// Copyright (c) 1994-2006 Sun Microsystems Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistribution in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // - Neither the name of Sun Microsystems or the names of contributors may // be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // The original source code covered by the above license above has been // modified significantly by Google Inc. // Copyright 2010 the V8 project authors. All rights reserved. #include "v8.h" #if defined(V8_TARGET_ARCH_MIPS) #include "mips/assembler-mips-inl.h" #include "serialize.h" namespace v8 { namespace internal { CpuFeatures::CpuFeatures() : supported_(0), enabled_(0), found_by_runtime_probing_(0) { } void CpuFeatures::Probe(bool portable) { // If the compiler is allowed to use fpu then we can use fpu too in our // code generation. #if !defined(__mips__) // For the simulator=mips build, use FPU when FLAG_enable_fpu is enabled. if (FLAG_enable_fpu) { supported_ |= 1u << FPU; } #else if (portable && Serializer::enabled()) { supported_ |= OS::CpuFeaturesImpliedByPlatform(); return; // No features if we might serialize. } if (OS::MipsCpuHasFeature(FPU)) { // This implementation also sets the FPU flags if // runtime detection of FPU returns true. supported_ |= 1u << FPU; found_by_runtime_probing_ |= 1u << FPU; } if (!portable) found_by_runtime_probing_ = 0; #endif } int ToNumber(Register reg) { ASSERT(reg.is_valid()); const int kNumbers[] = { 0, // zero_reg 1, // at 2, // v0 3, // v1 4, // a0 5, // a1 6, // a2 7, // a3 8, // t0 9, // t1 10, // t2 11, // t3 12, // t4 13, // t5 14, // t6 15, // t7 16, // s0 17, // s1 18, // s2 19, // s3 20, // s4 21, // s5 22, // s6 23, // s7 24, // t8 25, // t9 26, // k0 27, // k1 28, // gp 29, // sp 30, // s8_fp 31, // ra }; return kNumbers[reg.code()]; } Register ToRegister(int num) { ASSERT(num >= 0 && num < kNumRegisters); const Register kRegisters[] = { zero_reg, at, v0, v1, a0, a1, a2, a3, t0, t1, t2, t3, t4, t5, t6, t7, s0, s1, s2, s3, s4, s5, s6, s7, t8, t9, k0, k1, gp, sp, s8_fp, ra }; return kRegisters[num]; } // ----------------------------------------------------------------------------- // Implementation of RelocInfo. const int RelocInfo::kApplyMask = 0; bool RelocInfo::IsCodedSpecially() { // The deserializer needs to know whether a pointer is specially coded. Being // specially coded on MIPS means that it is a lui/ori instruction, and that is // always the case inside code objects. return true; } // Patch the code at the current address with the supplied instructions. void RelocInfo::PatchCode(byte* instructions, int instruction_count) { Instr* pc = reinterpret_cast<Instr*>(pc_); Instr* instr = reinterpret_cast<Instr*>(instructions); for (int i = 0; i < instruction_count; i++) { *(pc + i) = *(instr + i); } // Indicate that code has changed. CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize); } // Patch the code at the current PC with a call to the target address. // Additional guard instructions can be added if required. void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) { // Patch the code at the current address with a call to the target. UNIMPLEMENTED_MIPS(); } // ----------------------------------------------------------------------------- // Implementation of Operand and MemOperand. // See assembler-mips-inl.h for inlined constructors. Operand::Operand(Handle<Object> handle) { rm_ = no_reg; // Verify all Objects referred by code are NOT in new space. Object* obj = *handle; ASSERT(!HEAP->InNewSpace(obj)); if (obj->IsHeapObject()) { imm32_ = reinterpret_cast<intptr_t>(handle.location()); rmode_ = RelocInfo::EMBEDDED_OBJECT; } else { // No relocation needed. imm32_ = reinterpret_cast<intptr_t>(obj); rmode_ = RelocInfo::NONE; } } MemOperand::MemOperand(Register rm, int32_t offset) : Operand(rm) { offset_ = offset; } // ----------------------------------------------------------------------------- // Specific instructions, constants, and masks. static const int kNegOffset = 0x00008000; // addiu(sp, sp, 4) aka Pop() operation or part of Pop(r) // operations as post-increment of sp. const Instr kPopInstruction = ADDIU | (sp.code() << kRsShift) | (sp.code() << kRtShift) | (kPointerSize & kImm16Mask); // addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp. const Instr kPushInstruction = ADDIU | (sp.code() << kRsShift) | (sp.code() << kRtShift) | (-kPointerSize & kImm16Mask); // sw(r, MemOperand(sp, 0)) const Instr kPushRegPattern = SW | (sp.code() << kRsShift) | (0 & kImm16Mask); // lw(r, MemOperand(sp, 0)) const Instr kPopRegPattern = LW | (sp.code() << kRsShift) | (0 & kImm16Mask); const Instr kLwRegFpOffsetPattern = LW | (s8_fp.code() << kRsShift) | (0 & kImm16Mask); const Instr kSwRegFpOffsetPattern = SW | (s8_fp.code() << kRsShift) | (0 & kImm16Mask); const Instr kLwRegFpNegOffsetPattern = LW | (s8_fp.code() << kRsShift) | (kNegOffset & kImm16Mask); const Instr kSwRegFpNegOffsetPattern = SW | (s8_fp.code() << kRsShift) | (kNegOffset & kImm16Mask); // A mask for the Rt register for push, pop, lw, sw instructions. const Instr kRtMask = kRtFieldMask; const Instr kLwSwInstrTypeMask = 0xffe00000; const Instr kLwSwInstrArgumentMask = ~kLwSwInstrTypeMask; const Instr kLwSwOffsetMask = kImm16Mask; // Spare buffer. static const int kMinimalBufferSize = 4 * KB; Assembler::Assembler(void* buffer, int buffer_size) : AssemblerBase(Isolate::Current()), positions_recorder_(this), allow_peephole_optimization_(false) { // BUG(3245989): disable peephole optimization if crankshaft is enabled. allow_peephole_optimization_ = FLAG_peephole_optimization; if (buffer == NULL) { // Do our own buffer management. if (buffer_size <= kMinimalBufferSize) { buffer_size = kMinimalBufferSize; if (isolate()->assembler_spare_buffer() != NULL) { buffer = isolate()->assembler_spare_buffer(); isolate()->set_assembler_spare_buffer(NULL); } } if (buffer == NULL) { buffer_ = NewArray<byte>(buffer_size); } else { buffer_ = static_cast<byte*>(buffer); } buffer_size_ = buffer_size; own_buffer_ = true; } else { // Use externally provided buffer instead. ASSERT(buffer_size > 0); buffer_ = static_cast<byte*>(buffer); buffer_size_ = buffer_size; own_buffer_ = false; } // Setup buffer pointers. ASSERT(buffer_ != NULL); pc_ = buffer_; reloc_info_writer.Reposition(buffer_ + buffer_size, pc_); last_trampoline_pool_end_ = 0; no_trampoline_pool_before_ = 0; trampoline_pool_blocked_nesting_ = 0; next_buffer_check_ = kMaxBranchOffset - kTrampolineSize; } Assembler::~Assembler() { if (own_buffer_) { if (isolate()->assembler_spare_buffer() == NULL && buffer_size_ == kMinimalBufferSize) { isolate()->set_assembler_spare_buffer(buffer_); } else { DeleteArray(buffer_); } } } void Assembler::GetCode(CodeDesc* desc) { ASSERT(pc_ <= reloc_info_writer.pos()); // No overlap. // Setup code descriptor. desc->buffer = buffer_; desc->buffer_size = buffer_size_; desc->instr_size = pc_offset(); desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); } void Assembler::Align(int m) { ASSERT(m >= 4 && IsPowerOf2(m)); while ((pc_offset() & (m - 1)) != 0) { nop(); } } void Assembler::CodeTargetAlign() { // No advantage to aligning branch/call targets to more than // single instruction, that I am aware of. Align(4); } Register Assembler::GetRt(Instr instr) { Register rt; rt.code_ = (instr & kRtMask) >> kRtShift; return rt; } bool Assembler::IsPop(Instr instr) { return (instr & ~kRtMask) == kPopRegPattern; } bool Assembler::IsPush(Instr instr) { return (instr & ~kRtMask) == kPushRegPattern; } bool Assembler::IsSwRegFpOffset(Instr instr) { return ((instr & kLwSwInstrTypeMask) == kSwRegFpOffsetPattern); } bool Assembler::IsLwRegFpOffset(Instr instr) { return ((instr & kLwSwInstrTypeMask) == kLwRegFpOffsetPattern); } bool Assembler::IsSwRegFpNegOffset(Instr instr) { return ((instr & (kLwSwInstrTypeMask | kNegOffset)) == kSwRegFpNegOffsetPattern); } bool Assembler::IsLwRegFpNegOffset(Instr instr) { return ((instr & (kLwSwInstrTypeMask | kNegOffset)) == kLwRegFpNegOffsetPattern); } // Labels refer to positions in the (to be) generated code. // There are bound, linked, and unused labels. // // Bound labels refer to known positions in the already // generated code. pos() is the position the label refers to. // // Linked labels refer to unknown positions in the code // to be generated; pos() is the position of the last // instruction using the label. // The link chain is terminated by a value in the instruction of -1, // which is an otherwise illegal value (branch -1 is inf loop). // The instruction 16-bit offset field addresses 32-bit words, but in // code is conv to an 18-bit value addressing bytes, hence the -4 value. const int kEndOfChain = -4; bool Assembler::IsBranch(Instr instr) { uint32_t opcode = ((instr & kOpcodeMask)); uint32_t rt_field = ((instr & kRtFieldMask)); uint32_t rs_field = ((instr & kRsFieldMask)); uint32_t label_constant = (instr & ~kImm16Mask); // Checks if the instruction is a branch. return opcode == BEQ || opcode == BNE || opcode == BLEZ || opcode == BGTZ || opcode == BEQL || opcode == BNEL || opcode == BLEZL || opcode == BGTZL|| (opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ || rt_field == BLTZAL || rt_field == BGEZAL)) || (opcode == COP1 && rs_field == BC1) || // Coprocessor branch. label_constant == 0; // Emitted label const in reg-exp engine. } bool Assembler::IsNop(Instr instr, unsigned int type) { // See Assembler::nop(type). ASSERT(type < 32); uint32_t opcode = ((instr & kOpcodeMask)); uint32_t rt = ((instr & kRtFieldMask) >> kRtShift); uint32_t rs = ((instr & kRsFieldMask) >> kRsShift); uint32_t sa = ((instr & kSaFieldMask) >> kSaShift); // nop(type) == sll(zero_reg, zero_reg, type); // Technically all these values will be 0 but // this makes more sense to the reader. bool ret = (opcode == SLL && rt == static_cast<uint32_t>(ToNumber(zero_reg)) && rs == static_cast<uint32_t>(ToNumber(zero_reg)) && sa == type); return ret; } int32_t Assembler::GetBranchOffset(Instr instr) { ASSERT(IsBranch(instr)); return ((int16_t)(instr & kImm16Mask)) << 2; } bool Assembler::IsLw(Instr instr) { return ((instr & kOpcodeMask) == LW); } int16_t Assembler::GetLwOffset(Instr instr) { ASSERT(IsLw(instr)); return ((instr & kImm16Mask)); } Instr Assembler::SetLwOffset(Instr instr, int16_t offset) { ASSERT(IsLw(instr)); // We actually create a new lw instruction based on the original one. Instr temp_instr = LW | (instr & kRsFieldMask) | (instr & kRtFieldMask) | (offset & kImm16Mask); return temp_instr; } bool Assembler::IsSw(Instr instr) { return ((instr & kOpcodeMask) == SW); } Instr Assembler::SetSwOffset(Instr instr, int16_t offset) { ASSERT(IsSw(instr)); return ((instr & ~kImm16Mask) | (offset & kImm16Mask)); } bool Assembler::IsAddImmediate(Instr instr) { return ((instr & kOpcodeMask) == ADDIU); } Instr Assembler::SetAddImmediateOffset(Instr instr, int16_t offset) { ASSERT(IsAddImmediate(instr)); return ((instr & ~kImm16Mask) | (offset & kImm16Mask)); } int Assembler::target_at(int32_t pos) { Instr instr = instr_at(pos); if ((instr & ~kImm16Mask) == 0) { // Emitted label constant, not part of a branch. if (instr == 0) { return kEndOfChain; } else { int32_t imm18 =((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14; return (imm18 + pos); } } // Check we have a branch instruction. ASSERT(IsBranch(instr)); // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming // the compiler uses arithmectic shifts for signed integers. int32_t imm18 = ((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14; if (imm18 == kEndOfChain) { // EndOfChain sentinel is returned directly, not relative to pc or pos. return kEndOfChain; } else { return pos + kBranchPCOffset + imm18; } } void Assembler::target_at_put(int32_t pos, int32_t target_pos) { Instr instr = instr_at(pos); if ((instr & ~kImm16Mask) == 0) { ASSERT(target_pos == kEndOfChain || target_pos >= 0); // Emitted label constant, not part of a branch. // Make label relative to Code* of generated Code object. instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag)); return; } ASSERT(IsBranch(instr)); int32_t imm18 = target_pos - (pos + kBranchPCOffset); ASSERT((imm18 & 3) == 0); instr &= ~kImm16Mask; int32_t imm16 = imm18 >> 2; ASSERT(is_int16(imm16)); instr_at_put(pos, instr | (imm16 & kImm16Mask)); } void Assembler::print(Label* L) { if (L->is_unused()) { PrintF("unused label\n"); } else if (L->is_bound()) { PrintF("bound label to %d\n", L->pos()); } else if (L->is_linked()) { Label l = *L; PrintF("unbound label"); while (l.is_linked()) { PrintF("@ %d ", l.pos()); Instr instr = instr_at(l.pos()); if ((instr & ~kImm16Mask) == 0) { PrintF("value\n"); } else { PrintF("%d\n", instr); } next(&l); } } else { PrintF("label in inconsistent state (pos = %d)\n", L->pos_); } } void Assembler::bind_to(Label* L, int pos) { ASSERT(0 <= pos && pos <= pc_offset()); // Must have valid binding position. while (L->is_linked()) { int32_t