// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "arm/lithium-codegen-arm.h" #include "arm/lithium-gap-resolver-arm.h" #include "code-stubs.h" #include "stub-cache.h" namespace v8 { namespace internal { class SafepointGenerator : public CallWrapper { public: SafepointGenerator(LCodeGen* codegen, LPointerMap* pointers, int deoptimization_index) : codegen_(codegen), pointers_(pointers), deoptimization_index_(deoptimization_index) { } virtual ~SafepointGenerator() { } virtual void BeforeCall(int call_size) { ASSERT(call_size >= 0); // Ensure that we have enough space after the previous safepoint position // for the generated code there. int call_end = codegen_->masm()->pc_offset() + call_size; int prev_jump_end = codegen_->LastSafepointEnd() + Deoptimizer::patch_size(); if (call_end < prev_jump_end) { int padding_size = prev_jump_end - call_end; ASSERT_EQ(0, padding_size % Assembler::kInstrSize); while (padding_size > 0) { codegen_->masm()->nop(); padding_size -= Assembler::kInstrSize; } } } virtual void AfterCall() { codegen_->RecordSafepoint(pointers_, deoptimization_index_); } private: LCodeGen* codegen_; LPointerMap* pointers_; int deoptimization_index_; }; #define __ masm()-> bool LCodeGen::GenerateCode() { HPhase phase("Code generation", chunk()); ASSERT(is_unused()); status_ = GENERATING; CpuFeatures::Scope scope1(VFP3); CpuFeatures::Scope scope2(ARMv7); return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() && GenerateSafepointTable(); } void LCodeGen::FinishCode(Handle<Code> code) { ASSERT(is_done()); code->set_stack_slots(StackSlotCount()); code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); PopulateDeoptimizationData(code); Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(code); } void LCodeGen::Abort(const char* format, ...) { if (FLAG_trace_bailout) { SmartPointer<char> name(info()->shared_info()->DebugName()->ToCString()); PrintF("Aborting LCodeGen in @\"%s\": ", *name); va_list arguments; va_start(arguments, format); OS::VPrint(format, arguments); va_end(arguments); PrintF("\n"); } status_ = ABORTED; } void LCodeGen::Comment(const char* format, ...) { if (!FLAG_code_comments) return; char buffer[4 * KB]; StringBuilder builder(buffer, ARRAY_SIZE(buffer)); va_list arguments; va_start(arguments, format); builder.AddFormattedList(format, arguments); va_end(arguments); // Copy the string before recording it in the assembler to avoid // issues when the stack allocated buffer goes out of scope. size_t length = builder.position(); Vector<char> copy = Vector<char>::New(length + 1); memcpy(copy.start(), builder.Finalize(), copy.length()); masm()->RecordComment(copy.start()); } bool LCodeGen::GeneratePrologue() { ASSERT(is_generating()); #ifdef DEBUG if (strlen(FLAG_stop_at) > 0 && info_->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { __ stop("stop_at"); } #endif // r1: Callee's JS function. // cp: Callee's context. // fp: Caller's frame pointer. // lr: Caller's pc. __ stm(db_w, sp, r1.bit() | cp.bit() | fp.bit() | lr.bit()); __ add(fp, sp, Operand(2 * kPointerSize)); // Adjust FP to point to saved FP. // Reserve space for the stack slots needed by the code. int slots = StackSlotCount(); if (slots > 0) { if (FLAG_debug_code) { __ mov(r0, Operand(slots)); __ mov(r2, Operand(kSlotsZapValue)); Label loop; __ bind(&loop); __ push(r2); __ sub(r0, r0, Operand(1), SetCC); __ b(ne, &loop); } else { __ sub(sp, sp, Operand(slots * kPointerSize)); } } // Possibly allocate a local context. int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; if (heap_slots > 0) { Comment(";;; Allocate local context"); // Argument to NewContext is the function, which is in r1. __ push(r1); if (heap_slots <= FastNewContextStub::kMaximumSlots) { FastNewContextStub stub(heap_slots); __ CallStub(&stub); } else { __ CallRuntime(Runtime::kNewContext, 1); } RecordSafepoint(Safepoint::kNoDeoptimizationIndex); // Context is returned in both r0 and cp. It replaces the context // passed to us. It's saved in the stack and kept live in cp. __ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); // Copy any necessary parameters into the context. int num_parameters = scope()->num_parameters(); for (int i = 0; i < num_parameters; i++) { Slot* slot = scope()->parameter(i)->AsSlot(); if (slot != NULL && slot->type() == Slot::CONTEXT) { int parameter_offset = StandardFrameConstants::kCallerSPOffset + (num_parameters - 1 - i) * kPointerSize; // Load parameter from stack. __ ldr(r0, MemOperand(fp, parameter_offset)); // Store it in the context. __ mov(r1, Operand(Context::SlotOffset(slot->index()))); __ str(r0, MemOperand(cp, r1)); // Update the write barrier. This clobbers all involved // registers, so we have to use two more registers to avoid // clobbering cp. __ mov(r2, Operand(cp)); __ RecordWrite(r2, Operand(r1), r3, r0); } } Comment(";;; End allocate local context"); } // Trace the call. if (FLAG_trace) { __ CallRuntime(Runtime::kTraceEnter, 0); } return !is_aborted(); } bool LCodeGen::GenerateBody() { ASSERT(is_generating()); bool emit_instructions = true; for (current_instruction_ = 0; !is_aborted() && current_instruction_ < instructions_->length(); current_instruction_++) { LInstruction* instr = instructions_->at(current_instruction_); if (instr->IsLabel()) { LLabel* label = LLabel::cast(instr); emit_instructions = !label->HasReplacement(); } if (emit_instructions) { Comment(";;; @%d: %s.", current_instruction_, instr->Mnemonic()); instr->CompileToNative(this); } } return !is_aborted(); } LInstruction* LCodeGen::GetNextInstruction() { if (current_instruction_ < instructions_->length() - 1) { return instructions_->at(current_instruction_ + 1); } else { return NULL; } } bool LCodeGen::GenerateDeferredCode() { ASSERT(is_generating()); for (int i = 0; !is_aborted() && i < deferred_.length(); i++) { LDeferredCode* code = deferred_[i]; __ bind(code->entry()); code->Generate(); __ jmp(code->exit()); } // Force constant pool emission at the end of deferred code to make // sure that no constant pools are emitted after the official end of // the instruction sequence. masm()->CheckConstPool(true, false); // Deferred code is the last part of the instruction sequence. Mark // the generated code as done unless we bailed out. if (!is_aborted()) status_ = DONE; return !is_aborted(); } bool LCodeGen::GenerateSafepointTable() { ASSERT(is_done()); safepoints_.Emit(masm(), StackSlotCount()); return !is_aborted(); } Register LCodeGen::ToRegister(int index) const { return Register::FromAllocationIndex(index); } DoubleRegister LCodeGen::ToDoubleRegister(int index) const { return DoubleRegister::FromAllocationIndex(index); } Register LCodeGen::ToRegister(LOperand* op) const { ASSERT(op->IsRegister()); return ToRegister(op->index()); } Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) { if (op->IsRegister()) { return ToRegister(op->index()); } else if (op->IsConstantOperand()) { __ mov(scratch, ToOperand(op)); return scratch; } else if (op->IsStackSlot() || op->IsArgument()) { __ ldr(scratch, ToMemOperand(op)); return scratch; } UNREACHABLE(); return scratch; } DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const { ASSERT(op->IsDoubleRegister()); return ToDoubleRegister(op->index()); } DoubleRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op, SwVfpRegister flt_scratch, DoubleRegister dbl_scratch) { if (op->IsDoubleRegister()) { return ToDoubleRegister(op->index()); } else if (op->IsConstantOperand()) { LConstantOperand* const_op = LConstantOperand::cast(op); Handle<Object> literal = chunk_->LookupLiteral(const_op); Representation r = chunk_->LookupLiteralRepresentation(const_op); if (r.IsInteger32()) { ASSERT(literal->IsNumber()); __ mov(ip, Operand(static_cast<int32_t>(literal->Number()))); __ vmov(flt_scratch, ip); __ vcvt_f64_s32(dbl_scratch, flt_scratch); return dbl_scratch; } else if (r.IsDouble()) { Abort("unsupported double immediate"); } else if (r.IsTagged()) { Abort("unsupported tagged immediate"); } } else if (op->IsStackSlot() || op->IsArgument()) { // TODO(regis): Why is vldr not taking a MemOperand? // __ vldr(dbl_scratch, ToMemOperand(op)); MemOperand mem_op = ToMemOperand(op); __ vldr(dbl_scratch, mem_op.rn(), mem_op.offset()); return dbl_scratch; } UNREACHABLE(); return dbl_scratch; } int LCodeGen::ToInteger32(LConstantOperand* op) const { Handle<Object> value = chunk_->LookupLiteral(op); ASSERT(chunk_->LookupLiteralRepresentation(op).IsInteger32()); ASSERT(static_cast<double>(static_cast<int32_t>(value->Number())) == value->Number()); return static_cast<int32_t>(value->Number()); } Operand LCodeGen::ToOperand(LOperand* op) { if (op->IsConstantOperand()) { LConstantOperand* const_op = LConstantOperand::cast(op); Handle<Object> literal = chunk_->LookupLiteral(const_op); Representation r = chunk_->LookupLiteralRepresentation(const_op); if (r.IsInteger32()) { ASSERT(literal->IsNumber()); return Operand(static_cast<int32_t>(literal->Number())); } else if (r.IsDouble()) { Abort("ToOperand Unsupported double immediate."); } ASSERT(r.IsTagged()); return Operand(literal); } else if (op->IsRegister()) { return Operand(ToRegister(op)); } else if (op->IsDoubleRegister()) { Abort("ToOperand IsDoubleRegister unimplemented"); return Operand(0); } // Stack slots not implemented, use ToMemOperand instead. UNREACHABLE(); return Operand(0); } MemOperand LCodeGen::ToMemOperand(LOperand* op) const { ASSERT(!op->IsRegister()); ASSERT(!op->IsDoubleRegister()); ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot()); int index = op->index(); if (index >= 0) { // Local or spill slot. Skip the frame pointer, function, and // context in the fixed part of the frame. return MemOperand(fp, -(index + 3) * kPointerSize); } else { // Incoming parameter. Skip the return address. return MemOperand(fp, -(index - 1) * kPointerSize); } } MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const { ASSERT(op->IsDoubleStackSlot()); int index = op->index(); if (index >= 0) { // Local or spill slot. Skip the frame pointer, function, context, // and the first word of the double in the fixed part of the frame. return MemOperand(fp, -(index + 3) * kPointerSize + kPointerSize); } else { // Incoming parameter. Skip the return address and the first word of // the double. return MemOperand(fp, -(index - 1) * kPointerSize + kPointerSize); } } void LCodeGen::WriteTranslation(LEnvironment* environment, Translation* translation) { if (environment == NULL) return; // The translation includes one command per value in the environment. int translation_size = environment->values()->length(); // The output frame height does not include the parameters. int height = translation_size - environment->parameter_count(); WriteTranslation(environment->outer(), translation); int closure_id = DefineDeoptimizationLiteral(environment->closure()); translation->BeginFrame(environment->ast_id(), closure_id, height); for (int i = 0; i < translation_size; ++i) { LOperand* value = environment->values()->at(i); // spilled_registers_ and spilled_double_registers_ are either // both NULL or both set. if (environment->spilled_registers() != NULL && value != NULL) { if (value->IsRegister() && environment->spilled_registers()[value->index()] != NULL) { translation->MarkDuplicate(); AddToTranslation(translation, environment->spilled_registers()[value->index()], environment->HasTaggedValueAt(i)); } else if ( value->IsDoubleRegister() && environment->spilled_double_registers()[value->index()] != NULL) { translation->MarkDuplicate(); AddToTranslation( translation, environment->spilled_double_registers()[value->index()], false); } } AddToTranslation(translation, value, environment->HasTaggedValueAt(i)); } } void LCodeGen::AddToTranslation(Translation* translation, LOperand* op, bool is_tagged) { if (op == NULL) { // TODO(twuerthinger): Introduce marker operands to indicate that this value // is not present and must be