int index); // Push the address of the receiver slot on the frame. void PushReceiverSlotAddress(); // The function frame slot. MemOperand Function() { return MemOperand(fp, kFunctionOffset); } // The context frame slot. MemOperand Context() { return MemOperand(fp, kContextOffset); } // A parameter as an assembly operand. inline MemOperand ParameterAt(int index); // The receiver frame slot. inline MemOperand Receiver(); // Push a try-catch or try-finally handler on top of the virtual frame. void PushTryHandler(HandlerType type); // Call stub given the number of arguments it expects on (and // removes from) the stack. inline void CallStub(CodeStub* stub, int arg_count); // Call JS function from top of the stack with arguments // taken from the stack. void CallJSFunction(int arg_count); // Call runtime given the number of arguments expected on (and // removed from) the stack. void CallRuntime(const Runtime::Function* f, int arg_count); void CallRuntime(Runtime::FunctionId id, int arg_count); #ifdef ENABLE_DEBUGGER_SUPPORT void DebugBreak(); #endif // Invoke builtin given the number of arguments it expects on (and // removes from) the stack. void InvokeBuiltin(Builtins::JavaScript id, InvokeJSFlags flag, int arg_count); // Call load IC. Receiver is on the stack and is consumed. Result is returned // in v0. void CallLoadIC(Handle<String> name, RelocInfo::Mode mode); // Call store IC. If the load is contextual, value is found on top of the // frame. If not, value and receiver are on the frame. Both are consumed. // Result is returned in v0. void CallStoreIC(Handle<String> name, bool is_contextual); // Call keyed load IC. Key and receiver are on the stack. Both are consumed. // Result is returned in v0. void CallKeyedLoadIC(); // Call keyed store IC. Value, key and receiver are on the stack. All three // are consumed. Result is returned in v0 (and a0). void CallKeyedStoreIC(); // Call into an IC stub given the number of arguments it removes // from the stack. Register arguments to the IC stub are implicit, // and depend on the type of IC stub. void CallCodeObject(Handle<Code> ic, RelocInfo::Mode rmode, int dropped_args); // Drop a number of elements from the top of the expression stack. May // emit code to affect the physical frame. Does not clobber any registers // excepting possibly the stack pointer. void Drop(int count); // Drop one element. void Drop() { Drop(1); } // Pop an element from the top of the expression stack. Discards // the result. void Pop(); // Pop an element from the top of the expression stack. The register // will be one normally used for the top of stack register allocation // so you can't hold on to it if you push on the stack. Register PopToRegister(Register but_not_to_this_one = no_reg); // Look at the top of the stack. The register returned is aliased and // must be copied to a scratch register before modification. Register Peek(); // Look at the value beneath the top of the stack. The register returned is // aliased and must be copied to a scratch register before modification. Register Peek2(); // Duplicate the top of stack. void Dup(); // Duplicate the two elements on top of stack. void Dup2(); // Flushes all registers, but it puts a copy of the top-of-stack in a0. void SpillAllButCopyTOSToA0(); // Flushes all registers, but it puts a copy of the top-of-stack in a1. void SpillAllButCopyTOSToA1(); // Flushes all registers, but it puts a copy of the top-of-stack in a1 // and the next value on the stack in a0. void SpillAllButCopyTOSToA1A0(); // Pop and save an element from the top of the expression stack and // emit a corresponding pop instruction. void EmitPop(Register reg); // Same but for multiple registers void EmitMultiPop(RegList regs); void EmitMultiPopReversed(RegList regs); // Takes the top two elements and puts them in a0 (top element) and a1 // (second element). void PopToA1A0(); // Takes the top element and puts it in a1. void PopToA1(); // Takes the top element and puts it in a0. void PopToA0(); // Push an element on top of the expression stack and emit a // corresponding push instruction. void EmitPush(Register reg, TypeInfo type_info = TypeInfo::Unknown()); void EmitPush(Operand operand, TypeInfo type_info = TypeInfo::Unknown()); void EmitPush(MemOperand operand, TypeInfo type_info = TypeInfo::Unknown()); void EmitPushRoot(Heap::RootListIndex index); // Overwrite the nth thing on the stack. If the nth position is in a // register then this turns into a Move, otherwise an sw. Afterwards // you can still use the register even if it is a register that can be // used