fixup_pos = L->pos(); int32_t dist = pos - fixup_pos; next(L); // Call next before overwriting link with target at fixup_pos. if (dist > kMaxBranchOffset) { do { int32_t trampoline_pos = get_trampoline_entry(fixup_pos); ASSERT((trampoline_pos - fixup_pos) <= kMaxBranchOffset); target_at_put(fixup_pos, trampoline_pos); fixup_pos = trampoline_pos; dist = pos - fixup_pos; } while (dist > kMaxBranchOffset); } else if (dist < -kMaxBranchOffset) { do { int32_t trampoline_pos = get_trampoline_entry(fixup_pos, false); ASSERT((trampoline_pos - fixup_pos) >= -kMaxBranchOffset); target_at_put(fixup_pos, trampoline_pos); fixup_pos = trampoline_pos; dist = pos - fixup_pos; } while (dist < -kMaxBranchOffset); }; target_at_put(fixup_pos, pos); } L->bind_to(pos); // Keep track of the last bound label so we don't eliminate any instructions // before a bound label. if (pos > last_bound_pos_) last_bound_pos_ = pos; } void Assembler::link_to(Label* L, Label* appendix) { if (appendix->is_linked()) { if (L->is_linked()) { // Append appendix to L's list. int fixup_pos; int link = L->pos(); do { fixup_pos = link; link = target_at(fixup_pos); } while (link > 0); ASSERT(link == kEndOfChain); target_at_put(fixup_pos, appendix->pos()); } else { // L is empty, simply use appendix. *L = *appendix; } } appendix->Unuse(); // Appendix should not be used anymore. } void Assembler::bind(Label* L) { ASSERT(!L->is_bound()); // Label can only be bound once. bind_to(L, pc_offset()); } void Assembler::next(Label* L) { ASSERT(L->is_linked()); int link = target_at(L->pos()); ASSERT(link > 0 || link == kEndOfChain); if (link == kEndOfChain) { L->Unuse(); } else if (link > 0) { L->link_to(link); } } // We have to use a temporary register for things that can be relocated even // if they can be encoded in the MIPS's 16 bits of immediate-offset instruction // space. There is no guarantee that the relocated location can be similarly // encoded. bool Assembler::MustUseReg(RelocInfo::Mode rmode) { return rmode != RelocInfo::NONE; } void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt, Register rd, uint16_t sa, SecondaryField func) { ASSERT(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa)); Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) | (rd.code() << kRdShift) | (sa << kSaShift) | func; emit(instr); } void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt, uint16_t msb, uint16_t lsb, SecondaryField func) { ASSERT(rs.is_valid() && rt.is_valid() && is_uint5(msb) && is_uint5(lsb)); Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) | (msb << kRdShift) | (lsb << kSaShift) | func; emit(instr); } void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, FPURegister ft, FPURegister fs, FPURegister fd, SecondaryField func) { ASSERT(fd.is_valid() && fs.is_valid() && ft.is_valid()); ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); Instr instr = opcode | fmt | (ft.code() << kFtShift) | (fs.code() << kFsShift) | (fd.code() << kFdShift) | func; emit(instr); } void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt, FPURegister fs, FPURegister fd, SecondaryField func) { ASSERT(fd.is_valid() && fs.is_valid() && rt.is_valid()); ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); Instr instr = opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | (fd.code() << kFdShift) | func; emit(instr); } void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt, FPUControlRegister fs, SecondaryField func) { ASSERT(fs.is_valid() && rt.is_valid()); ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); Instr instr = opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | func; emit(instr); } // Instructions with immediate value. // Registers are in the order of the instruction encoding, from left to right. void Assembler::GenInstrImmediate(Opcode opcode, Register rs, Register rt, int32_t j) { ASSERT(rs.is_valid() && rt.is_valid() && (is_int16(j) || is_uint16(j))); Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) | (j & kImm16Mask); emit(instr); } void Assembler::GenInstrImmediate(Opcode opcode, Register rs, SecondaryField SF, int32_t j) { ASSERT(rs.is_valid() && (is_int16(j) || is_uint16(j))); Instr instr = opcode | (rs.code() << kRsShift) | SF | (j & kImm16Mask); emit(instr); } void Assembler::GenInstrImmediate(Opcode opcode, Register rs, FPURegister ft, int32_t j) { ASSERT(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j))); ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift) | (j & kImm16Mask); emit(instr); } // Registers are in the order of the instruction encoding, from left to right. void Assembler::GenInstrJump(Opcode opcode, uint32_t address) { BlockTrampolinePoolScope block_trampoline_pool(this); ASSERT(is_uint26(address)); Instr instr = opcode | address; emit(instr); BlockTrampolinePoolFor(1); // For associated delay slot. } // Returns the next free label entry from the next trampoline pool. int32_t Assembler::get_label_entry(int32_t pos, bool next_pool) { int trampoline_count = trampolines_.length(); int32_t label_entry = 0; ASSERT(trampoline_count > 0); if (next_pool) { for (int i = 0; i < trampoline_count; i++) { if (trampolines_[i].start() > pos) { label_entry = trampolines_[i].take_label(); break; } } } else { // Caller needs a label entry from the previous pool. for (int i = trampoline_count-1; i >= 0; i--) { if (trampolines_[i].end() < pos) { label_entry = trampolines_[i].take_label(); break; } } } return label_entry; } // Returns the next free trampoline entry from the next trampoline pool. int32_t Assembler::get_trampoline_entry(int32_t pos, bool next_pool) { int trampoline_count = trampolines_.length(); int32_t trampoline_entry = 0; ASSERT(trampoline_count > 0); if (next_pool) { for (int i = 0; i < trampoline_count; i++) { if (trampolines_[i].start() > pos) { trampoline_entry = trampolines_[i].take_slot(); break; } } } else { // Caller needs a trampoline entry from the previous pool. for (int i = trampoline_count-1; i >= 0; i--) { if (trampolines_[i].end() < pos) { trampoline_entry = trampolines_[i].take_slot(); break; } } } return trampoline_entry; } int32_t Assembler::branch_offset(Label* L, bool jump_elimination_allowed) { int32_t target_pos; int32_t pc_offset_v = pc_offset(); if (L->is_bound()) { target_pos = L->pos(); int32_t dist = pc_offset_v - target_pos; if (dist > kMaxBranchOffset) { do { int32_t trampoline_pos = get_trampoline_entry(target_pos); ASSERT((trampoline_pos - target_pos) > 0); ASSERT((trampoline_pos - target_pos) <= kMaxBranchOffset); target_at_put(trampoline_pos, target_pos); target_pos = trampoline_pos; dist = pc_offset_v - target_pos; } while (dist > kMaxBranchOffset); } else if (dist < -kMaxBranchOffset) { do { int32_t trampoline_pos = get_trampoline_entry(target_pos, false); ASSERT((target_pos - trampoline_pos) > 0); ASSERT((target_pos - trampoline_pos) <= kMaxBranchOffset); target_at_put(trampoline_pos, target_pos); target_pos = trampoline_pos; dist = pc_offset_v - target_pos; } while (dist < -kMaxBranchOffset); } } else { if (L->is_linked()) { target_pos = L->pos(); // L's link. int32_t dist = pc_offset_v - target_pos; if (dist > kMaxBranchOffset) { do { int32_t label_pos = get_label_entry(target_pos); ASSERT((label_pos - target_pos) < kMaxBranchOffset); label_at_put(L, label_pos); target_pos = label_pos; dist = pc_offset_v - target_pos; } while (dist > kMaxBranchOffset); } else if (dist < -kMaxBranchOffset) { do { int32_t label_pos = get_label_entry(target_pos, false); ASSERT((label_pos - target_pos) > -kMaxBranchOffset); label_at_put(L, label_pos); target_pos = label_pos; dist = pc_offset_v - target_pos; } while (dist < -kMaxBranchOffset); } L->link_to(pc_offset()); } else { L->link_to(pc_offset()); return kEndOfChain; } } int32_t offset = target_pos - (pc_offset() + kBranchPCOffset); ASSERT((offset & 3) == 0); ASSERT(is_int16(offset >> 2)); return offset; } void Assembler::label_at_put(Label* L, int at_offset) { int target_pos; if (L->is_bound()) { target_pos = L->pos(); instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag)); } else { if (L->is_linked()) { target_pos = L->pos(); // L's link. int32_t imm18 = target_pos - at_offset; ASSERT((imm18 & 3) == 0); int32_t imm16 = imm18 >> 2; ASSERT(is_int16(imm16)); instr_at_put(at_offset, (imm16 & kImm16Mask)); } else { target_pos = kEndOfChain; instr_at_put(at_offset, 0); } L->link_to(at_offset); } } //------- Branch and jump instructions -------- void Assembler::b(int16_t offset) { beq(zero_reg, zero_reg, offset); } void Assembler::bal(int16_t offset) { positions_recorder()->WriteRecordedPositions(); bgezal(zero_reg, offset); } void Assembler::beq(Register rs, Register rt, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(BEQ, rs, rt, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bgez(Register rs, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(REGIMM, rs, BGEZ, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bgezal(Register rs, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); positions_recorder()->WriteRecordedPositions(); GenInstrImmediate(REGIMM, rs, BGEZAL, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bgtz(Register rs, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(BGTZ, rs, zero_reg, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::blez(Register rs, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(BLEZ, rs, zero_reg, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bltz(Register rs, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(REGIMM, rs, BLTZ, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bltzal(Register rs, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); positions_recorder()->WriteRecordedPositions(); GenInstrImmediate(REGIMM, rs, BLTZAL, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bne(Register rs, Register rt, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(BNE, rs, rt, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::j(int32_t target) { ASSERT(is_uint28(target) && ((target & 3) == 0)); GenInstrJump(J, target >> 2); } void Assembler::jr(Register rs) { BlockTrampolinePoolScope block_trampoline_pool(this); if (rs.is(ra)) { positions_recorder()->WriteRecordedPositions(); } GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::jal(int32_t target) { positions_recorder()->WriteRecordedPositions(); ASSERT(is_uint28(target) && ((target & 3) == 0)); GenInstrJump(JAL, target >> 2); } void Assembler::jalr(Register rs, Register rd) { BlockTrampolinePoolScope block_trampoline_pool(this); positions_recorder()->WriteRecordedPositions(); GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR); BlockTrampolinePoolFor(1); // For associated delay slot. } //-------Data-processing-instructions--------- // Arithmetic. void Assembler::addu(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU); } void Assembler::addiu(Register rd, Register rs, int32_t j) { GenInstrImmediate(ADDIU, rs, rd, j); // Eliminate pattern: push(r), pop(). // addiu(sp, sp, Operand(-kPointerSize)); // sw(src, MemOperand(sp, 0); // addiu(sp, sp, Operand(kPointerSize)); // Both instructions can be eliminated. if (can_peephole_optimize(3) && // Pattern. instr_at(pc_ - 1 * kInstrSize) == kPopInstruction && (instr_at(pc_ - 2 * kInstrSize) & ~kRtMask) == kPushRegPattern && (instr_at(pc_ - 3 * kInstrSize)) == kPushInstruction) { pc_ -= 3 * kInstrSize; if (FLAG_print_peephole_optimization) { PrintF("%x push(reg)/pop() eliminated\n", pc_offset()); } } // Eliminate pattern: push(ry), pop(rx). // addiu(sp, sp, -kPointerSize) // sw(ry, MemOperand(sp, 0) // lw(rx, MemOperand(sp, 0) // addiu(sp, sp, kPointerSize); // Both instructions can be eliminated if ry = rx. // If ry != rx, a register copy from ry to rx is inserted // after eliminating the push and the pop instructions. if (can_peephole_optimize(4)) { Instr pre_push_sp_set = instr_at(pc_ - 4 * kInstrSize); Instr push_instr = instr_at(pc_ - 3 * kInstrSize); Instr pop_instr = instr_at(pc_ - 2 * kInstrSize); Instr post_pop_sp_set = instr_at(pc_ - 1 * kInstrSize); if (IsPush(push_instr) && IsPop(pop_instr) && pre_push_sp_set == kPushInstruction && post_pop_sp_set == kPopInstruction) { if ((pop_instr & kRtMask) != (push_instr & kRtMask)) { // For consecutive push and pop on different registers, // we delete both the push & pop and insert a register move. // push ry, pop rx --> mov rx, ry. Register reg_pushed, reg_popped; reg_pushed = GetRt(push_instr); reg_popped = GetRt(pop_instr); pc_ -= 4 * kInstrSize; // Insert a mov instruction, which is better than a pair of push & pop. or_(reg_popped, reg_pushed, zero_reg); if (FLAG_print_peephole_optimization) { PrintF("%x push/pop (diff reg) replaced by a reg move\n", pc_offset()); } } else { // For consecutive push and pop on the same register, // both the push and the pop can be deleted. pc_ -= 4 * kInstrSize; if (FLAG_print_peephole_optimization) { PrintF("%x push/pop (same reg) eliminated\n", pc_offset()); } } } } if (can_peephole_optimize(5)) { Instr