reconstructed from the deoptimizer. Currently // this is only used for the arguments object. translation->StoreArgumentsObject(); } else if (op->IsStackSlot()) { if (is_tagged) { translation->StoreStackSlot(op->index()); } else { translation->StoreInt32StackSlot(op->index()); } } else if (op->IsDoubleStackSlot()) { translation->StoreDoubleStackSlot(op->index()); } else if (op->IsArgument()) { ASSERT(is_tagged); int src_index = StackSlotCount() + op->index(); translation->StoreStackSlot(src_index); } else if (op->IsRegister()) { Register reg = ToRegister(op); if (is_tagged) { translation->StoreRegister(reg); } else { translation->StoreInt32Register(reg); } } else if (op->IsDoubleRegister()) { DoubleRegister reg = ToDoubleRegister(op); translation->StoreDoubleRegister(reg); } else if (op->IsConstantOperand()) { Handle<Object> literal = chunk()->LookupLiteral(LConstantOperand::cast(op)); int src_index = DefineDeoptimizationLiteral(literal); translation->StoreLiteral(src_index); } else { UNREACHABLE(); } } void LCodeGen::CallCode(Handle<Code> code, RelocInfo::Mode mode, LInstruction* instr) { CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT); } void LCodeGen::CallCodeGeneric(Handle<Code> code, RelocInfo::Mode mode, LInstruction* instr, SafepointMode safepoint_mode) { ASSERT(instr != NULL); LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); __ Call(code, mode); RegisterLazyDeoptimization(instr, safepoint_mode); // Signal that we don't inline smi code before these stubs in the // optimizing code generator. if (code->kind() == Code::TYPE_RECORDING_BINARY_OP_IC || code->kind() == Code::COMPARE_IC) { __ nop(); } } void LCodeGen::CallRuntime(const Runtime::Function* function, int num_arguments, LInstruction* instr) { ASSERT(instr != NULL); LPointerMap* pointers = instr->pointer_map(); ASSERT(pointers != NULL); RecordPosition(pointers->position()); __ CallRuntime(function, num_arguments); RegisterLazyDeoptimization(instr, RECORD_SIMPLE_SAFEPOINT); } void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, int argc, LInstruction* instr) { __ CallRuntimeSaveDoubles(id); RecordSafepointWithRegisters( instr->pointer_map(), argc, Safepoint::kNoDeoptimizationIndex); } void LCodeGen::RegisterLazyDeoptimization(LInstruction* instr, SafepointMode safepoint_mode) { // Create the environment to bailout to. If the call has side effects // execution has to continue after the call otherwise execution can continue // from a previous bailout point repeating the call. LEnvironment* deoptimization_environment; if (instr->HasDeoptimizationEnvironment()) { deoptimization_environment = instr->deoptimization_environment(); } else { deoptimization_environment = instr->environment(); } RegisterEnvironmentForDeoptimization(deoptimization_environment); if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { RecordSafepoint(instr->pointer_map(), deoptimization_environment->deoptimization_index()); } else { ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); RecordSafepointWithRegisters( instr->pointer_map(), 0, deoptimization_environment->deoptimization_index()); } } void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment) { if (!environment->HasBeenRegistered()) { // Physical stack frame layout: // -x ............. -4 0 ..................................... y // [incoming arguments] [spill slots] [pushed outgoing arguments] // Layout of the environment: // 0 ..................................................... size-1 // [parameters] [locals] [expression stack including arguments] // Layout of the translation: // 0 ........................................................ size - 1 + 4 // [expression stack including arguments] [locals] [4 words] [parameters] // |>------------ translation_size ------------<| int frame_count = 0; for (LEnvironment* e = environment; e != NULL; e = e->outer()) { ++frame_count; } Translation translation(&translations_, frame_count); WriteTranslation(environment, &translation); int deoptimization_index = deoptimizations_.length(); environment->Register(deoptimization_index, translation.index()); deoptimizations_.Add(environment); } } void LCodeGen::DeoptimizeIf(Condition cc, LEnvironment* environment) { RegisterEnvironmentForDeoptimization(environment); ASSERT(environment->HasBeenRegistered()); int id = environment->deoptimization_index(); Address entry = Deoptimizer::GetDeoptimizationEntry(id, Deoptimizer::EAGER); ASSERT(entry != NULL); if (entry == NULL) { Abort("bailout was not prepared"); return; } ASSERT(FLAG_deopt_every_n_times < 2); // Other values not supported on ARM. if (FLAG_deopt_every_n_times == 1 && info_->shared_info()->opt_count() == id) { __ Jump(entry, RelocInfo::RUNTIME_ENTRY); return; } if (cc == al) { if (FLAG_trap_on_deopt) __ stop("trap_on_deopt"); __ Jump(entry, RelocInfo::RUNTIME_ENTRY); } else { if (FLAG_trap_on_deopt) { Label done; __ b(&done, NegateCondition(cc)); __ stop("trap_on_deopt"); __ Jump(entry, RelocInfo::RUNTIME_ENTRY); __ bind(&done); } else { __ Jump(entry, RelocInfo::RUNTIME_ENTRY, cc); } } } void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) { int length = deoptimizations_.length(); if (length == 0) return; ASSERT(FLAG_deopt); Handle<DeoptimizationInputData> data = factory()->NewDeoptimizationInputData(length, TENURED); Handle<ByteArray> translations = translations_.CreateByteArray(); data->SetTranslationByteArray(*translations); data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_)); Handle<FixedArray> literals = factory()->NewFixedArray(deoptimization_literals_.length(), TENURED); for (int i = 0; i < deoptimization_literals_.length(); i++) { literals->set(i, *deoptimization_literals_[i]); } data->SetLiteralArray(*literals); data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id())); data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_)); // Populate the deoptimization entries. for (int i = 0; i < length; i++) { LEnvironment* env = deoptimizations_[i]; data->SetAstId(i, Smi::FromInt(env->ast_id())); data->SetTranslationIndex(i, Smi::FromInt(env->translation_index())); data->SetArgumentsStackHeight(i, Smi::FromInt(env->arguments_stack_height())); } code->set_deoptimization_data(*data); } int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) { int result = deoptimization_literals_.length(); for (int i = 0; i < deoptimization_literals_.length(); ++i) { if (deoptimization_literals_[i].is_identical_to(literal)) return i; } deoptimization_literals_.Add(literal); return result; } void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() { ASSERT(deoptimization_literals_.length() == 0); const ZoneList<Handle<JSFunction> >* inlined_closures = chunk()->inlined_closures(); for (int i = 0, length = inlined_closures->length(); i < length; i++) { DefineDeoptimizationLiteral(inlined_closures->at(i)); } inlined_function_count_ = deoptimization_literals_.length(); } void LCodeGen::RecordSafepoint( LPointerMap* pointers, Safepoint::Kind kind, int arguments, int deoptimization_index) { ASSERT(expected_safepoint_kind_ == kind); const ZoneList<LOperand*>* operands = pointers->operands(); Safepoint safepoint = safepoints_.DefineSafepoint(masm(), kind, arguments, deoptimization_index); for (int i = 0; i < operands->length(); i++) { LOperand* pointer = operands->at(i); if (pointer->IsStackSlot()) { safepoint.DefinePointerSlot(pointer->index()); } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { safepoint.DefinePointerRegister(ToRegister(pointer)); } } if (kind & Safepoint::kWithRegisters) { // Register cp always contains a pointer to the context. safepoint.DefinePointerRegister(cp); } } void LCodeGen::RecordSafepoint(LPointerMap* pointers, int deoptimization_index) { RecordSafepoint(pointers, Safepoint::kSimple, 0, deoptimization_index); } void LCodeGen::RecordSafepoint(int deoptimization_index) { LPointerMap empty_pointers(RelocInfo::kNoPosition); RecordSafepoint(&empty_pointers, deoptimization_index); } void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, int arguments, int deoptimization_index) { RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deoptimization_index); } void LCodeGen::RecordSafepointWithRegistersAndDoubles( LPointerMap* pointers, int arguments, int deoptimization_index) { RecordSafepoint(pointers, Safepoint::kWithRegistersAndDoubles, arguments, deoptimization_index); } void LCodeGen::RecordPosition(int position) { if (!FLAG_debug_info || position == RelocInfo::kNoPosition) return; masm()->positions_recorder()->RecordPosition(position); } void LCodeGen::DoLabel(LLabel* label) { if (label->is_loop_header()) { Comment(";;; B%d - LOOP entry", label->block_id()); } else { Comment(";;; B%d", label->block_id()); } __ bind(label->label()); current_block_ = label->block_id(); LCodeGen::DoGap(label); } void LCodeGen::DoParallelMove(LParallelMove* move) { resolver_.Resolve(move); } void LCodeGen::DoGap(LGap* gap) { for (int i = LGap::FIRST_INNER_POSITION; i <= LGap::LAST_INNER_POSITION; i++) { LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i); LParallelMove* move = gap->GetParallelMove(inner_pos); if (move != NULL) DoParallelMove(move); } LInstruction* next = GetNextInstruction(); if (next != NULL && next->IsLazyBailout()) { int pc = masm()->pc_offset(); safepoints_.SetPcAfterGap(pc); } } void LCodeGen::DoParameter(LParameter* instr) { // Nothing to do. } void LCodeGen::DoCallStub(LCallStub* instr) { ASSERT(ToRegister(instr->result()).is(r0)); switch (instr->hydrogen()->major_key()) { case CodeStub::RegExpConstructResult: { RegExpConstructResultStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::RegExpExec: { RegExpExecStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::SubString: { SubStringStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::NumberToString: { NumberToStringStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::StringAdd: { StringAddStub stub(NO_STRING_ADD_FLAGS); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::StringCompare: { StringCompareStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::TranscendentalCache: { __ ldr(r0, MemOperand(sp, 0)); TranscendentalCacheStub stub(instr->transcendental_type(), TranscendentalCacheStub::TAGGED); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } default: UNREACHABLE(); } } void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { // Nothing to do. } void LCodeGen::DoModI(LModI* instr) { if (instr->hydrogen()->HasPowerOf2Divisor()) { Register dividend = ToRegister(instr->InputAt(0)); int32_t divisor = HConstant::cast(instr->hydrogen()->right())->Integer32Value(); if (divisor < 0) divisor = -divisor; Label positive_dividend, done; __ cmp(dividend, Operand(0)); __ b(pl, &positive_dividend); __ rsb(dividend, dividend, Operand(0)); __ and_(dividend, dividend, Operand(divisor - 1)); __ rsb(dividend, dividend, Operand(0), SetCC); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ b(ne, &done); DeoptimizeIf(al, instr->environment()); } else { __ b(&done); } __ bind(&positive_dividend); __ and_(dividend, dividend, Operand(divisor - 1)); __ bind(&done); return; } // These registers hold untagged 32 bit values. Register left = ToRegister(instr->InputAt(0)); Register right = ToRegister(instr->InputAt(1)); Register result = ToRegister(instr->result()); Register scratch = scratch0(); Register scratch2 = ToRegister(instr->TempAt(0)); DwVfpRegister dividend = ToDoubleRegister(instr->TempAt(1)); DwVfpRegister divisor = ToDoubleRegister(instr->TempAt(2)); DwVfpRegister quotient = double_scratch0(); ASSERT(result.is(left)); ASSERT(!dividend.is(divisor)); ASSERT(!dividend.is(quotient)); ASSERT(!divisor.is(quotient)); ASSERT(!scratch.is(left)); ASSERT(!scratch.is(right)); ASSERT(!scratch.is(result)); Label done, vfp_modulo, both_positive, right_negative; // Check for x % 0. if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) { __ cmp(right, Operand(0)); DeoptimizeIf(eq, instr->environment()); } // (0 % x) must yield 0 (if x is finite, which is the case here). __ cmp(left, Operand(0)); __ b(eq, &done); // Preload right in a vfp register. __ vmov(divisor.low(), right); __ b(lt, &vfp_modulo); __ cmp(left, Operand(right)); __ b(lt, &done); // Check for (positive) power of two on the right hand side. __ JumpIfNotPowerOfTwoOrZeroAndNeg(right, scratch, &right_negative, &both_positive); // Perform modulo operation (scratch contains right - 1). __ and_(result, scratch, Operand(left)); __ b(&done); __ bind(&right_negative); // Negate right. The sign of the divisor does not matter. __ rsb(right, right, Operand(0)); __ bind(&both_positive); const int kUnfolds = 3; // If the right hand side is smaller than the (nonnegative) // left hand side, the left hand side is the result. // Else try a few subtractions of the left hand side. __ mov(scratch, left); for (int i = 0; i < kUnfolds; i++) { // Check if the left hand side is less or equal than the // the right hand side. __ cmp(scratch, Operand(right)); __ mov(result, scratch, LeaveCC, lt); __ b(lt, &done); // If not, reduce the left hand side by the right hand // side and check again. if (i < kUnfolds - 1) __ sub(scratch, scratch, right); } __ bind(&vfp_modulo); // Load the arguments in VFP registers. // The divisor value is preloaded before. Be careful that 'right' is only live // on entry. __ vmov(dividend.low(), left); // From here on don't use right as it may have been reallocated (for example // to scratch2). right = no_reg; __ vcvt_f64_s32(dividend, dividend.low()); __ vcvt_f64_s32(divisor, divisor.low()); // We do not care about the sign of the divisor. __ vabs(divisor, divisor); // Compute the quotient and round it to a 32bit integer. __ vdiv(quotient, dividend, divisor); __ vcvt_s32_f64(quotient.low(), quotient); __ vcvt_f64_s32(quotient, quotient.low()); // Compute the remainder in result. DwVfpRegister double_scratch = dividend; __ vmul(double_scratch, divisor, quotient); __ vcvt_s32_f64(double_scratch.low(), double_scratch); __ vmov(scratch, double_scratch.low()); if (!instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ sub(result, left, scratch); } else { Label ok; // Check for -0. __ sub(scratch2, left, scratch, SetCC); __ b(ne, &ok); __ cmp(left, Operand(0)); DeoptimizeIf(mi, instr->environment()); __ bind(&ok); // Load the result and we are done. __ mov(result, scratch2); } __ bind(&done); } void LCodeGen::DoDivI(LDivI* instr) { class DeferredDivI: public LDeferredCode { public: DeferredDivI(LCodeGen* codegen, LDivI* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredBinaryOpStub(instr_, Token::DIV); } private: LDivI* instr_; }; const Register left = ToRegister(instr->InputAt(0)); const Register right = ToRegister(instr->InputAt(1)); const Register scratch = scratch0(); const Register result = ToRegister(instr->result()); // Check for x / 0. if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) { __ cmp(right, Operand(0)); DeoptimizeIf(eq, instr->environment()); } // Check for (0 / -x) that will produce negative zero. if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { Label left_not_zero; __ cmp(left, Operand(0)); __ b(ne, &left_not_zero); __ cmp(right, Operand(0)); DeoptimizeIf(mi, instr->environment()); __ bind(&left_not_zero); } // Check for (-kMinInt / -1). if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { Label left_not_min_int; __ cmp(left, Operand(kMinInt)); __ b(ne, &left_not_min_int); __ cmp(right, Operand(-1)); DeoptimizeIf(eq, instr->environment()); __ bind(&left_not_min_int); } Label done, deoptimize; // Test for a few common cases first. __ cmp(right, Operand(1)); __ mov(result, left, LeaveCC, eq); __ b(eq, &done); __ cmp(right, Operand(2)); __ tst(left, Operand(1), eq); __ mov(result, Operand(left, ASR, 1), LeaveCC, eq); __ b(eq, &done); __ cmp(right, Operand(4)); __ tst(left, Operand(3), eq); __ mov(result, Operand(left, ASR, 2), LeaveCC, eq); __ b(eq, &done); // Call the stub. The numbers in r0 and r1 have // to be tagged to Smis. If that is not possible, deoptimize. DeferredDivI* deferred = new DeferredDivI(this, instr); __ TrySmiTag(left, &deoptimize, scratch); __ TrySmiTag(right, &deoptimize, scratch); __ b(al, deferred->entry()); __ bind(deferred->exit()); // If the result in r0 is a Smi, untag it, else deoptimize. __ JumpIfNotSmi(result, &deoptimize); __ SmiUntag(result); __ b(&done); __ bind(&deoptimize); DeoptimizeIf(al, instr->environment()); __ bind(&done); } template<int T> void LCodeGen::DoDeferredBinaryOpStub(LTemplateInstruction<1, 2, T>* instr, Token::Value op) { Register left = ToRegister(instr->InputAt(0)); Register right = ToRegister(instr->InputAt(1)); PushSafepointRegistersScope scope(this, Safepoint::kWithRegistersAndDoubles); // Move left to r1 and right to r0 for the stub call. if (left.is(r1)) { __ Move(r0, right); } else if (left.is(r0) && right.is(r1)) { __ Swap(r0, r1, r2); } else if (left.is(r0)) { ASSERT(!right.is(r1)); __ mov(r1, r0); __ mov(r0, right); } else { ASSERT(!left.is(r0) && !right.is(r0)); __ mov(r0, right); __ mov(r1, left); } TypeRecordingBinaryOpStub stub(op, OVERWRITE_LEFT); __ CallStub(&stub); RecordSafepointWithRegistersAndDoubles(instr->pointer_map(), 0, Safepoint::kNoDeoptimizationIndex); // Overwrite the stored value of r0 with the result of the stub. __ StoreToSafepointRegistersAndDoublesSlot(r0, r0); } void LCodeGen::DoMulI(LMulI* instr) { Register scratch = scratch0(); Register left = ToRegister(instr->InputAt(0)); Register right = EmitLoadRegister(instr->InputAt(1), scratch); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero) && !instr->InputAt(1)->IsConstantOperand()) { __ orr(ToRegister(instr->TempAt(0)), left, right); } if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { // scratch:left = left * right. __ smull(left, scratch, left, right); __ mov(ip, Operand(left, ASR, 31)); __ cmp(ip, Operand(scratch)); DeoptimizeIf(ne, instr->environment()); } else { __ mul(left, left, right); } if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // Bail out if the result is supposed to be negative zero. Label done; __ cmp(left, Operand(0)); __ b(ne, &done); if (instr->InputAt(1)->IsConstantOperand()) { if (ToInteger32(LConstantOperand::cast(instr->InputAt(1))) <= 0) { DeoptimizeIf(al, instr->environment()); } } else { // Test the non-zero operand for negative sign. __ cmp(ToRegister(instr->TempAt(0)), Operand(0)); DeoptimizeIf(mi, instr->environment()); } __ bind(&done); } } void LCodeGen::DoBitI(LBitI* instr) { LOperand* left = instr->InputAt(0); LOperand* right = instr->InputAt(1); ASSERT(left->Equals(instr->result())); ASSERT(left->IsRegister()); Register result = ToRegister(left); Operand right_operand(no_reg); if (right->IsStackSlot() || right->IsArgument()) { Register right_reg = EmitLoadRegister(right, ip); right_operand = Operand(right_reg); } else { ASSERT(right->IsRegister() || right->IsConstantOperand()); right_operand = ToOperand(right); } switch (instr->op()) { case Token::BIT_AND: __ and_(result, ToRegister(left), right_operand); break; case Token::BIT_OR: __ orr(result, ToRegister(left), right_operand); break; case Token::BIT_XOR: __ eor(result, ToRegister(left), right_operand); break; default: UNREACHABLE(); break; } } void LCodeGen::DoShiftI(LShiftI* instr) { Register scratch = scratch0(); LOperand* left = instr->InputAt(0); LOperand* right = instr->InputAt(1); ASSERT(left->Equals(instr->result())); ASSERT(left->IsRegister()); Register result = ToRegister(left); if (right->IsRegister()) { // Mask the right operand. __ and_(scratch, ToRegister(right), Operand(0x1F)); switch (instr->op()) { case Token::SAR: __ mov(result, Operand(result, ASR, scratch)); break; case Token::SHR: if (instr->can_deopt()) { __ mov(result, Operand(result, LSR, scratch), SetCC); DeoptimizeIf(mi, instr->environment()); } else { __ mov(result, Operand(result, LSR, scratch)); } break; case Token::SHL: __ mov(result, Operand(result, LSL, scratch)); break; default: UNREACHABLE(); break; } } else { int value = ToInteger32(LConstantOperand::cast(right)); uint8_t shift_count = static_cast<uint8_t>(value & 0x1F); switch (instr->op()) { case Token::SAR: if (shift_count != 0) { __ mov(result, Operand(result, ASR, shift_count)); } break; case Token::SHR: if (shift_count == 0 && instr->can_deopt()) { __ tst(result, Operand(0x80000000)); DeoptimizeIf(ne, instr->environment()); } else { __ mov(result, Operand(result, LSR, shift_count)); } break; case Token::SHL: if (shift_count != 0) { __ mov(result, Operand(result, LSL, shift_count)); } break; default: UNREACHABLE(); break; } } } void LCodeGen::DoSubI(LSubI* instr) { LOperand* left = instr->InputAt(0); LOperand* right = instr->InputAt(1); ASSERT(left->Equals(instr->result())); bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); SBit set_cond = can_overflow ? SetCC : LeaveCC; if (right->IsStackSlot() || right->IsArgument()) { Register right_reg = EmitLoadRegister(right, ip); __ sub(ToRegister(left), ToRegister(left), Operand(right_reg), set_cond); } else { ASSERT(right->IsRegister() || right->IsConstantOperand()); __ sub(ToRegister(left), ToRegister(left), ToOperand(right), set_cond); } if (can_overflow) { DeoptimizeIf(vs, instr->environment()); } } void LCodeGen::DoConstantI(LConstantI* instr) { ASSERT(instr->result()->IsRegister()); __ mov(ToRegister(instr->result()), Operand(instr->value())); } void LCodeGen::DoConstantD(LConstantD* instr) { ASSERT(instr->result()->IsDoubleRegister()); DwVfpRegister result = ToDoubleRegister(instr->result()); double v = instr->value(); __ vmov(result, v); } void LCodeGen::DoConstantT(LConstantT* instr) { ASSERT(instr->result()->IsRegister()); __ mov(ToRegister(instr->result()), Operand(instr->value())); } void LCodeGen::DoJSArrayLength(LJSArrayLength* instr) { Register result = ToRegister(instr->result()); Register array = ToRegister(instr->InputAt(0)); __ ldr(result, FieldMemOperand(array, JSArray::kLengthOffset)); } void LCodeGen::DoExternalArrayLength(LExternalArrayLength* instr) { Register result = ToRegister(instr->result()); Register array = ToRegister(instr->InputAt(0)); __ ldr(result, FieldMemOperand(array, ExternalArray::kLengthOffset)); } void LCodeGen::DoFixedArrayLength(LFixedArrayLength* instr) { Register result = ToRegister(instr->result()); Register array = ToRegister(instr->InputAt(0)); __ ldr(result, FieldMemOperand(array, FixedArray::kLengthOffset)); } void LCodeGen::DoValueOf(LValueOf* instr) { Register input = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); Register map = ToRegister(instr->TempAt(0)); ASSERT(input.is(result)); Label done; // If the object is a smi return the object. __ tst(input, Operand(kSmiTagMask)); __ b(eq, &done); // If the object is not a value type, return the object. __ CompareObjectType(input, map, map, JS_VALUE_TYPE); __ b(ne, &done); __ ldr(result, FieldMemOperand(input, JSValue::kValueOffset)); __ bind(&done); } void LCodeGen::DoBitNotI(LBitNotI* instr) { LOperand* input = instr->InputAt(0); ASSERT(input->Equals(instr->result())); __ mvn(ToRegister(input), Operand(ToRegister(input))); } void LCodeGen::DoThrow(LThrow* instr) { Register input_reg = EmitLoadRegister(instr->InputAt(0), ip); __ push(input_reg); CallRuntime(Runtime::kThrow, 1, instr); if (FLAG_debug_code) { __ stop("Unreachable code."); } } void LCodeGen::DoAddI(LAddI* instr) { LOperand* left = instr->InputAt(0); LOperand* right = instr->InputAt(1); ASSERT(left->Equals(instr->result())); bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); SBit set_cond = can_overflow ? SetCC : LeaveCC; if (right->IsStackSlot() || right->IsArgument()) { Register right_reg = EmitLoadRegister(right, ip); __ add(ToRegister(left), ToRegister(left), Operand(right_reg), set_cond); } else { ASSERT(right->IsRegister() || right->IsConstantOperand()); __ add(ToRegister(left), ToRegister(left), ToOperand(right), set_cond); } if (can_overflow) { DeoptimizeIf(vs, instr->environment()); } } void LCodeGen::DoArithmeticD(LArithmeticD* instr) { DoubleRegister left = ToDoubleRegister(instr->InputAt(0)); DoubleRegister right = ToDoubleRegister(instr->InputAt(1)); switch (instr->op()) { case Token::ADD: __ vadd(left, left, right); break; case Token::SUB: __ vsub(left, left, right); break; case Token::MUL: __ vmul(left, left, right); break; case Token::DIV: __ vdiv(left, left, right); break; case Token::MOD: { // Save r0-r3 on the stack. __ stm(db_w, sp, r0.bit() | r1.bit() | r2.bit() | r3.bit()); __ PrepareCallCFunction(4, scratch0()); __ vmov(r0, r1, left); __ vmov(r2, r3, right); __ CallCFunction( ExternalReference::double_fp_operation(Token::MOD, isolate()), 4); // Move the result in the double result register. __ GetCFunctionDoubleResult(ToDoubleRegister(instr->result())); // Restore r0-r3. __ ldm(ia_w, sp, r0.bit() | r1.bit() | r2.bit() | r3.bit()); break; } default: UNREACHABLE(); break; } } void LCodeGen::DoArithmeticT(LArithmeticT* instr) { ASSERT(ToRegister(instr->InputAt(0)).is(r1)); ASSERT(ToRegister(instr->InputAt(1)).is(r0)); ASSERT(ToRegister(instr->result()).is(r0)); TypeRecordingBinaryOpStub stub(instr->op(), NO_OVERWRITE); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); __ nop(); // Signals no inlined code. } int LCodeGen::GetNextEmittedBlock(int block) { for (int i = block + 1; i < graph()->blocks()->length(); ++i) { LLabel* label = chunk_->GetLabel(i); if (!label->HasReplacement()) return i; } return -1; } void LCodeGen::EmitBranch(int left_block, int right_block, Condition cc) { int next_block = GetNextEmittedBlock(current_block_); right_block = chunk_->LookupDestination(right_block); left_block = chunk_->LookupDestination(left_block); if (right_block == left_block) { EmitGoto(left_block); } else if (left_block == next_block) { __ b(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block)); } else if (right_block == next_block) { __ b(cc, chunk_->GetAssemblyLabel(left_block)); } else { __ b(cc, chunk_->GetAssemblyLabel(left_block)); __ b(chunk_->GetAssemblyLabel(right_block)); } } void LCodeGen::DoBranch(LBranch* instr) { int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Representation r = instr->hydrogen()->representation(); if (r.IsInteger32()) { Register reg = ToRegister(instr->InputAt(0)); __ cmp(reg, Operand(0)); EmitBranch(true_block, false_block, ne); } else if (r.IsDouble()) { DoubleRegister reg = ToDoubleRegister(instr->InputAt(0)); Register scratch = scratch0(); // Test the double value. Zero and NaN are false. __ VFPCompareAndLoadFlags(reg, 0.0, scratch); __ tst(scratch, Operand(kVFPZConditionFlagBit | kVFPVConditionFlagBit)); EmitBranch(true_block, false_block, eq); } else { ASSERT(r.IsTagged()); Register reg = ToRegister(instr->InputAt(0)); if (instr->hydrogen()->type().IsBoolean()) { __ LoadRoot(ip, Heap::kTrueValueRootIndex); __ cmp(reg, ip); EmitBranch(true_block, false_block, eq); } else { Label* true_label = chunk_->GetAssemblyLabel(true_block); Label* false_label = chunk_->GetAssemblyLabel(false_block); __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ cmp(reg, ip); __ b(eq, false_label); __ LoadRoot(ip, Heap::kTrueValueRootIndex); __ cmp(reg, ip); __ b(eq, true_label); __ LoadRoot(ip, Heap::kFalseValueRootIndex); __ cmp(reg, ip); __ b(eq, false_label); __ cmp(reg, Operand(0)); __ b(eq, false_label); __ tst(reg, Operand(kSmiTagMask)); __ b(eq, true_label); // Test double values. Zero and NaN are false. Label call_stub; DoubleRegister dbl_scratch = d0; Register scratch = scratch0(); __ ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); __ cmp(scratch, Operand(ip)); __ b(ne, &call_stub); __ sub(ip, reg, Operand(kHeapObjectTag)); __ vldr(dbl_scratch, ip, HeapNumber::kValueOffset); __ VFPCompareAndLoadFlags(dbl_scratch, 0.0, scratch); __ tst(scratch, Operand(kVFPZConditionFlagBit | kVFPVConditionFlagBit)); __ b(ne, false_label); __ b(true_label); // The conversion stub doesn't cause garbage collections so it's // safe to not record a safepoint after the call. __ bind(&call_stub); ToBooleanStub stub(reg); RegList saved_regs = kJSCallerSaved | kCalleeSaved; __ stm(db_w, sp, saved_regs); __ CallStub(&stub); __ cmp(reg, Operand(0)); __ ldm(ia_w, sp, saved_regs); EmitBranch(true_block, false_block, ne); } } } void LCodeGen::EmitGoto(int block, LDeferredCode* deferred_stack_check) { block = chunk_->LookupDestination(block); int next_block = GetNextEmittedBlock(current_block_); if (block != next_block) { // Perform stack overflow check if this goto needs it before jumping. if (deferred_stack_check != NULL) { __ LoadRoot(ip, Heap::kStackLimitRootIndex); __ cmp(sp, Operand(ip)); __ b(hs, chunk_->GetAssemblyLabel(block)); __ jmp(deferred_stack_check->entry()); deferred_stack_check->SetExit(chunk_->GetAssemblyLabel(block)); } else { __ jmp(chunk_->GetAssemblyLabel(block)); } } } void LCodeGen::DoDeferredStackCheck(LGoto* instr) { PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); CallRuntimeFromDeferred(Runtime::kStackGuard, 0, instr); } void LCodeGen::DoGoto(LGoto* instr) { class DeferredStackCheck: public LDeferredCode { public: DeferredStackCheck(LCodeGen* codegen, LGoto* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); } private: LGoto* instr_; }; DeferredStackCheck* deferred = NULL; if (instr->include_stack_check()) { deferred = new DeferredStackCheck(this, instr); } EmitGoto(instr->block_id(), deferred); } Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { Condition cond = kNoCondition; switch (op) { case Token::EQ: case Token::EQ_STRICT: cond = eq; break; case Token::LT: cond = is_unsigned ? lo : lt; break; case Token::GT: cond = is_unsigned ? hi : gt; break; case Token::LTE: cond = is_unsigned ? ls : le; break; case Token::GTE: cond = is_unsigned ? hs : ge; break; case Token::IN: case Token::INSTANCEOF: default: UNREACHABLE(); } return cond; } void LCodeGen::EmitCmpI(LOperand* left, LOperand* right) { __ cmp(ToRegister(left), ToRegister(right)); } void LCodeGen::DoCmpID(LCmpID* instr) { LOperand* left = instr->InputAt(0); LOperand* right = instr->InputAt(1); LOperand* result = instr->result(); Register scratch = scratch0(); Label unordered, done; if (instr->is_double()) { // Compare left and right as doubles and load the // resulting flags into the normal status register. __ VFPCompareAndSetFlags(ToDoubleRegister(left), ToDoubleRegister(right)); // If a NaN is involved, i.e. the result is unordered (V set), // jump to unordered to return false. __ b(vs, &unordered); } else { EmitCmpI(left, right); } Condition cc = TokenToCondition(instr->op(), instr->is_double()); __ LoadRoot(ToRegister(result), Heap::kTrueValueRootIndex); __ b(cc, &done); __ bind(&unordered); __ LoadRoot(ToRegister(result), Heap::kFalseValueRootIndex); __ bind(&done); } void LCodeGen::DoCmpIDAndBranch(LCmpIDAndBranch* instr) { LOperand* left = instr->InputAt(0); LOperand* right = instr->InputAt(1); int false_block = chunk_->LookupDestination(instr->false_block_id()); int true_block = chunk_->LookupDestination(instr->true_block_id()); if (instr->is_double()) { // Compare left and right as doubles and load the // resulting flags into the normal status register. __ VFPCompareAndSetFlags(ToDoubleRegister(left), ToDoubleRegister(right)); // If a NaN is involved, i.e. the result is unordered (V set), // jump to false block label. __ b(vs, chunk_->GetAssemblyLabel(false_block)); } else { EmitCmpI(left, right); } Condition cc = TokenToCondition(instr->op(), instr->is_double()); EmitBranch(true_block, false_block, cc); } void LCodeGen::DoCmpJSObjectEq(LCmpJSObjectEq* instr) { Register left = ToRegister(instr->InputAt(0)); Register right = ToRegister(instr->InputAt(1)); Register result = ToRegister(instr->result()); __ cmp(left, Operand(right)); __ LoadRoot(result, Heap::kTrueValueRootIndex, eq); __ LoadRoot(result, Heap::kFalseValueRootIndex, ne); } void LCodeGen::DoCmpJSObjectEqAndBranch(LCmpJSObjectEqAndBranch* instr) { Register left = ToRegister(instr->InputAt(0)); Register right = ToRegister(instr->InputAt(1)); int false_block = chunk_->LookupDestination(instr->false_block_id()); int true_block = chunk_->LookupDestination(instr->true_block_id()); __ cmp(left, Operand(right)); EmitBranch(true_block, false_block, eq); } void LCodeGen::DoIsNull(LIsNull* instr) { Register reg = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); __ LoadRoot(ip, Heap::kNullValueRootIndex); __ cmp(reg, ip); if (instr->is_strict()) { __ LoadRoot(result, Heap::kTrueValueRootIndex, eq); __ LoadRoot(result, Heap::kFalseValueRootIndex, ne); } else { Label true_value, false_value, done; __ b(eq, &true_value); __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ cmp(ip, reg); __ b(eq, &true_value); __ tst(reg, Operand(kSmiTagMask)); __ b(eq, &false_value); // Check for undetectable objects by looking in the bit field in // the map. The object has already been smi checked. Register scratch = result; __ ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset)); __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); __ tst(scratch, Operand(1 << Map::kIsUndetectable)); __ b(ne, &true_value); __ bind(&false_value); __ LoadRoot(result, Heap::kFalseValueRootIndex); __ jmp(&done); __ bind(&true_value); __ LoadRoot(result, Heap::kTrueValueRootIndex); __ bind(&done); } } void LCodeGen::DoIsNullAndBranch(LIsNullAndBranch* instr) { Register scratch = scratch0(); Register reg = ToRegister(instr->InputAt(0)); // TODO(fsc): If the expression is known to be a smi, then it's // definitely not null. Jump to the false block. int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); __ LoadRoot(ip, Heap::kNullValueRootIndex); __ cmp(reg, ip); if (instr->is_strict()) { EmitBranch(true_block, false_block, eq); } else { Label* true_label = chunk_->GetAssemblyLabel(true_block); Label* false_label = chunk_->GetAssemblyLabel(false_block); __ b(eq, true_label); __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ cmp(reg, ip); __ b(eq, true_label); __ tst(reg, Operand(kSmiTagMask)); __ b(eq, false_label); // Check for undetectable objects by looking in the bit field in // the map. The object has already been smi checked. __ ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset)); __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); __ tst(scratch, Operand(1 << Map::kIsUndetectable)); EmitBranch(true_block, false_block, ne); } } Condition LCodeGen::EmitIsObject(Register input, Register temp1, Register temp2, Label* is_not_object, Label* is_object) { __ JumpIfSmi(input, is_not_object); __ LoadRoot(temp1, Heap::kNullValueRootIndex); __ cmp(input, temp1); __ b(eq, is_object); // Load map. __ ldr(temp1, FieldMemOperand(input, HeapObject::kMapOffset)); // Undetectable objects behave like undefined. __ ldrb(temp2, FieldMemOperand(temp1, Map::kBitFieldOffset)); __ tst(temp2, Operand(1 << Map::kIsUndetectable)); __ b(ne, is_not_object); // Load instance type and check that it is in object type range. __ ldrb(temp2, FieldMemOperand(temp1, Map::kInstanceTypeOffset)); __ cmp(temp2, Operand(FIRST_JS_OBJECT_TYPE)); __ b(lt, is_not_object); __ cmp(temp2, Operand(LAST_JS_OBJECT_TYPE)); return le; } void LCodeGen::DoIsObject(LIsObject* instr) { Register reg = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); Register temp = scratch0(); Label is_false, is_true, done; Condition true_cond = EmitIsObject(reg, result, temp, &is_false, &is_true); __ b(true_cond, &is_true); __ bind(&is_false); __ LoadRoot(result, Heap::kFalseValueRootIndex); __ b(&done); __ bind(&is_true); __ LoadRoot(result, Heap::kTrueValueRootIndex); __ bind(&done); } void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) { Register reg = ToRegister(instr->InputAt(0)); Register temp1 = ToRegister(instr->TempAt(0)); Register temp2 = scratch0(); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Label* true_label = chunk_->GetAssemblyLabel(true_block); Label* false_label = chunk_->GetAssemblyLabel(false_block); Condition true_cond = EmitIsObject(reg, temp1, temp2, false_label, true_label); EmitBranch(true_block, false_block, true_cond); } void LCodeGen::DoIsSmi(LIsSmi* instr) { ASSERT(instr->hydrogen()->value()->representation().IsTagged()); Register result = ToRegister(instr->result()); Register input_reg = EmitLoadRegister(instr->InputAt(0), ip); __ tst(input_reg, Operand(kSmiTagMask)); __ LoadRoot(result, Heap::kTrueValueRootIndex); Label done; __ b(eq, &done); __ LoadRoot(result, Heap::kFalseValueRootIndex); __ bind(&done); } void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Register input_reg = EmitLoadRegister(instr->InputAt(0), ip); __ tst(input_reg, Operand(kSmiTagMask)); EmitBranch(true_block, false_block, eq); } static InstanceType TestType(HHasInstanceType* instr) { InstanceType from = instr->from(); InstanceType to = instr->to(); if (from == FIRST_TYPE) return to; ASSERT(from == to || to == LAST_TYPE); return from; } static Condition BranchCondition(HHasInstanceType* instr) { InstanceType from = instr->from(); InstanceType to = instr->to(); if (from == to) return eq; if (to == LAST_TYPE) return hs; if (from == FIRST_TYPE) return ls; UNREACHABLE(); return eq; } void LCodeGen::DoHasInstanceType(LHasInstanceType* instr) { Register input = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); ASSERT(instr->hydrogen()->value()->representation().IsTagged()); Label done; __ tst(input, Operand(kSmiTagMask)); __ LoadRoot(result, Heap::kFalseValueRootIndex, eq); __ b(eq, &done); __ CompareObjectType(input, result, result, TestType(instr->hydrogen())); Condition cond = BranchCondition(instr->hydrogen()); __ LoadRoot(result, Heap::kTrueValueRootIndex, cond); __ LoadRoot(result, Heap::kFalseValueRootIndex, NegateCondition(cond)); __ bind(&done); } void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { Register scratch = scratch0(); Register input = ToRegister(instr->InputAt(0)); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Label* false_label = chunk_->GetAssemblyLabel(false_block); __ tst(input, Operand(kSmiTagMask)); __ b(eq, false_label); __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen())); EmitBranch(true_block, false_block, BranchCondition(instr->hydrogen())); } void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) { Register input = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); if (FLAG_debug_code) { __ AbortIfNotString(input); } __ ldr(result, FieldMemOperand(input, String::kHashFieldOffset)); __ IndexFromHash(result, result); } void LCodeGen::DoHasCachedArrayIndex(LHasCachedArrayIndex* instr) { Register input = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); Register scratch = scratch0(); ASSERT(instr->hydrogen()->value()->representation().IsTagged()); __ ldr(scratch, FieldMemOperand(input, String::kHashFieldOffset)); __ tst(scratch, Operand(String::kContainsCachedArrayIndexMask)); __ LoadRoot(result, Heap::kTrueValueRootIndex, eq); __ LoadRoot(result, Heap::kFalseValueRootIndex, ne); } void LCodeGen::DoHasCachedArrayIndexAndBranch( LHasCachedArrayIndexAndBranch* instr) { Register input = ToRegister(instr->InputAt(0)); Register scratch = scratch0(); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); __ ldr(scratch, FieldMemOperand(input, String::kHashFieldOffset)); __ tst(scratch, Operand(String::kContainsCachedArrayIndexMask)); EmitBranch(true_block, false_block, eq); } // Branches to a label or falls through with the answer in flags. Trashes // the temp registers, but not the input. Only input and temp2 may alias. void LCodeGen::EmitClassOfTest(Label* is_true, Label* is_false, Handle<String>class_name, Register input, Register temp, Register temp2) { ASSERT(!input.is(temp)); ASSERT(!temp.is(temp2)); // But input and temp2 may be the same register. __ tst(input, Operand(kSmiTagMask)); __ b(eq, is_false); __ CompareObjectType(input, temp, temp2, FIRST_JS_OBJECT_TYPE); __ b(lt, is_false); // Map is now in temp. // Functions have class 'Function'. __ CompareInstanceType(temp, temp2, JS_FUNCTION_TYPE); if (class_name->IsEqualTo(CStrVector("Function"))) { __ b(eq, is_true); } else { __ b(eq, is_false); } // Check if the constructor in the map is a function. __ ldr(temp, FieldMemOperand(temp, Map::kConstructorOffset)); // As long as JS_FUNCTION_TYPE is the last instance type and it is // right after LAST_JS_OBJECT_TYPE, we can avoid checking for // LAST_JS_OBJECT_TYPE. ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); // Objects with a non-function constructor have class 'Object'. __ CompareObjectType(temp, temp2, temp2, JS_FUNCTION_TYPE); if (class_name->IsEqualTo(CStrVector("Object"))) { __ b(ne, is_true); } else { __ b(ne, is_false); } // temp now contains the constructor function. Grab the // instance class name from there. __ ldr(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset)); __ ldr(temp, FieldMemOperand(temp, SharedFunctionInfo::kInstanceClassNameOffset)); // The class name we are testing against is a symbol because it's a literal. // The name in the constructor is a symbol because of the way the context is // booted. This routine isn't expected to work for random API-created // classes and it doesn't have to because you can't access it with natives // syntax. Since both sides are symbols it is sufficient to use an identity // comparison. __ cmp(temp, Operand(class_name)); // End with the answer in flags. } void LCodeGen::DoClassOfTest(LClassOfTest* instr) { Register input = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); ASSERT(input.is(result)); Handle<String> class_name = instr->hydrogen()->class_name(); Label done, is_true, is_false; EmitClassOfTest(&is_true, &is_false, class_name, input, scratch0(), input); __ b(ne, &is_false); __ bind(&is_true); __ LoadRoot(result, Heap::kTrueValueRootIndex); __ jmp(&done); __ bind(&is_false); __ LoadRoot(result, Heap::kFalseValueRootIndex); __ bind(&done); } void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { Register input = ToRegister(instr->InputAt(0)); Register temp = scratch0(); Register temp2 = ToRegister(instr->TempAt(0)); Handle<String> class_name = instr->hydrogen()->class_name(); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Label* true_label = chunk_->GetAssemblyLabel(true_block); Label* false_label = chunk_->GetAssemblyLabel(false_block); EmitClassOfTest(true_label, false_label, class_name, input, temp, temp2); EmitBranch(true_block, false_block, eq); } void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { Register reg = ToRegister(instr->InputAt(0)); Register temp = ToRegister(instr->TempAt(0)); int true_block = instr->true_block_id(); int false_block = instr->false_block_id(); __ ldr(temp, FieldMemOperand(reg, HeapObject::kMapOffset)); __ cmp(temp, Operand(instr->map())); EmitBranch(true_block, false_block, eq); } void LCodeGen::DoInstanceOf(LInstanceOf* instr) { ASSERT(ToRegister(instr->InputAt(0)).is(r0)); // Object is in r0. ASSERT(ToRegister(instr->InputAt(1)).is(r1)); // Function is in r1. InstanceofStub stub(InstanceofStub::kArgsInRegisters); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); __ cmp(r0, Operand(0)); __ mov(r0, Operand(factory()->false_value()), LeaveCC, ne); __ mov(r0, Operand(factory()->true_value()), LeaveCC, eq); } void LCodeGen::DoInstanceOfAndBranch(LInstanceOfAndBranch* instr) { ASSERT(ToRegister(instr->InputAt(0)).is(r0)); // Object is in r0. ASSERT(ToRegister(instr->InputAt(1)).is(r1)); // Function is in r1. int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); InstanceofStub stub(InstanceofStub::kArgsInRegisters); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); __ cmp(r0, Operand(0)); EmitBranch(true_block, false_block, eq); } void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) { class DeferredInstanceOfKnownGlobal: public LDeferredCode { public: DeferredInstanceOfKnownGlobal(LCodeGen* codegen, LInstanceOfKnownGlobal* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredLInstanceOfKnownGlobal(instr_, &map_check_); } Label* map_check() { return &map_check_; } private: LInstanceOfKnownGlobal* instr_; Label map_check_; }; DeferredInstanceOfKnownGlobal* deferred; deferred = new DeferredInstanceOfKnownGlobal(this, instr); Label done, false_result; Register object = ToRegister(instr->InputAt(0)); Register temp = ToRegister(instr->TempAt(0)); Register result = ToRegister(instr->result()); ASSERT(object.is(r0)); ASSERT(result.is(r0)); // A Smi is not instance of anything. __ JumpIfSmi(object, &false_result); // This is the inlined call site instanceof cache. The two occurences of the // hole value will be patched to the last map/result pair generated by the // instanceof stub. Label cache_miss; Register map = temp; __ ldr(map, FieldMemOperand(object, HeapObject::kMapOffset)); __ bind(deferred->map_check()); // Label for calculating code patching. // We use Factory::the_hole_value() on purpose instead of loading from the // root array to force relocation to be able to later patch with // the cached map. __ mov(ip, Operand(factory()->the_hole_value())); __ cmp(map, Operand(ip)); __ b(ne, &cache_miss); // We use Factory::the_hole_value() on purpose instead of loading from the // root array to force relocation to be able to later patch // with true or false. __ mov(result, Operand(factory()->the_hole_value())); __ b(&done); // The inlined call site cache did not match. Check null and string before // calling the deferred code. __ bind(&cache_miss); // Null is not instance of anything. __ LoadRoot(ip, Heap::kNullValueRootIndex); __ cmp(object, Operand(ip)); __ b(eq, &false_result); // String values is not instance of anything. Condition is_string = masm_->IsObjectStringType(object, temp); __ b(is_string, &false_result); // Go to the deferred code. __ b(deferred->entry()); __ bind(&false_result); __ LoadRoot(result, Heap::kFalseValueRootIndex); // Here result has either true or false. Deferred code also produces true or // false object. __ bind(deferred->exit()); __ bind(&done); } void LCodeGen::DoDeferredLInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr, Label* map_check) { Register result = ToRegister(instr->result()); ASSERT(result.is(r0)); InstanceofStub::Flags flags = InstanceofStub::kNoFlags; flags = static_cast<InstanceofStub::Flags>( flags | InstanceofStub::kArgsInRegisters); flags = static_cast<InstanceofStub::Flags>( flags | InstanceofStub::kCallSiteInlineCheck); flags = static_cast<InstanceofStub::Flags>( flags | InstanceofStub::kReturnTrueFalseObject); InstanceofStub stub(flags); PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); // Get the temp register reserved by the instruction. This needs to be r4 as // its slot of the pushing of safepoint registers is used to communicate the // offset to the location of the map check. Register temp = ToRegister(instr->TempAt(0)); ASSERT(temp.is(r4)); __ mov(InstanceofStub::right(), Operand(instr->function())); static const int kAdditionalDelta = 4; int delta = masm_->InstructionsGeneratedSince(map_check) + kAdditionalDelta; Label before_push_delta; __ bind(&before_push_delta); __ BlockConstPoolFor(kAdditionalDelta); __ mov(temp, Operand(delta * kPointerSize)); __ StoreToSafepointRegisterSlot(temp, temp); CallCodeGeneric(stub.GetCode(), RelocInfo::CODE_TARGET, instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); // Put the result value into the result register slot and // restore all registers. __ StoreToSafepointRegisterSlot(result, result); } static Condition ComputeCompareCondition(Token::Value op) { switch (op) { case Token::EQ_STRICT: case Token::EQ: return eq; case Token::LT: return lt; case Token::GT: return gt; case Token::LTE: return le; case Token::GTE: return ge; default: UNREACHABLE(); return kNoCondition; } } void LCodeGen::DoCmpT(LCmpT* instr) { Token::Value op = instr->op(); Handle<Code> ic = CompareIC::GetUninitialized(op); CallCode(ic, RelocInfo::CODE_TARGET, instr); __ cmp(r0, Operand(0)); // This instruction also signals no smi code inlined. Condition condition = ComputeCompareCondition(op); if (op == Token::GT || op == Token::LTE) { condition = ReverseCondition(condition); } __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex, condition); __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex, NegateCondition(condition)); } void LCodeGen::DoCmpTAndBranch(LCmpTAndBranch* instr) { Token::Value op = instr->op(); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Handle<Code> ic = CompareIC::GetUninitialized(op); CallCode(ic, RelocInfo::CODE_TARGET, instr); // The compare stub expects compare condition and the input operands // reversed for GT and LTE. Condition condition = ComputeCompareCondition(op); if (op == Token::GT || op == Token::LTE) { condition = ReverseCondition(condition); } __ cmp(r0, Operand(0)); EmitBranch(true_block, false_block, condition); } void LCodeGen::DoReturn(LReturn* instr) { if (FLAG_trace) { // Push the return value on the stack as the parameter. // Runtime::TraceExit returns its parameter in r0. __ push(r0); __ CallRuntime(Runtime::kTraceExit, 1); } int32_t sp_delta = (ParameterCount() + 1) * kPointerSize; __ mov(sp, fp); __ ldm(ia_w, sp, fp.bit() | lr.bit()); __ add(sp, sp, Operand(sp_delta)); __ Jump(lr); } void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) { Register result = ToRegister(instr->result()); __ mov(ip, Operand(Handle<Object>(instr->hydrogen()->cell()))); __ ldr(result, FieldMemOperand(ip, JSGlobalPropertyCell::kValueOffset)); if (instr->hydrogen()->check_hole_value()) { __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ cmp(result, ip); DeoptimizeIf(eq, instr->environment()); } } void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) { ASSERT(ToRegister(instr->global_object()).is(r0)); ASSERT(ToRegister(instr->result()).is(r0)); __ mov(r2, Operand(instr->name())); RelocInfo::Mode mode = instr->for_typeof() ? RelocInfo::CODE_TARGET : RelocInfo::CODE_TARGET_CONTEXT; Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); CallCode(ic, mode, instr); } void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) { Register value = ToRegister(instr->InputAt(0)); Register scratch = scratch0(); // Load the cell. __ mov(scratch, Operand(Handle<Object>(instr->hydrogen()->cell()))); // If the cell we are storing to contains the hole it could have // been deleted from the property dictionary. In that case, we need // to update the property details in the property dictionary to mark // it as no longer deleted. if (instr->hydrogen()->check_hole_value()) { Register scratch2 = ToRegister(instr->TempAt(0)); __ ldr(scratch2, FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset)); __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ cmp(scratch2, ip); DeoptimizeIf(eq, instr->environment()); } // Store the value. __ str(value, FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset)); } void LCodeGen::DoStoreGlobalGeneric(LStoreGlobalGeneric* instr) { ASSERT(ToRegister(instr->global_object()).is(r1)); ASSERT(ToRegister(instr->value()).is(r0)); __ mov(r2, Operand(instr->name())); Handle<Code> ic = instr->strict_mode() ? isolate()->builtins()->StoreIC_Initialize_Strict() : isolate()->builtins()->StoreIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr); } void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { Register context = ToRegister(instr->context()); Register result = ToRegister(instr->result()); __ ldr(result, ContextOperand(context, instr->slot_index())); } void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { Register context = ToRegister(instr->context()); Register value = ToRegister(instr->value()); __ str(value, ContextOperand(context, instr->slot_index())); if (instr->needs_write_barrier()) { int offset = Context::SlotOffset(instr->slot_index()); __ RecordWrite(context, Operand(offset), value, scratch0()); } } void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { Register object = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); if (instr->hydrogen()->is_in_object()) { __ ldr(result, FieldMemOperand(object, instr->hydrogen()->offset())); } else { __ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); __ ldr(result, FieldMemOperand(result, instr->hydrogen()->offset())); } } void LCodeGen::EmitLoadField(Register result, Register object, Handle<Map> type, Handle<String> name) { LookupResult lookup; type->LookupInDescriptors(NULL, *name, &lookup); ASSERT(lookup.IsProperty() && lookup.type() == FIELD); int index = lookup.GetLocalFieldIndexFromMap(*type); int offset = index * kPointerSize; if (index < 0) { // Negative property indices are in-object properties, indexed // from the end of the fixed part of the object. __ ldr(result, FieldMemOperand(object, offset + type->instance_size())); } else { // Non-negative property indices are in the properties array. __ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); __ ldr(result, FieldMemOperand(result, offset + FixedArray::kHeaderSize)); } } void LCodeGen::DoLoadNamedFieldPolymorphic(LLoadNamedFieldPolymorphic* instr) { Register object = ToRegister(instr->object()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); int map_count = instr->hydrogen()->types()->length(); Handle<String> name = instr->hydrogen()->name(); if (map_count == 0) { ASSERT(instr->hydrogen()->need_generic()); __ mov(r2, Operand(name)); Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } else { Label done; __ ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); for (int i = 0; i < map_count - 1; ++i) { Handle<Map> map = instr->hydrogen()->types()->at(i); Label next; __ cmp(scratch, Operand(map)); __ b(ne, &next); EmitLoadField(result, object, map, name); __ b(&done); __ bind(&next); } Handle<Map> map = instr->hydrogen()->types()->last(); __ cmp(scratch, Operand(map)); if (instr->hydrogen()->need_generic()) { Label generic; __ b(ne, &generic); EmitLoadField(result, object, map, name); __ b(&done); __ bind(&generic); __ mov(r2, Operand(name)); Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } else { DeoptimizeIf(ne, instr->environment()); EmitLoadField(result, object, map, name); } __ bind(&done); } } void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) { ASSERT(ToRegister(instr->object()).is(r0)); ASSERT(ToRegister(instr->result()).is(r0)); // Name is always in r2. __ mov(r2, Operand(instr->name())); Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { Register scratch = scratch0(); Register function = ToRegister(instr->function()); Register result = ToRegister(instr->result()); // Check that the function really is a function. Load map into the // result register. __ CompareObjectType(function, result, scratch, JS_FUNCTION_TYPE); DeoptimizeIf(ne, instr->environment()); // Make sure that the function has an instance prototype. Label non_instance; __ ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset)); __ tst(scratch, Operand(1 << Map::kHasNonInstancePrototype)); __ b(ne, &non_instance); // Get the prototype or initial map from the function. __ ldr(result, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); // Check that the function has a prototype or an initial map. __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ cmp(result, ip); DeoptimizeIf(eq, instr->environment()); // If the function does not have an initial map, we're done. Label done; __ CompareObjectType(result, scratch, scratch, MAP_TYPE); __ b(ne, &done); // Get the prototype from the initial map. __ ldr(result, FieldMemOperand(result, Map::kPrototypeOffset)); __ jmp(&done); // Non-instance prototype: Fetch prototype from constructor field // in initial map. __ bind(&non_instance); __ ldr(result, FieldMemOperand(result, Map::kConstructorOffset)); // All done. __ bind(&done); } void LCodeGen::DoLoadElements(LLoadElements* instr) { Register result = ToRegister(instr->result()); Register input = ToRegister(instr->InputAt(0)); Register scratch = scratch0(); __ ldr(result, FieldMemOperand(input, JSObject::kElementsOffset)); if (FLAG_debug_code) { Label done; __ ldr(scratch, FieldMemOperand(result, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex); __ cmp(scratch, ip); __ b(eq, &done); __ LoadRoot(ip, Heap::kFixedCOWArrayMapRootIndex); __ cmp(scratch, ip); __ b(eq, &done); __ ldr(scratch, FieldMemOperand(result, HeapObject::kMapOffset)); __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); __ sub(scratch, scratch, Operand(FIRST_EXTERNAL_ARRAY_TYPE)); __ cmp(scratch, Operand(kExternalArrayTypeCount)); __ Check(cc, "Check for fast elements failed."); __ bind(&done); } } void LCodeGen::DoLoadExternalArrayPointer( LLoadExternalArrayPointer* instr) { Register to_reg = ToRegister(instr->result()); Register from_reg = ToRegister(instr->InputAt(0)); __ ldr(to_reg, FieldMemOperand(from_reg, ExternalArray::kExternalPointerOffset)); } void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { Register arguments = ToRegister(instr->arguments()); Register length = ToRegister(instr->length()); Register index = ToRegister(instr->index()); Register result = ToRegister(instr->result()); // Bailout index is not a valid argument index. Use unsigned check to get // negative check for free. __ sub(length, length, index, SetCC); DeoptimizeIf(ls, instr->environment()); // There are two words between the frame pointer and the last argument. // Subtracting from length accounts for one of them add one more. __ add(length, length, Operand(1)); __ ldr(result, MemOperand(arguments, length, LSL, kPointerSizeLog2)); } void LCodeGen::DoLoadKeyedFastElement(LLoadKeyedFastElement* instr) { Register elements = ToRegister(instr->elements()); Register key = EmitLoadRegister(instr->key(), scratch0()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); ASSERT(result.is(elements)); // Load the result. __ add(scratch, elements, Operand(key, LSL, kPointerSizeLog2)); __ ldr(result, FieldMemOperand(scratch, FixedArray::kHeaderSize)); // Check for the hole value. __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex); __ cmp(result, scratch); DeoptimizeIf(eq, instr->environment()); } void LCodeGen::DoLoadKeyedSpecializedArrayElement( LLoadKeyedSpecializedArrayElement* instr) { Register external_pointer = ToRegister(instr->external_pointer()); Register key = ToRegister(instr->key()); ExternalArrayType array_type = instr->array_type(); if (array_type == kExternalFloatArray) { CpuFeatures::Scope scope(VFP3); DwVfpRegister result(ToDoubleRegister(instr->result())); __ add(scratch0(), external_pointer, Operand(key, LSL, 2)); __ vldr(result.low(), scratch0(), 0); __ vcvt_f64_f32(result, result.low()); } else { Register result(ToRegister(instr->result())); switch (array_type) { case kExternalByteArray: __ ldrsb(result, MemOperand(external_pointer, key)); break; case kExternalUnsignedByteArray: case kExternalPixelArray: __ ldrb(result, MemOperand(external_pointer, key)); break; case kExternalShortArray: __ ldrsh(result, MemOperand(external_pointer, key, LSL, 1)); break; case kExternalUnsignedShortArray: __ ldrh(result, MemOperand(external_pointer, key, LSL, 1)); break; case kExternalIntArray: __ ldr(result, MemOperand(external_pointer, key, LSL, 2)); break; case kExternalUnsignedIntArray: __ ldr(result, MemOperand(external_pointer, key, LSL, 2)); __ cmp(result, Operand(0x80000000)); // TODO(danno): we could be more clever here, perhaps having a special // version of the stub that detects if the overflow case actually // happens, and generate code that returns a double rather than int. DeoptimizeIf(cs, instr->environment()); break; case kExternalFloatArray: UNREACHABLE(); break; } } } void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) { ASSERT(ToRegister(instr->object()).is(r1)); ASSERT(ToRegister(instr->key()).is(r0)); Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { