// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_MIPS_CODEGEN_MIPS_H_ #define V8_MIPS_CODEGEN_MIPS_H_ #include "ast.h" #include "code-stubs-mips.h" #include "ic-inl.h" namespace v8 { namespace internal { #if(defined(__mips_hard_float) && __mips_hard_float != 0) // Use floating-point coprocessor instructions. This flag is raised when // -mhard-float is passed to the compiler. static const bool IsMipsSoftFloatABI = false; #elif(defined(__mips_soft_float) && __mips_soft_float != 0) // Not using floating-point coprocessor instructions. This flag is raised when // -msoft-float is passed to the compiler. static const bool IsMipsSoftFloatABI = true; #else static const bool IsMipsSoftFloatABI = true; #endif // Forward declarations class CompilationInfo; class DeferredCode; class JumpTarget; class RegisterAllocator; class RegisterFile; enum InitState { CONST_INIT, NOT_CONST_INIT }; enum TypeofState { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF }; enum GenerateInlineSmi { DONT_GENERATE_INLINE_SMI, GENERATE_INLINE_SMI }; enum WriteBarrierCharacter { UNLIKELY_SMI, LIKELY_SMI, NEVER_NEWSPACE }; // ----------------------------------------------------------------------------- // Reference support // A reference is a C++ stack-allocated object that keeps an ECMA // reference on the execution stack while in scope. For variables // the reference is empty, indicating that it isn't necessary to // store state on the stack for keeping track of references to those. // For properties, we keep either one (named) or two (indexed) values // on the execution stack to represent the reference. class Reference BASE_EMBEDDED { public: // The values of the types is important, see size(). enum Type { UNLOADED = -2, ILLEGAL = -1, SLOT = 0, NAMED = 1, KEYED = 2 }; Reference(CodeGenerator* cgen, Expression* expression, bool persist_after_get = false); ~Reference(); Expression* expression() const { return expression_; } Type type() const { return type_; } void set_type(Type value) { ASSERT_EQ(ILLEGAL, type_); type_ = value; } void set_unloaded() { ASSERT_NE(ILLEGAL, type_); ASSERT_NE(UNLOADED, type_); type_ = UNLOADED; } // The size the reference takes up on the stack. int size() const { return (type_ < SLOT) ? 0 : type_; } bool is_illegal() const { return type_ == ILLEGAL; } bool is_slot() const { return type_ == SLOT; } bool is_property() const { return type_ == NAMED || type_ == KEYED; } bool is_unloaded() const { return type_ == UNLOADED; } // Return the name. Only valid for named property references. Handle<String> GetName(); // Generate code to push the value of the reference on top of the // expression stack. The reference is expected to be already on top of // the expression stack, and it is consumed by the call unless the // reference is for a compound assignment. // If the reference is not consumed, it is left in place under its value. void GetValue(); // Generate code to pop a reference, push the value of the reference, // and then spill the stack frame. inline void GetValueAndSpill(); // Generate code to store the value on top of the expression stack in the // reference. The reference is expected to be immediately below the value // on the expression stack. The value is stored in the location specified // by the reference, and is left on top of the stack, after the reference // is popped from beneath it (unloaded). void SetValue(InitState init_state, WriteBarrierCharacter wb); // This is in preparation for something that uses the reference on the stack. // If we need this reference afterwards get then dup it now. Otherwise mark // it as used. inline void DupIfPersist(); private: CodeGenerator* cgen_; Expression* expression_; Type type_; // Keep the reference on the stack after get, so it can be used by set later. bool persist_after_get_; }; // ----------------------------------------------------------------------------- // Code generation state // The state is passed down the AST by the code generator (and back up, in // the form of the state of the label pair). It is threaded through the // call stack. Constructing a state implicitly pushes it on the owning code // generator's stack of states, and destroying one implicitly pops it. class CodeGenState BASE_EMBEDDED { public: // Create an initial code generator state. Destroying the initial state // leaves the code generator with a NULL state. explicit CodeGenState(CodeGenerator* owner); // Destroy a code generator state and restore the owning code generator's // previous state. virtual ~CodeGenState(); virtual JumpTarget* true_target() const { return NULL; } virtual JumpTarget* false_target() const { return NULL; } protected: inline CodeGenerator* owner() { return owner_; } inline CodeGenState* previous() const { return previous_; } private: // The owning code generator. CodeGenerator* owner_; // The previous state of the owning code generator, restored when // this state is destroyed. CodeGenState* previous_; }; class ConditionCodeGenState : public CodeGenState { public: // Create a code generator state based on a code generator's current // state. The new state has its own pair of branch labels. ConditionCodeGenState(CodeGenerator* owner, JumpTarget* true_target, JumpTarget* false_target); virtual JumpTarget* true_target() const { return true_target_; } virtual JumpTarget* false_target() const { return false_target_; } private: JumpTarget* true_target_; JumpTarget* false_target_; }; class TypeInfoCodeGenState : public CodeGenState { public: TypeInfoCodeGenState(CodeGenerator* owner, Slot* slot_number, TypeInfo info); virtual ~TypeInfoCodeGenState(); virtual JumpTarget* true_target() const { return previous()->true_target(); } virtual JumpTarget* false_target() const { return previous()->false_target(); } private: Slot* slot_; TypeInfo old_type_info_; }; // ------------------------------------------------------------------------- // Arguments allocation mode enum ArgumentsAllocationMode { NO_ARGUMENTS_ALLOCATION, EAGER_ARGUMENTS_ALLOCATION, LAZY_ARGUMENTS_ALLOCATION }; // ----------------------------------------------------------------------------- // CodeGenerator class CodeGenerator: public AstVisitor { public: // Compilation mode. Either the compiler is used as the primary // compiler and needs to setup everything or the compiler is used as // the secondary compiler for split compilation and has to handle // bailouts. enum Mode { PRIMARY, SECONDARY }; static bool MakeCode(CompilationInfo* info); // Printing of AST, etc. as requested by flags. static void MakeCodePrologue(CompilationInfo* info); // Allocate and install the code. static Handle<Code> MakeCodeEpilogue(MacroAssembler* masm, Code::Flags flags, CompilationInfo* info); // Print the code after compiling it. static void PrintCode(Handle<Code> code, CompilationInfo* info); #ifdef ENABLE_LOGGING_AND_PROFILING static bool ShouldGenerateLog(Expression* type); #endif static void SetFunctionInfo(Handle<JSFunction> fun, FunctionLiteral* lit, bool is_toplevel, Handle<Script> script); static bool RecordPositions(MacroAssembler* masm, int pos, bool right_here = false); // Accessors MacroAssembler* masm() { return masm_; } VirtualFrame* frame() const { return frame_; } inline Handle<Script> script(); bool has_valid_frame() const { return frame_ != NULL; } // Set the virtual frame to be new_frame, with non-frame register // reference counts given by non_frame_registers. The non-frame // register reference counts of the old frame are returned in // non_frame_registers. void SetFrame(VirtualFrame* new_frame, RegisterFile* non_frame_registers); void DeleteFrame(); RegisterAllocator* allocator() const { return allocator_; } CodeGenState* state() { return state_; } void set_state(CodeGenState* state) { state_ = state; } TypeInfo type_info(Slot* slot) { int index = NumberOfSlot(slot); if (index == kInvalidSlotNumber) return TypeInfo::Unknown(); return (*type_info_)[index]; } TypeInfo set_type_info(Slot* slot, TypeInfo info) { int index = NumberOfSlot(slot); ASSERT(index >= kInvalidSlotNumber); if (index != kInvalidSlotNumber) { TypeInfo previous_value = (*type_info_)[index]; (*type_info_)[index] = info; return previous_value; } return TypeInfo::Unknown(); } void AddDeferred(DeferredCode* code) { deferred_.Add(code); } // Constants related to patching of inlined load/store. static int GetInlinedKeyedLoadInstructionsAfterPatch() { // This is in correlation with the padding in MacroAssembler::Abort. return FLAG_debug_code ? 45 : 20; } static const int kInlinedKeyedStoreInstructionsAfterPatch = 9; static int GetInlinedNamedStoreInstructionsAfterPatch() { ASSERT(Isolate::Current()->inlined_write_barrier_size() != -1); // Magic number 5: instruction count after patched map load: // li: 2 (liu & ori), Branch : 2 (bne & nop), sw : 1 return Isolate::Current()->inlined_write_barrier_size() + 5; } private: // Type of a member function that generates inline code for a native function. typedef void (CodeGenerator::*InlineFunctionGenerator) (ZoneList<Expression*>*); static const InlineFunctionGenerator kInlineFunctionGenerators[]; // Construction/Destruction. explicit CodeGenerator(MacroAssembler* masm); // Accessors. inline bool is_eval(); inline Scope* scope(); inline bool is_strict_mode(); inline StrictModeFlag strict_mode_flag(); // Generating deferred code. void ProcessDeferred(); static const int kInvalidSlotNumber = -1; int NumberOfSlot(Slot* slot); // State bool has_cc() const { return cc_reg_ != cc_always; } JumpTarget* true_target() const { return state_->true_target(); } JumpTarget* false_target() const { return state_->false_target(); } // Track loop nesting level. int loop_nesting() const { return loop_nesting_; } void IncrementLoopNesting() { loop_nesting_++; } void DecrementLoopNesting() { loop_nesting_--; } // Node visitors. void VisitStatements(ZoneList<Statement*>* statements); virtual void VisitSlot(Slot* node); #define DEF_VISIT(type) \ virtual void Visit##type(type* node); AST_NODE_LIST(DEF_VISIT) #undef DEF_VISIT // Main code generation function void Generate(CompilationInfo* info); // Generate the return sequence code. Should be called no more than // once per compiled function, immediately after binding the return // target (which can not be done more than once). The return value should // be in v0. void GenerateReturnSequence(); // Returns the arguments allocation mode. ArgumentsAllocationMode ArgumentsMode(); // Store the arguments object and allocate it if necessary. void StoreArgumentsObject(bool initial); // The following are used by class Reference. void LoadReference(Reference* ref); void UnloadReference(Reference* ref); MemOperand SlotOperand(Slot* slot, Register tmp); MemOperand ContextSlotOperandCheckExtensions(Slot* slot, Register tmp, Register tmp2, JumpTarget* slow); void LoadCondition(Expression* x, JumpTarget* true_target, JumpTarget* false_target, bool force_cc); void Load(Expression* x); void LoadGlobal(); void LoadGlobalReceiver(Register scratch); // Special code for typeof expressions: Unfortunately, we must // be careful when loading the expression in 'typeof' // expressions. We are not allowed to throw reference errors for // non-existing properties of the global object, so we must make it // look like an explicit property access, instead of an access // through the context chain. void LoadTypeofExpression(Expression* x); // Store a keyed property. Key and receiver are on the stack and the value is // in a0. Result is returned in r0. void EmitKeyedStore(StaticType* key_type, WriteBarrierCharacter wb_info); // Read a value from a slot and leave it on top of the expression stack. void LoadFromSlot(Slot* slot, TypeofState typeof_state); void LoadFromGlobalSlotCheckExtensions(Slot* slot, TypeofState typeof_state, JumpTarget* slow); void LoadFromSlotCheckForArguments(Slot* slot, TypeofState state); // Support for loading from local/global variables and arguments // whose location is known unless they are shadowed by // eval-introduced bindings. Generates no code for unsupported slot // types and therefore expects to fall through to the slow jump target. void EmitDynamicLoadFromSlotFastCase(Slot* slot, TypeofState typeof_state, JumpTarget* slow, JumpTarget* done); // Store the value on top of the stack to a slot. void StoreToSlot(Slot* slot, InitState init_state); // Support for compiling assignment expressions. void EmitSlotAssignment(Assignment* node); void EmitNamedPropertyAssignment(Assignment* node); void EmitKeyedPropertyAssignment(Assignment* node); // Load a named property, returning it in v0. The receiver is passed on the // stack, and remains there. void EmitNamedLoad(Handle<String> name, bool is_contextual); // Store to a named property. If the store is contextual, value is passed on // the frame and consumed. Otherwise, receiver and value are passed on the // frame and consumed. The result is returned in v0. void EmitNamedStore(Handle<String> name, bool is_contextual); // Load a keyed property, leaving it in v0. The receiver and key are // passed on the stack, and remain there. void EmitKeyedLoad(); void ToBoolean(JumpTarget* true_target, JumpTarget* false_target); // Generate code that computes a shortcutting logical operation. void GenerateLogicalBooleanOperation(BinaryOperation* node); void GenericBinaryOperation(Token::Value op, OverwriteMode overwrite_mode, GenerateInlineSmi inline_smi, int known_rhs = GenericBinaryOpStub::kUnknownIntValue); void VirtualFrameBinaryOperation(Token::Value op, OverwriteMode overwrite_mode, int known_rhs = GenericBinaryOpStub::kUnknownIntValue); void SmiOperation(Token::Value op, Handle<Object> value, bool reversed, OverwriteMode mode); void Comparison(Condition cc, Expression* left, Expression* right, bool strict = false); void CallWithArguments(ZoneList<Expression*>* arguments, CallFunctionFlags flags, int position); // An optimized implementation of expressions of the form // x.apply(y, arguments). We call x the applicand and y the receiver. // The optimization avoids allocating an arguments object if possible. void CallApplyLazy(Expression* applicand, Expression* receiver, VariableProxy* arguments, int position); // Control flow void Branch(bool if_true, JumpTarget* target); void CheckStack(); bool CheckForInlineRuntimeCall(CallRuntime* node); static Handle<Code> ComputeLazyCompile(int