pre_push_sp_set = instr_at(pc_ - 5 * kInstrSize); Instr mem_write_instr = instr_at(pc_ - 4 * kInstrSize); Instr lw_instr = instr_at(pc_ - 3 * kInstrSize); Instr mem_read_instr = instr_at(pc_ - 2 * kInstrSize); Instr post_pop_sp_set = instr_at(pc_ - 1 * kInstrSize); if (IsPush(mem_write_instr) && pre_push_sp_set == kPushInstruction && IsPop(mem_read_instr) && post_pop_sp_set == kPopInstruction) { if ((IsLwRegFpOffset(lw_instr) || IsLwRegFpNegOffset(lw_instr))) { if ((mem_write_instr & kRtMask) == (mem_read_instr & kRtMask)) { // Pattern: push & pop from/to same register, // with a fp+offset lw in between. // // The following: // addiu sp, sp, -4 // sw rx, [sp, #0]! // lw rz, [fp, #-24] // lw rx, [sp, 0], // addiu sp, sp, 4 // // Becomes: // if(rx == rz) // delete all // else // lw rz, [fp, #-24] if ((mem_write_instr & kRtMask) == (lw_instr & kRtMask)) { pc_ -= 5 * kInstrSize; } else { pc_ -= 5 * kInstrSize; // Reinsert back the lw rz. emit(lw_instr); } if (FLAG_print_peephole_optimization) { PrintF("%x push/pop -dead ldr fp+offset in middle\n", pc_offset()); } } else { // Pattern: push & pop from/to different registers // with a fp + offset lw in between. // // The following: // addiu sp, sp ,-4 // sw rx, [sp, 0] // lw rz, [fp, #-24] // lw ry, [sp, 0] // addiu sp, sp, 4 // // Becomes: // if(ry == rz) // mov ry, rx; // else if(rx != rz) // lw rz, [fp, #-24] // mov ry, rx // else if((ry != rz) || (rx == rz)) becomes: // mov ry, rx // lw rz, [fp, #-24] Register reg_pushed, reg_popped; if ((mem_read_instr & kRtMask) == (lw_instr & kRtMask)) { reg_pushed = GetRt(mem_write_instr); reg_popped = GetRt(mem_read_instr); pc_ -= 5 * kInstrSize; or_(reg_popped, reg_pushed, zero_reg); // Move instruction. } else if ((mem_write_instr & kRtMask) != (lw_instr & kRtMask)) { reg_pushed = GetRt(mem_write_instr); reg_popped = GetRt(mem_read_instr); pc_ -= 5 * kInstrSize; emit(lw_instr); or_(reg_popped, reg_pushed, zero_reg); // Move instruction. } else if (((mem_read_instr & kRtMask) != (lw_instr & kRtMask)) || ((mem_write_instr & kRtMask) == (lw_instr & kRtMask)) ) { reg_pushed = GetRt(mem_write_instr); reg_popped = GetRt(mem_read_instr); pc_ -= 5 * kInstrSize; or_(reg_popped, reg_pushed, zero_reg); // Move instruction. emit(lw_instr); } if (FLAG_print_peephole_optimization) { PrintF("%x push/pop (ldr fp+off in middle)\n", pc_offset()); } } } } } } void Assembler::subu(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU); } void Assembler::mul(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL2, rs, rt, rd, 0, MUL); } void Assembler::mult(Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULT); } void Assembler::multu(Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULTU); } void Assembler::div(Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV); } void Assembler::divu(Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIVU); } // Logical. void Assembler::and_(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, AND); } void Assembler::andi(Register rt, Register rs, int32_t j) { GenInstrImmediate(ANDI, rs, rt, j); } void Assembler::or_(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, OR); } void Assembler::ori(Register rt, Register rs, int32_t j) { GenInstrImmediate(ORI, rs, rt, j); } void Assembler::xor_(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, XOR); } void Assembler::xori(Register rt, Register rs, int32_t j) { GenInstrImmediate(XORI, rs, rt, j); } void Assembler::nor(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR); } // Shifts. void Assembler::sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop) { // Don't allow nop instructions in the form sll zero_reg, zero_reg to be // generated using the sll instruction. They must be generated using // nop(int/NopMarkerTypes) or MarkCode(int/NopMarkerTypes) pseudo // instructions. ASSERT(coming_from_nop || !(rd.is(zero_reg) && rt.is(zero_reg))); GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SLL); } void Assembler::sllv(Register rd, Register rt, Register rs) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLLV); } void Assembler::srl(Register rd, Register rt, uint16_t sa) { GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SRL); } void Assembler::srlv(Register rd, Register rt, Register rs) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRLV); } void Assembler::sra(Register rd, Register rt, uint16_t sa) { GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SRA); } void Assembler::srav(Register rd, Register rt, Register rs) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV); } void Assembler::rotr(Register rd, Register rt, uint16_t sa) { // Should be called via MacroAssembler::Ror. ASSERT(rd.is_valid() && rt.is_valid() && is_uint5(sa)); ASSERT(mips32r2); Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) | (rd.code() << kRdShift) | (sa << kSaShift) | SRL; emit(instr); } void Assembler::rotrv(Register rd, Register rt, Register rs) { // Should be called via MacroAssembler::Ror. ASSERT(rd.is_valid() && rt.is_valid() && rs.is_valid() ); ASSERT(mips32r2); Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) | (rd.code() << kRdShift) | (1 << kSaShift) | SRLV; emit(instr); } //------------Memory-instructions------------- // Helper for base-reg + offset, when offset is larger than int16. void Assembler::LoadRegPlusOffsetToAt(const MemOperand& src) { ASSERT(!src.rm().is(at)); lui(at, src.offset_ >> kLuiShift); ori(at, at, src.offset_ & kImm16Mask); // Load 32-bit offset. addu(at, at, src.rm()); // Add base register. } void Assembler::lb(Register rd, const MemOperand& rs) { if (is_int16(rs.offset_)) { GenInstrImmediate(LB, rs.rm(), rd, rs.offset_); } else { // Offset > 16 bits, use multiple instructions to load. LoadRegPlusOffsetToAt(rs); GenInstrImmediate(LB, at, rd, 0); // Equiv to lb(rd, MemOperand(at, 0)); } } void Assembler::lbu(Register rd, const MemOperand& rs) { if (is_int16(rs.offset_)) { GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_); } else { // Offset > 16 bits, use multiple instructions to load. LoadRegPlusOffsetToAt(rs); GenInstrImmediate(LBU, at, rd, 0); // Equiv to lbu(rd, MemOperand(at, 0)); } } void Assembler::lh(Register rd, const MemOperand& rs) { if (is_int16(rs.offset_)) { GenInstrImmediate(LH, rs.rm(), rd, rs.offset_); } else { // Offset > 16 bits, use multiple instructions to load. LoadRegPlusOffsetToAt(rs); GenInstrImmediate(LH, at, rd, 0); // Equiv to lh(rd, MemOperand(at, 0)); } } void Assembler::lhu(Register rd, const