for TOS (a0 or a1). void SetElementAt(Register reg, int this_far_down); // Get a register which is free and which must be immediately used to // push on the top of the stack. Register GetTOSRegister(); // Same but for multiple registers. void EmitMultiPush(RegList regs); void EmitMultiPushReversed(RegList regs); static Register scratch0() { return t4; } static Register scratch1() { return t5; } static Register scratch2() { return t6; } private: static const int kLocal0Offset = JavaScriptFrameConstants::kLocal0Offset; static const int kFunctionOffset = JavaScriptFrameConstants::kFunctionOffset; static const int kContextOffset = StandardFrameConstants::kContextOffset; static const int kHandlerSize = StackHandlerConstants::kSize / kPointerSize; static const int kPreallocatedElements = 5 + 8; // 8 expression stack slots. // 5 states for the top of stack, which can be in memory or in a0 and a1. enum TopOfStack { NO_TOS_REGISTERS, A0_TOS, A1_TOS, A1_A0_TOS, A0_A1_TOS, TOS_STATES}; static const int kMaxTOSRegisters = 2; static const bool kA0InUse[TOS_STATES]; static const bool kA1InUse[TOS_STATES]; static const int kVirtualElements[TOS_STATES]; static const TopOfStack kStateAfterPop[TOS_STATES]; static const TopOfStack kStateAfterPush[TOS_STATES]; static const Register kTopRegister[TOS_STATES]; static const Register kBottomRegister[TOS_STATES]; // We allocate up to 5 locals in registers. static const int kNumberOfAllocatedRegisters = 5; // r2 to r6 are allocated to locals. static const int kFirstAllocatedRegister = 2; static const Register kAllocatedRegisters[kNumberOfAllocatedRegisters]; static Register AllocatedRegister(int r) { ASSERT(r >= 0 && r < kNumberOfAllocatedRegisters); return kAllocatedRegisters[r]; } // The number of elements on the stack frame. int element_count_; TopOfStack top_of_stack_state_:3; int register_allocation_map_:kNumberOfAllocatedRegisters; static const int kTOSKnownSmiMapSize = 4; unsigned tos_known_smi_map_:kTOSKnownSmiMapSize; // The index of the element that is at the processor's stack pointer // (the sp register). For now since everything is in memory it is given // by the number of elements on the not-very-virtual stack frame. int stack_pointer() { return element_count_ - 1; } // The number of frame-allocated locals and parameters respectively. inline int parameter_count() const; inline int local_count() const; // The index of the element that is at the processor's frame pointer // (the fp register). The parameters, receiver, function, and context // are below the frame pointer. inline int frame_pointer() const; // The index of the first parameter. The receiver lies below the first // parameter. int param0_index() { return 1; } // The index of the context slot in the frame. It is immediately // below the frame pointer. inline int context_index(); // The index of the function slot in the frame. It is below the frame // pointer and context slot. inline int function_index(); // The index of the first local. Between the frame pointer and the // locals lies the return address. inline int local0_index() const; // The index of the base of the expression stack. inline int expression_base_index() const; // Convert a frame index into a frame pointer relative offset into the // actual stack. inline int fp_relative(int index); // Spill all elements in registers. Spill the top spilled_args elements // on the frame. Sync all other frame elements. // Then drop dropped_args elements from the virtual frame, to match // the effect of an upcoming call that will drop them from the stack. void PrepareForCall(int spilled_args, int dropped_args); // If all top-of-stack registers are in use then the lowest one is pushed // onto the physical stack and made free. void EnsureOneFreeTOSRegister(); // Emit instructions to get the top of stack state from where we are to where // we want to be. void MergeTOSTo(TopOfStack expected_state, Condition cond = al, Register r1 = no_reg, const Operand& r2 = Operand(no_reg)); inline bool Equals(const VirtualFrame* other); inline void LowerHeight(int count) { element_count_ -= count; if (count >= kTOSKnownSmiMapSize) { tos_known_smi_map_ = 0; } else { tos_known_smi_map_ >>= count; } } inline void RaiseHeight(int count, unsigned known_smi_map = 0) { ASSERT(known_smi_map < (1u << count)); element_count_ += count; if (count >= kTOSKnownSmiMapSize) { tos_known_smi_map_ = known_smi_map; } else { tos_known_smi_map_ = ((tos_known_smi_map_ << count) | known_smi_map); } } friend class JumpTarget; }; } } // namespace v8::internal #endif // V8_MIPS_VIRTUAL_FRAME_MIPS_H_