argc); void ProcessDeclarations(ZoneList<Declaration*>* declarations); // Declare global variables and functions in the given array of // name/value pairs. void DeclareGlobals(Handle<FixedArray> pairs); // Instantiate the function based on the shared function info. void InstantiateFunction(Handle<SharedFunctionInfo> function_info, bool pretenure); // Support for type checks. void GenerateIsSmi(ZoneList<Expression*>* args); void GenerateIsNonNegativeSmi(ZoneList<Expression*>* args); void GenerateIsArray(ZoneList<Expression*>* args); void GenerateIsRegExp(ZoneList<Expression*>* args); // Support for construct call checks. void GenerateIsConstructCall(ZoneList<Expression*>* args); // Support for arguments.length and arguments[?]. void GenerateArgumentsLength(ZoneList<Expression*>* args); void GenerateArguments(ZoneList<Expression*>* args); // Support for accessing the class and value fields of an object. void GenerateClassOf(ZoneList<Expression*>* args); void GenerateValueOf(ZoneList<Expression*>* args); void GenerateSetValueOf(ZoneList<Expression*>* args); // Fast support for charCodeAt(n). void GenerateStringCharCodeAt(ZoneList<Expression*>* args); // Fast support for string.charAt(n) and string[n]. void GenerateStringCharFromCode(ZoneList<Expression*>* args); // Fast support for string.charAt(n) and string[n]. void GenerateStringCharAt(ZoneList<Expression*>* args); // Fast support for object equality testing. void GenerateObjectEquals(ZoneList<Expression*>* args); void GenerateLog(ZoneList<Expression*>* args); // Fast support for Math.random(). void GenerateRandomHeapNumber(ZoneList<Expression*>* args); void GenerateIsObject(ZoneList<Expression*>* args); void GenerateIsSpecObject(ZoneList<Expression*>* args); void GenerateIsFunction(ZoneList<Expression*>* args); void GenerateIsUndetectableObject(ZoneList<Expression*>* args); void GenerateStringAdd(ZoneList<Expression*>* args); void GenerateSubString(ZoneList<Expression*>* args); void GenerateStringCompare(ZoneList<Expression*>* args); void GenerateIsStringWrapperSafeForDefaultValueOf( ZoneList<Expression*>* args); // Support for direct calls from JavaScript to native RegExp code. void GenerateRegExpExec(ZoneList<Expression*>* args); void GenerateRegExpConstructResult(ZoneList<Expression*>* args); // Support for fast native caches. void GenerateGetFromCache(ZoneList<Expression*>* args); // Fast support for number to string. void GenerateNumberToString(ZoneList<Expression*>* args); // Fast swapping of elements. void GenerateSwapElements(ZoneList<Expression*>* args); // Fast call for custom callbacks. void GenerateCallFunction(ZoneList<Expression*>* args); // Fast call to math functions. void GenerateMathPow(ZoneList<Expression*>* args); void GenerateMathSin(ZoneList<Expression*>* args); void GenerateMathCos(ZoneList<Expression*>* args); void GenerateMathSqrt(ZoneList<Expression*>* args); void GenerateMathLog(ZoneList<Expression*>* args); void GenerateIsRegExpEquivalent(ZoneList<Expression*>* args); void GenerateHasCachedArrayIndex(ZoneList<Expression*>* args); void GenerateGetCachedArrayIndex(ZoneList<Expression*>* args); void GenerateFastAsciiArrayJoin(ZoneList<Expression*>* args); // Simple condition analysis. enum ConditionAnalysis { ALWAYS_TRUE, ALWAYS_FALSE, DONT_KNOW }; ConditionAnalysis AnalyzeCondition(Expression* cond); // Methods used to indicate which source code is generated for. Source // positions are collected by the assembler and emitted with the relocation // information. void CodeForFunctionPosition(FunctionLiteral* fun); void CodeForReturnPosition(FunctionLiteral* fun); void CodeForStatementPosition(Statement* node); void CodeForDoWhileConditionPosition(DoWhileStatement* stmt); void CodeForSourcePosition(int pos); #ifdef DEBUG // True if the registers are valid for entry to a block. bool HasValidEntryRegisters(); #endif List<DeferredCode*> deferred_; // Assembler MacroAssembler* masm_; // to generate code CompilationInfo* info_; // Code generation state VirtualFrame* frame_; RegisterAllocator* allocator_; Condition cc_reg_; CodeGenState* state_; int loop_nesting_; Vector<TypeInfo>* type_info_; // Jump targets BreakTarget function_return_; // True if the function return is shadowed (ie, jumping to the target // function_return_ does not jump to the true function return, but rather // to some unlinking code). bool function_return_is_shadowed_; friend class VirtualFrame; friend class Isolate; friend class JumpTarget; friend class Reference; friend class FastCodeGenerator; friend class FullCodeGenerator; friend class FullCodeGenSyntaxChecker; friend class InlineRuntimeFunctionsTable; friend class LCodeGen; DISALLOW_COPY_AND_ASSIGN(CodeGenerator); }; } } // namespace v8::internal #endif // V8_MIPS_CODEGEN_MIPS_H_