MemOperand& rs) { if (is_int16(rs.offset_)) { GenInstrImmediate(LHU, rs.rm(), rd, rs.offset_); } else { // Offset > 16 bits, use multiple instructions to load. LoadRegPlusOffsetToAt(rs); GenInstrImmediate(LHU, at, rd, 0); // Equiv to lhu(rd, MemOperand(at, 0)); } } void Assembler::lw(Register rd, const MemOperand& rs) { if (is_int16(rs.offset_)) { GenInstrImmediate(LW, rs.rm(), rd, rs.offset_); } else { // Offset > 16 bits, use multiple instructions to load. LoadRegPlusOffsetToAt(rs); GenInstrImmediate(LW, at, rd, 0); // Equiv to lw(rd, MemOperand(at, 0)); } if (can_peephole_optimize(2)) { Instr sw_instr = instr_at(pc_ - 2 * kInstrSize); Instr lw_instr = instr_at(pc_ - 1 * kInstrSize); if ((IsSwRegFpOffset(sw_instr) && IsLwRegFpOffset(lw_instr)) || (IsSwRegFpNegOffset(sw_instr) && IsLwRegFpNegOffset(lw_instr))) { if ((lw_instr & kLwSwInstrArgumentMask) == (sw_instr & kLwSwInstrArgumentMask)) { // Pattern: Lw/sw same fp+offset, same register. // // The following: // sw rx, [fp, #-12] // lw rx, [fp, #-12] // // Becomes: // sw rx, [fp, #-12] pc_ -= 1 * kInstrSize; if (FLAG_print_peephole_optimization) { PrintF("%x sw/lw (fp + same offset), same reg\n", pc_offset()); } } else if ((lw_instr & kLwSwOffsetMask) == (sw_instr & kLwSwOffsetMask)) { // Pattern: Lw/sw same fp+offset, different register. // // The following: // sw rx, [fp, #-12] // lw ry, [fp, #-12] // // Becomes: // sw rx, [fp, #-12] // mov ry, rx Register reg_stored, reg_loaded; reg_stored = GetRt(sw_instr); reg_loaded = GetRt(lw_instr); pc_ -= 1 * kInstrSize; // Insert a mov instruction, which is better than lw. or_(reg_loaded, reg_stored, zero_reg); // Move instruction. if (FLAG_print_peephole_optimization) { PrintF("%x sw/lw (fp + same offset), diff reg \n", pc_offset()); } } } } } void Assembler::lwl(Register rd, const MemOperand& rs) { GenInstrImmediate(LWL, rs.rm(), rd, rs.offset_); } void Assembler::lwr(Register rd, const MemOperand& rs) { GenInstrImmediate(LWR, rs.rm(), rd, rs.offset_); } void Assembler::sb(Register rd, const MemOperand& rs) { if (is_int16(rs.offset_)) { GenInstrImmediate(SB, rs.rm(), rd, rs.offset_); } else { // Offset > 16 bits, use multiple instructions to store. LoadRegPlusOffsetToAt(rs); GenInstrImmediate(SB, at, rd, 0); // Equiv to sb(rd, MemOperand(at, 0)); } } void Assembler::sh(Register rd, const MemOperand& rs) { if (is_int16(rs.offset_)) { GenInstrImmediate(SH, rs.rm(), rd, rs.offset_); } else { // Offset > 16 bits, use multiple instructions to store. LoadRegPlusOffsetToAt(rs); GenInstrImmediate(SH, at, rd, 0); // Equiv to sh(rd, MemOperand(at, 0)); } } void Assembler::sw(Register rd, const MemOperand& rs) { if (is_int16(rs.offset_)) { GenInstrImmediate(SW, rs.rm(), rd, rs.offset_); } else { // Offset > 16 bits, use multiple instructions to store. LoadRegPlusOffsetToAt(rs); GenInstrImmediate(SW, at, rd, 0); // Equiv to sw(rd, MemOperand(at, 0)); } // Eliminate pattern: pop(), push(r). // addiu sp, sp, Operand(kPointerSize); // addiu sp, sp, Operand(-kPointerSize); // -> sw r, MemOpernad(sp, 0); if (can_peephole_optimize(3) && // Pattern. instr_at(pc_ - 1 * kInstrSize) == (kPushRegPattern | (rd.code() << kRtShift)) && instr_at(pc_ - 2 * kInstrSize) == kPushInstruction && instr_at(pc_ - 3 * kInstrSize) == kPopInstruction) { pc_ -= 3 * kInstrSize; GenInstrImmediate(SW, rs.rm(), rd, rs.offset_); if (FLAG_print_peephole_optimization) { PrintF("%x pop()/push(reg) eliminated\n", pc_offset()); } } } void Assembler::swl(Register rd, const MemOperand& rs) { GenInstrImmediate(SWL, rs.rm(), rd, rs.offset_); } void Assembler::swr(Register rd, const MemOperand& rs) { GenInstrImmediate(SWR, rs.rm(), rd, rs.offset_); } void Assembler::lui(Register rd, int32_t j) { GenInstrImmediate(LUI, zero_reg, rd, j); } //-------------Misc-instructions-------------- // Break / Trap instructions. void Assembler::break_(uint32_t code) { ASSERT((code & ~0xfffff) == 0); Instr break_instr = SPECIAL | BREAK | (code << 6); emit(break_instr); } void Assembler::tge(Register rs, Register rt, uint16_t code) { ASSERT(is_uint10(code)); Instr instr = SPECIAL | TGE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } void Assembler::tgeu(Register rs, Register rt, uint16_t code) { ASSERT(is_uint10(code)); Instr instr = SPECIAL | TGEU | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } void Assembler::tlt(Register rs, Register rt, uint16_t code) { ASSERT(is_uint10(code)); Instr instr = SPECIAL | TLT | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } void Assembler::tltu(Register rs, Register rt, uint16_t code) { ASSERT(is_uint10(code)); Instr instr = SPECIAL | TLTU | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } void Assembler::teq(Register rs, Register rt, uint16_t code) { ASSERT(is_uint10(code)); Instr instr = SPECIAL | TEQ | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } void Assembler::tne(Register rs, Register rt, uint16_t code) { ASSERT(is_uint10(code)); Instr instr = SPECIAL | TNE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } // Move from HI/LO register. void Assembler::mfhi(Register rd) { GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFHI); } void Assembler::mflo(Register rd) { GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFLO); } // Set on less than instructions. void Assembler::slt(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLT); } void Assembler::sltu(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLTU); } void Assembler::slti(Register rt, Register rs, int32_t j) { GenInstrImmediate(SLTI, rs, rt, j); } void Assembler::sltiu(Register rt, Register rs, int32_t j) { GenInstrImmediate(SLTIU, rs, rt, j); } // Conditional move. void Assembler::movz(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVZ); } void Assembler::movn(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVN); } void Assembler::movt(Register rd, Register rs, uint16_t cc) { Register rt; rt.code_ = (cc & 0x0003) << 2 | 1; GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI); } void Assembler::movf(Register rd, Register rs, uint16_t cc) { Register rt; rt.code_ = (cc & 0x0003) << 2 | 0; GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI); } // Bit twiddling. void Assembler::clz(Register rd, Register rs) { // Clz instr requires same GPR number in 'rd' and 'rt' fields. GenInstrRegister(SPECIAL2, rs, rd, rd, 0, CLZ); } void Assembler::ins_(Register rt, Register rs, uint16_t pos, uint16_t size) { // Should be called via MacroAssembler::Ins. // Ins instr has 'rt' field as dest, and two uint5: msb, lsb. ASSERT(mips32r2); GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, INS); } void Assembler::ext_(Register rt, Register rs, uint16_t pos, uint16_t size) { // Should be called via MacroAssembler::Ext. // Ext instr has 'rt' field as dest, and two uint5: msb, lsb. ASSERT(mips32r2); GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, EXT); } //--------Coprocessor-instructions---------------- // Load, store, move. void Assembler::lwc1(FPURegister fd, const MemOperand& src) { GenInstrImmediate(LWC1, src.rm(), fd, src.offset_); } void Assembler::ldc1(FPURegister fd, const MemOperand& src) { // Workaround for non-8-byte alignment of HeapNumber, convert 64-bit // load to two 32-bit loads. GenInstrImmediate(LWC1, src.rm(), fd, src.offset_); FPURegister nextfpreg; nextfpreg.setcode(fd.code() + 1); GenInstrImmediate(LWC1, src.rm(), nextfpreg, src.offset_ + 4); } void Assembler::swc1(FPURegister fd, const MemOperand& src) { GenInstrImmediate(SWC1, src.rm(), fd, src.offset_); } void Assembler::sdc1(FPURegister fd, const MemOperand& src) { // Workaround for non-8-byte alignment of HeapNumber, convert 64-bit // store to two 32-bit stores. GenInstrImmediate(SWC1, src.rm(), fd, src.offset_); FPURegister nextfpreg; nextfpreg.setcode(fd.code() + 1); GenInstrImmediate(SWC1, src.rm(), nextfpreg, src.offset_ + 4); } void Assembler::mtc1(Register rt, FPURegister fs) { GenInstrRegister(COP1, MTC1, rt, fs, f0); } void Assembler::mfc1(Register rt, FPURegister fs) { GenInstrRegister(COP1, MFC1, rt, fs, f0); } void Assembler::ctc1(Register rt, FPUControlRegister fs) { GenInstrRegister(COP1, CTC1, rt, fs); } void Assembler::cfc1(Register rt, FPUControlRegister fs) { GenInstrRegister(COP1, CFC1, rt, fs); } // Arithmetic. void Assembler::add_d(FPURegister fd, FPURegister fs, FPURegister ft) { GenInstrRegister(COP1, D, ft, fs, fd, ADD_D); } void Assembler::sub_d(FPURegister fd, FPURegister fs, FPURegister ft) { GenInstrRegister(COP1, D, ft, fs, fd, SUB_D); } void Assembler::mul_d(FPURegister fd, FPURegister fs, FPURegister ft) { GenInstrRegister(COP1, D, ft, fs, fd, MUL_D); } void Assembler::div_d(FPURegister fd, FPURegister fs, FPURegister ft) { GenInstrRegister(COP1, D, ft, fs, fd, DIV_D); } void Assembler::abs_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, ABS_D); } void Assembler::mov_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, MOV_D); } void Assembler::neg_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, NEG_D); } void Assembler::sqrt_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, SQRT_D); } // Conversions. void Assembler::cvt_w_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, CVT_W_S); } void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, CVT_W_D); } void Assembler::trunc_w_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_W_S); } void Assembler::trunc_w_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_W_D); } void Assembler::round_w_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, ROUND_W_S); } void Assembler::round_w_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, ROUND_W_D); } void Assembler::floor_w_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_W_S); } void Assembler::floor_w_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_W_D); } void Assembler::ceil_w_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, CEIL_W_S); } void Assembler::ceil_w_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, CEIL_W_D); } void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) { ASSERT(mips32r2); GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S); } void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) { ASSERT(mips32r2); GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D); } void Assembler::trunc_l_s(FPURegister fd, FPURegister fs) { ASSERT(mips32r2); GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_L_S); } void Assembler::trunc_l_d(FPURegister fd, FPURegister fs) { ASSERT(mips32r2); GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_L_D); } void Assembler::round_l_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, ROUND_L_S); } void Assembler::round_l_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, ROUND_L_D); } void Assembler::floor_l_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_L_S); } void Assembler::floor_l_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_L_D); } void Assembler::ceil_l_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, CEIL_L_S); } void Assembler::ceil_l_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, CEIL_L_D); } void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W); } void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) { ASSERT(mips32r2); GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L); } void Assembler::cvt_s_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, CVT_S_D); } void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, W, f0, fs, fd, CVT_D_W); } void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) { ASSERT(mips32r2); GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L); } void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, CVT_D_S); } // Conditions. void Assembler::c(FPUCondition cond, SecondaryField fmt, FPURegister fs, FPURegister ft, uint16_t cc) { ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); ASSERT(is_uint3(cc)); ASSERT((fmt & ~(31 << kRsShift)) == 0); Instr instr = COP1 | fmt | ft.code() << 16 | fs.code() << kFsShift | cc << 8 | 3 << 4 | cond; emit(instr); } void Assembler::fcmp(FPURegister src1, const double src2, FPUCondition cond) { ASSERT(isolate()->cpu_features()->IsSupported(FPU)); ASSERT(src2 == 0.0); mtc1(zero_reg, f14); cvt_d_w(f14, f14); c(cond, D, src1, f14, 0); } void Assembler::bc1f(int16_t offset, uint16_t cc) { ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); ASSERT(is_uint3(cc)); Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask); emit(instr); } void Assembler::bc1t(int16_t offset, uint16_t cc) { ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); ASSERT(is_uint3(cc)); Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask); emit(instr); } // Debugging. void Assembler::RecordJSReturn() { positions_recorder()->WriteRecordedPositions(); CheckBuffer(); RecordRelocInfo(RelocInfo::JS_RETURN); } void Assembler::RecordDebugBreakSlot() { positions_recorder()->WriteRecordedPositions(); CheckBuffer(); RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT); } void Assembler::RecordComment(const char* msg) { if (FLAG_code_comments) { CheckBuffer(); RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg)); } } void Assembler::GrowBuffer() { if (!own_buffer_) FATAL("external code buffer is too small"); // Compute new buffer size. CodeDesc desc; // The new buffer. if (buffer_size_ < 4*KB) { desc.buffer_size = 4*KB; } else if (buffer_size_ < 1*MB) { desc.buffer_size = 2*buffer_size_; } else { desc.buffer_size = buffer_size_ + 1*MB; } CHECK_GT(desc.buffer_size, 0); // No overflow. // Setup new buffer. desc.buffer = NewArray<byte>(desc.buffer_size); desc.instr_size = pc_offset(); desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); // Copy the data. int pc_delta = desc.buffer - buffer_; int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); memmove(desc.buffer, buffer_, desc.instr_size); memmove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(), desc.reloc_size); // Switch buffers. DeleteArray(buffer_); buffer_ = desc.buffer; buffer_size_ = desc.buffer_size; pc_ += pc_delta; reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, reloc_info_writer.last_pc() + pc_delta); // On ia32 and ARM pc relative addressing is used, and we thus need to apply a // shift by pc_delta. But on MIPS the target address it directly loaded, so // we do not need to relocate here. ASSERT(!overflow()); } void Assembler::db(uint8_t data) { CheckBuffer(); *reinterpret_cast<uint8_t*>(pc_) = data; pc_ += sizeof(uint8_t); } void Assembler::dd(uint32_t data) { CheckBuffer(); *reinterpret_cast<uint32_t*>(pc_) = data; pc_ += sizeof(uint32_t); } void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { RelocInfo rinfo(pc_, rmode, data); // We do not try to reuse pool constants. if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::DEBUG_BREAK_SLOT) { // Adjust code for new modes. ASSERT(RelocInfo::IsDebugBreakSlot(rmode) || RelocInfo::IsJSReturn(rmode) || RelocInfo::IsComment(rmode) || RelocInfo::IsPosition(rmode)); // These modes do not need an entry in the constant pool. } if (rinfo.rmode() != RelocInfo::NONE) { // Don't record external references unless the heap will be serialized. if (rmode == RelocInfo::EXTERNAL_REFERENCE && !Serializer::enabled() && !FLAG_debug_code) { return; } ASSERT(buffer_space() >= kMaxRelocSize); // Too late to grow buffer here. reloc_info_writer.Write(&rinfo); } } void Assembler::BlockTrampolinePoolFor(int instructions) { BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize); } void Assembler::CheckTrampolinePool(bool force_emit) { // Calculate the offset of the next check. next_buffer_check_ = pc_offset() + kCheckConstInterval; int dist = pc_offset() - last_trampoline_pool_end_; if (dist <= kMaxDistBetweenPools && !force_emit) { return; } // Some small sequences of instructions must not be broken up by the // insertion of a trampoline pool; such sequences are protected by setting // either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_, // which are both checked here. Also, recursive calls to CheckTrampolinePool // are blocked by trampoline_pool_blocked_nesting_. if ((trampoline_pool_blocked_nesting_ > 0) || (pc_offset() < no_trampoline_pool_before_)) { // Emission is currently blocked; make sure we try again as soon as // possible. if (trampoline_pool_blocked_nesting_ > 0) { next_buffer_check_ = pc_offset() + kInstrSize; } else { next_buffer_check_ = no_trampoline_pool_before_; } return; } // First we emit jump (2 instructions), then we emit trampoline pool. { BlockTrampolinePoolScope block_trampoline_pool(this); Label after_pool; b(&after_pool); nop(); int pool_start = pc_offset(); for (int i = 0; i < kSlotsPerTrampoline; i++) { b(&after_pool); nop(); } for (int i = 0; i < kLabelsPerTrampoline; i++) { emit(0); } last_trampoline_pool_end_ = pc_offset() - kInstrSize; bind(&after_pool); trampolines_.Add(Trampoline(pool_start, kSlotsPerTrampoline, kLabelsPerTrampoline)); // Since a trampoline pool was just emitted, // move the check offset forward by the standard interval. next_buffer_check_ = last_trampoline_pool_end_ + kMaxDistBetweenPools; } return; } Address Assembler::target_address_at(Address pc) { Instr instr1 = instr_at(pc); Instr instr2 = instr_at(pc + kInstrSize); // Check we have 2 instructions generated by li. ASSERT(((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) || ((instr1 == nopInstr) && ((instr2 & kOpcodeMask) == ADDI || (instr2 & kOpcodeMask) == ORI || (instr2 & kOpcodeMask) == LUI))); // Interpret these 2 instructions. if (instr1 == nopInstr) { if ((instr2 & kOpcodeMask) == ADDI) { return reinterpret_cast<Address>(((instr2 & kImm16Mask) << 16) >> 16); } else if ((instr2 & kOpcodeMask) == ORI) { return reinterpret_cast<Address>(instr2 & kImm16Mask); } else if ((instr2 & kOpcodeMask) == LUI) { return reinterpret_cast<Address>((instr2 & kImm16Mask) << 16); } } else if ((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) { // 32 bit value. return reinterpret_cast<Address>( (instr1 & kImm16Mask) << 16 | (instr2 & kImm16Mask)); } // We should never get here. UNREACHABLE(); return (Address)0x0; } void Assembler::set_target_address_at(Address pc, Address target) { // On MIPS we need to patch the code to generate. // First check we have a li. Instr instr2 = instr_at(pc + kInstrSize); #ifdef DEBUG Instr instr1 = instr_at(pc); // Check we have indeed the result from a li with MustUseReg true. CHECK(((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) || ((instr1 == 0) && ((instr2 & kOpcodeMask)== ADDIU || (instr2 & kOpcodeMask)== ORI || (instr2 & kOpcodeMask)== LUI))); #endif uint32_t rt_code = (instr2 & kRtFieldMask); uint32_t* p = reinterpret_cast<uint32_t*>(pc); uint32_t itarget = reinterpret_cast<uint32_t>(target); if (is_int16(itarget)) { // nop. // addiu rt zero_reg j. *p = nopInstr; *(p+1) = ADDIU | rt_code | (itarget & kImm16Mask); } else if (!(itarget & kHiMask)) { // nop. // ori rt zero_reg j. *p = nopInstr; *(p+1) = ORI | rt_code | (itarget & kImm16Mask); } else if (!(itarget & kImm16Mask)) { // nop. // lui rt (kHiMask & itarget) >> kLuiShift. *p = nopInstr; *(p+1) = LUI | rt_code | ((itarget & kHiMask) >> kLuiShift); } else { // lui rt (kHiMask & itarget) >> kLuiShift. // ori rt rt, (kImm16Mask & itarget). *p = LUI | rt_code | ((itarget & kHiMask) >> kLuiShift); *(p+1) = ORI | rt_code | (rt_code << 5) | (itarget & kImm16Mask); } CPU::FlushICache(pc, 2 * sizeof(int32_t)); } } } // namespace v8::internal #endif // V8_TARGET_ARCH_MIPS