Register scratch = scratch0(); Register result = ToRegister(instr->result()); // Check if the calling frame is an arguments adaptor frame. Label done, adapted; __ ldr(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ ldr(result, MemOperand(scratch, StandardFrameConstants::kContextOffset)); __ cmp(result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); // Result is the frame pointer for the frame if not adapted and for the real // frame below the adaptor frame if adapted. __ mov(result, fp, LeaveCC, ne); __ mov(result, scratch, LeaveCC, eq); } void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { Register elem = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); Label done; // If no arguments adaptor frame the number of arguments is fixed. __ cmp(fp, elem); __ mov(result, Operand(scope()->num_parameters())); __ b(eq, &done); // Arguments adaptor frame present. Get argument length from there. __ ldr(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ ldr(result, MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiUntag(result); // Argument length is in result register. __ bind(&done); } void LCodeGen::DoApplyArguments(LApplyArguments* instr) { Register receiver = ToRegister(instr->receiver()); Register function = ToRegister(instr->function()); Register length = ToRegister(instr->length()); Register elements = ToRegister(instr->elements()); Register scratch = scratch0(); ASSERT(receiver.is(r0)); // Used for parameter count. ASSERT(function.is(r1)); // Required by InvokeFunction. ASSERT(ToRegister(instr->result()).is(r0)); // If the receiver is null or undefined, we have to pass the global object // as a receiver. Label global_object, receiver_ok; __ LoadRoot(scratch, Heap::kNullValueRootIndex); __ cmp(receiver, scratch); __ b(eq, &global_object); __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); __ cmp(receiver, scratch); __ b(eq, &global_object); // Deoptimize if the receiver is not a JS object. __ tst(receiver, Operand(kSmiTagMask)); DeoptimizeIf(eq, instr->environment()); __ CompareObjectType(receiver, scratch, scratch, FIRST_JS_OBJECT_TYPE); DeoptimizeIf(lo, instr->environment()); __ jmp(&receiver_ok); __ bind(&global_object); __ ldr(receiver, GlobalObjectOperand()); __ bind(&receiver_ok); // Copy the arguments to this function possibly from the // adaptor frame below it. const uint32_t kArgumentsLimit = 1 * KB; __ cmp(length, Operand(kArgumentsLimit)); DeoptimizeIf(hi, instr->environment()); // Push the receiver and use the register to keep the original // number of arguments. __ push(receiver); __ mov(receiver, length); // The arguments are at a one pointer size offset from elements. __ add(elements, elements, Operand(1 * kPointerSize)); // Loop through the arguments pushing them onto the execution // stack. Label invoke, loop; // length is a small non-negative integer, due to the test above. __ cmp(length, Operand(0)); __ b(eq, &invoke); __ bind(&loop); __ ldr(scratch, MemOperand(elements, length, LSL, 2)); __ push(scratch); __ sub(length, length, Operand(1), SetCC); __ b(ne, &loop); __ bind(&invoke); ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment()); LPointerMap* pointers = instr->pointer_map(); LEnvironment* env = instr->deoptimization_environment(); RecordPosition(pointers->position()); RegisterEnvironmentForDeoptimization(env); SafepointGenerator safepoint_generator(this, pointers, env->deoptimization_index()); // The number of arguments is stored in receiver which is r0, as expected // by InvokeFunction. v8::internal::ParameterCount actual(receiver); __ InvokeFunction(function, actual, CALL_FUNCTION, &safepoint_generator); __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoPushArgument(LPushArgument* instr) { LOperand* argument = instr->InputAt(0); if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) { Abort("DoPushArgument not implemented for double type."); } else { Register argument_reg = EmitLoadRegister(argument, ip); __ push(argument_reg); } } void LCodeGen::DoContext(LContext* instr) { Register result = ToRegister(instr->result()); __ mov(result, cp); } void LCodeGen::DoOuterContext(LOuterContext* instr) { Register context = ToRegister(instr->context()); Register result = ToRegister(instr->result()); __ ldr(result, MemOperand(context, Context::SlotOffset(Context::CLOSURE_INDEX))); __ ldr(result, FieldMemOperand(result, JSFunction::kContextOffset)); } void LCodeGen::DoGlobalObject(LGlobalObject* instr) { Register context = ToRegister(instr->context()); Register result = ToRegister(instr->result()); __ ldr(result, ContextOperand(cp, Context::GLOBAL_INDEX)); } void LCodeGen::DoGlobalReceiver(LGlobalReceiver* instr) { Register global = ToRegister(instr->global()); Register result = ToRegister(instr->result()); __ ldr(result, FieldMemOperand(global, GlobalObject::kGlobalReceiverOffset)); } void LCodeGen::CallKnownFunction(Handle<JSFunction> function, int arity, LInstruction* instr) { // Change context if needed. bool change_context = (info()->closure()->context() != function->context()) || scope()->contains_with() || (scope()->num_heap_slots() > 0); if (change_context) { __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); } // Set r0 to arguments count if adaption is not needed. Assumes that r0 // is available to write to at this point. if (!function->NeedsArgumentsAdaption()) { __ mov(r0, Operand(arity)); } LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); // Invoke function. __ ldr(ip, FieldMemOperand(r1, JSFunction::kCodeEntryOffset)); __ Call(ip); // Setup deoptimization. RegisterLazyDeoptimization(instr, RECORD_SIMPLE_SAFEPOINT); // Restore context. __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) { ASSERT(ToRegister(instr->result()).is(r0)); __ mov(r1, Operand(instr->function())); CallKnownFunction(instr->function(), instr->arity(), instr); } void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation* instr) { ASSERT(instr->InputAt(0)->Equals(instr->result())); Register input = ToRegister(instr->InputAt(0)); Register scratch = scratch0(); // Deoptimize if not a heap number. __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); __ cmp(scratch, Operand(ip)); DeoptimizeIf(ne, instr->environment()); Label done; Register exponent = scratch0(); scratch = no_reg; __ ldr(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset)); // Check the sign of the argument. If the argument is positive, just // return it. We do not need to patch the stack since |input| and // |result| are the same register and |input| would be restored // unchanged by popping safepoint registers. __ tst(exponent, Operand(HeapNumber::kSignMask)); __ b(eq, &done); // Input is negative. Reverse its sign. // Preserve the value of all registers. { PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); // Registers were saved at the safepoint, so we can use // many scratch registers. Register tmp1 = input.is(r1) ? r0 : r1; Register tmp2 = input.is(r2) ? r0 : r2; Register tmp3 = input.is(r3) ? r0 : r3; Register tmp4 = input.is(r4) ? r0 : r4; // exponent: floating point exponent value. Label allocated, slow; __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow); __ b(&allocated); // Slow case: Call the runtime system to do the number allocation. __ bind(&slow); CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr); // Set the pointer to the new heap number in tmp. if (!tmp1.is(r0)) __ mov(tmp1, Operand(r0)); // Restore input_reg after call to runtime. __ LoadFromSafepointRegisterSlot(input, input); __ ldr(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset)); __ bind(&allocated); // exponent: floating point exponent value. // tmp1: allocated heap number. __ bic(exponent, exponent, Operand(HeapNumber::kSignMask)); __ str(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset)); __ ldr(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset)); __ str(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset)); __ StoreToSafepointRegisterSlot(tmp1, input); } __ bind(&done); } void LCodeGen::EmitIntegerMathAbs(LUnaryMathOperation* instr) { Register input = ToRegister(instr->InputAt(0)); __ cmp(input, Operand(0)); // We can make rsb conditional because the previous cmp instruction // will clear the V (overflow) flag and rsb won't set this flag // if input is positive. __ rsb(input, input, Operand(0), SetCC, mi); // Deoptimize on overflow. DeoptimizeIf(vs, instr->environment()); } void LCodeGen::DoMathAbs(LUnaryMathOperation* instr) { // Class for deferred case. class DeferredMathAbsTaggedHeapNumber: public LDeferredCode { public: DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LUnaryMathOperation* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_); } private: LUnaryMathOperation* instr_; }; ASSERT(instr->InputAt(0)->Equals(instr->result())); Representation r = instr->hydrogen()->value()->representation(); if (r.IsDouble()) { DwVfpRegister input = ToDoubleRegister(instr->InputAt(0)); __ vabs(input, input); } else if (r.IsInteger32()) { EmitIntegerMathAbs(instr); } else { // Representation is tagged. DeferredMathAbsTaggedHeapNumber* deferred = new DeferredMathAbsTaggedHeapNumber(this, instr); Register input = ToRegister(instr->InputAt(0)); // Smi check. __ JumpIfNotSmi(input, deferred->entry()); // If smi, handle it directly. EmitIntegerMathAbs(instr); __ bind(deferred->exit()); } } void LCodeGen::DoMathFloor(LUnaryMathOperation* instr) { DoubleRegister input = ToDoubleRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); SwVfpRegister single_scratch = double_scratch0().low(); Register scratch1 = scratch0(); Register scratch2 = ToRegister(instr->TempAt(0)); __ EmitVFPTruncate(kRoundToMinusInf, single_scratch, input, scratch1, scratch2); DeoptimizeIf(ne, instr->environment()); // Move the result back to general purpose register r0. __ vmov(result, single_scratch); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // Test for -0. Label done; __ cmp(result, Operand(0)); __ b(ne, &done); __ vmov(scratch1, input.high()); __ tst(scratch1, Operand(HeapNumber::kSignMask)); DeoptimizeIf(ne, instr->environment()); __ bind(&done); } } void LCodeGen::DoMathRound(LUnaryMathOperation* instr) { DoubleRegister input = ToDoubleRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); Register scratch1 = scratch0(); Register scratch2 = result; __ EmitVFPTruncate(kRoundToNearest, double_scratch0().low(), input, scratch1, scratch2); DeoptimizeIf(ne, instr->environment()); __ vmov(result, double_scratch0().low()); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // Test for -0. Label done; __ cmp(result, Operand(0)); __ b(ne, &done); __ vmov(scratch1, input.high()); __ tst(scratch1, Operand(HeapNumber::kSignMask)); DeoptimizeIf(ne, instr->environment()); __ bind(&done); } } void LCodeGen::DoMathSqrt(LUnaryMathOperation* instr) { DoubleRegister input = ToDoubleRegister(instr->InputAt(0)); ASSERT(ToDoubleRegister(instr->result()).is(input)); __ vsqrt(input, input); } void LCodeGen::DoMathPowHalf(LUnaryMathOperation* instr) { DoubleRegister input = ToDoubleRegister(instr->InputAt(0)); Register scratch = scratch0(); SwVfpRegister single_scratch = double_scratch0().low(); DoubleRegister double_scratch = double_scratch0(); ASSERT(ToDoubleRegister(instr->result()).is(input)); // Add +0 to convert -0 to +0. __ mov(scratch, Operand(0)); __ vmov(single_scratch, scratch); __ vcvt_f64_s32(double_scratch, single_scratch); __ vadd(input, input, double_scratch); __ vsqrt(input, input); } void LCodeGen::DoPower(LPower* instr) { LOperand* left = instr->InputAt(0); LOperand* right = instr->InputAt(1); Register scratch = scratch0(); DoubleRegister result_reg = ToDoubleRegister(instr->result()); Representation exponent_type = instr->hydrogen()->right()->representation(); if (exponent_type.IsDouble()) { // Prepare arguments and call C function. __ PrepareCallCFunction(4, scratch); __ vmov(r0, r1, ToDoubleRegister(left)); __ vmov(r2, r3, ToDoubleRegister(right)); __ CallCFunction( ExternalReference::power_double_double_function(isolate()), 4); } else if (exponent_type.IsInteger32()) { ASSERT(ToRegister(right).is(r0)); // Prepare arguments and call C function. __ PrepareCallCFunction(4, scratch); __ mov(r2, ToRegister(right)); __ vmov(r0, r1, ToDoubleRegister(left)); __ CallCFunction( ExternalReference::power_double_int_function(isolate()), 4); } else { ASSERT(exponent_type.IsTagged()); ASSERT(instr->hydrogen()->left()->representation().IsDouble()); Register right_reg = ToRegister(right); // Check for smi on the right hand side. Label non_smi, call; __ JumpIfNotSmi(right_reg, &non_smi); // Untag smi and convert it to a double. __ SmiUntag(right_reg); SwVfpRegister single_scratch = double_scratch0().low(); __ vmov(single_scratch, right_reg); __ vcvt_f64_s32(result_reg, single_scratch); __ jmp(&call); // Heap number map check. __ bind(&non_smi); __ ldr(scratch, FieldMemOperand(right_reg, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); __ cmp(scratch, Operand(ip)); DeoptimizeIf(ne, instr->environment()); int32_t value_offset = HeapNumber::kValueOffset - kHeapObjectTag; __ add(scratch, right_reg, Operand(value_offset)); __ vldr(result_reg, scratch, 0); // Prepare arguments and call C function. __ bind(&call); __ PrepareCallCFunction(4, scratch); __ vmov(r0, r1, ToDoubleRegister(left)); __ vmov(r2, r3, result_reg); __ CallCFunction( ExternalReference::power_double_double_function(isolate()), 4); } // Store the result in the result register. __ GetCFunctionDoubleResult(result_reg); } void LCodeGen::DoMathLog(LUnaryMathOperation* instr) { ASSERT(ToDoubleRegister(instr->result()).is(d2)); TranscendentalCacheStub stub(TranscendentalCache::LOG, TranscendentalCacheStub::UNTAGGED); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoMathCos(LUnaryMathOperation* instr) { ASSERT(ToDoubleRegister(instr->result()).is(d2)); TranscendentalCacheStub stub(TranscendentalCache::COS, TranscendentalCacheStub::UNTAGGED); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoMathSin(LUnaryMathOperation* instr) { ASSERT(ToDoubleRegister(instr->result()).is(d2)); TranscendentalCacheStub stub(TranscendentalCache::SIN, TranscendentalCacheStub::UNTAGGED); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoUnaryMathOperation(LUnaryMathOperation* instr) { switch (instr->op()) { case kMathAbs: DoMathAbs(instr); break; case kMathFloor: DoMathFloor(instr); break; case kMathRound: DoMathRound(instr); break; case kMathSqrt: DoMathSqrt(instr); break; case kMathPowHalf: DoMathPowHalf(instr); break; case kMathCos: DoMathCos(instr); break; case kMathSin: DoMathSin(instr); break; case kMathLog: DoMathLog(instr); break; default: Abort("Unimplemented type of LUnaryMathOperation."); UNREACHABLE(); } } void LCodeGen::DoCallKeyed(LCallKeyed* instr) { ASSERT(ToRegister(instr->result()).is(r0)); int arity = instr->arity(); Handle<Code> ic = isolate()->stub_cache()->ComputeKeyedCallInitialize(arity, NOT_IN_LOOP); CallCode(ic, RelocInfo::CODE_TARGET, instr); __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoCallNamed(LCallNamed* instr) { ASSERT(ToRegister(instr->result()).is(r0)); int arity = instr->arity(); Handle<Code> ic = isolate()->stub_cache()->ComputeCallInitialize( arity, NOT_IN_LOOP); __ mov(r2, Operand(instr->name())); CallCode(ic, RelocInfo::CODE_TARGET, instr); // Restore context register. __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoCallFunction(LCallFunction* instr) { ASSERT(ToRegister(instr->result()).is(r0)); int arity = instr->arity(); CallFunctionStub stub(arity, NOT_IN_LOOP, RECEIVER_MIGHT_BE_VALUE); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); __ Drop(1); __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoCallGlobal(LCallGlobal* instr) { ASSERT(ToRegister(instr->result()).is(r0)); int arity = instr->arity(); Handle<Code> ic = isolate()->stub_cache()->ComputeCallInitialize(arity, NOT_IN_LOOP); __ mov(r2, Operand(instr->name())); CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr); __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) { ASSERT(ToRegister(instr->result()).is(r0)); __ mov(r1, Operand(instr->target())); CallKnownFunction(instr->target(), instr->arity(), instr); } void LCodeGen::DoCallNew(LCallNew* instr) { ASSERT(ToRegister(instr->InputAt(0)).is(r1)); ASSERT(ToRegister(instr->result()).is(r0)); Handle<Code> builtin = isolate()->builtins()->JSConstructCall(); __ mov(r0, Operand(instr->arity())); CallCode(builtin, RelocInfo::CONSTRUCT_CALL, instr); } void LCodeGen::DoCallRuntime(LCallRuntime* instr) { CallRuntime(instr->function(), instr->arity(), instr); } void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) { Register object = ToRegister(instr->object()); Register value = ToRegister(instr->value()); Register scratch = scratch0(); int offset = instr->offset(); ASSERT(!object.is(value)); if (!instr->transition().is_null()) { __ mov(scratch, Operand(instr->transition())); __ str(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); } // Do the store. if (instr->is_in_object()) { __ str(value, FieldMemOperand(object, offset)); if (instr->needs_write_barrier()) { // Update the write barrier for the object for in-object properties. __ RecordWrite(object, Operand(offset), value, scratch); } } else { __ ldr(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset)); __ str(value, FieldMemOperand(scratch, offset)); if (instr->needs_write_barrier()) { // Update the write barrier for the properties array. // object is used as a scratch register. __ RecordWrite(scratch, Operand(offset), value, object); } } } void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) { ASSERT(ToRegister(instr->object()).is(r1)); ASSERT(ToRegister(instr->value()).is(r0)); // Name is always in r2. __ mov(r2, Operand(instr->name())); Handle<Code> ic = instr->strict_mode() ? isolate()->builtins()->StoreIC_Initialize_Strict() : isolate()->builtins()->StoreIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) { __ cmp(ToRegister(instr->index()), ToRegister(instr->length())); DeoptimizeIf(hs, instr->environment()); } void LCodeGen::DoStoreKeyedFastElement(LStoreKeyedFastElement* instr) { Register value = ToRegister(instr->value()); Register elements = ToRegister(instr->object()); Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg; Register scratch = scratch0(); // Do the store. if (instr->key()->IsConstantOperand()) { ASSERT(!instr->hydrogen()->NeedsWriteBarrier()); LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); int offset = ToInteger32(const_operand) * kPointerSize + FixedArray::kHeaderSize; __ str(value, FieldMemOperand(elements, offset)); } else { __ add(scratch, elements, Operand(key, LSL, kPointerSizeLog2)); __ str(value, FieldMemOperand(scratch, FixedArray::kHeaderSize)); } if (instr->hydrogen()->NeedsWriteBarrier()) { // Compute address of modified element and store it into key register. __ add(key, scratch, Operand(FixedArray::kHeaderSize)); __ RecordWrite(elements, key, value); } } void LCodeGen::DoStoreKeyedSpecializedArrayElement( LStoreKeyedSpecializedArrayElement* instr) { Register external_pointer = ToRegister(instr->external_pointer()); Register key = ToRegister(instr->key()); ExternalArrayType array_type = instr->array_type(); if (array_type == kExternalFloatArray) { CpuFeatures::Scope scope(VFP3); DwVfpRegister value(ToDoubleRegister(instr->value())); __ add(scratch0(), external_pointer, Operand(key, LSL, 2)); __ vcvt_f32_f64(double_scratch0().low(), value); __ vstr(double_scratch0().low(), scratch0(), 0); } else { Register value(ToRegister(instr->value())); switch (array_type) { case kExternalPixelArray: // Clamp the value to [0..255]. __ Usat(value, 8, Operand(value)); __ strb(value, MemOperand(external_pointer, key)); break; case kExternalByteArray: case kExternalUnsignedByteArray: __ strb(value, MemOperand(external_pointer, key)); break; case kExternalShortArray: case kExternalUnsignedShortArray: __ strh(value, MemOperand(external_pointer, key, LSL, 1)); break; case kExternalIntArray: case kExternalUnsignedIntArray: __ str(value, MemOperand(external_pointer, key, LSL, 2)); break; case kExternalFloatArray: UNREACHABLE(); break; } } } void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) { ASSERT(ToRegister(instr->object()).is(r2)); ASSERT(ToRegister(instr->key()).is(r1)); ASSERT(ToRegister(instr->value()).is(r0)); Handle<Code> ic = instr->strict_mode() ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict() : isolate()->builtins()->KeyedStoreIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) { class DeferredStringCharCodeAt: public LDeferredCode { public: DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); } private: LStringCharCodeAt* instr_; }; Register scratch = scratch0(); Register string = ToRegister(instr->string()); Register index = no_reg; int const_index = -1; if (instr->index()->IsConstantOperand()) { const_index = ToInteger32(LConstantOperand::cast(instr->index())); STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue); if (!Smi::IsValid(const_index)) { // Guaranteed to be out of bounds because of the assert above. // So the bounds check that must dominate this instruction must // have deoptimized already. if (FLAG_debug_code) { __ Abort("StringCharCodeAt: out of bounds index."); } // No code needs to be generated. return; } } else { index = ToRegister(instr->index()); } Register result = ToRegister(instr->result()); DeferredStringCharCodeAt* deferred = new DeferredStringCharCodeAt(this, instr); Label flat_string, ascii_string, done; // Fetch the instance type of the receiver into result register. __ ldr(result, FieldMemOperand(string, HeapObject::kMapOffset)); __ ldrb(result, FieldMemOperand(result, Map::kInstanceTypeOffset)); // We need special handling for non-flat strings. STATIC_ASSERT(kSeqStringTag == 0); __ tst(result, Operand(kStringRepresentationMask)); __ b(eq, &flat_string); // Handle non-flat strings. __ tst(result, Operand(kIsConsStringMask)); __ b(eq, deferred->entry()); // ConsString. // Check whether the right hand side is the empty string (i.e. if // this is really a flat string in a cons string). If that is not // the case we would rather go to the runtime system now to flatten // the string. __ ldr(scratch, FieldMemOperand(string, ConsString::kSecondOffset)); __ LoadRoot(ip, Heap::kEmptyStringRootIndex); __ cmp(scratch, ip); __ b(ne, deferred->entry()); // Get the first of the two strings and load its instance type. __ ldr(string, FieldMemOperand(string, ConsString::kFirstOffset)); __ ldr(result, FieldMemOperand(string, HeapObject::kMapOffset)); __ ldrb(result, FieldMemOperand(result, Map::kInstanceTypeOffset)); // If the first cons component is also non-flat, then go to runtime. STATIC_ASSERT(kSeqStringTag == 0); __ tst(result, Operand(kStringRepresentationMask)); __ b(ne, deferred->entry()); // Check for 1-byte or 2-byte string. __ bind(&flat_string); STATIC_ASSERT(kAsciiStringTag != 0); __ tst(result, Operand(kStringEncodingMask)); __ b(ne, &ascii_string); // 2-byte string. // Load the 2-byte character code into the result register. STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); if (instr->index()->IsConstantOperand()) { __ ldrh(result, FieldMemOperand(string, SeqTwoByteString::kHeaderSize + 2 * const_index)); } else { __ add(scratch, string, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); __ ldrh(result, MemOperand(scratch, index, LSL, 1)); } __ jmp(&done); // ASCII string. // Load the byte into the result register. __ bind(&ascii_string); if (instr->index()->IsConstantOperand()) { __ ldrb(result, FieldMemOperand(string, SeqAsciiString::kHeaderSize + const_index)); } else { __ add(scratch, string, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); __ ldrb(result, MemOperand(scratch, index)); } __ bind(&done); __ bind(deferred->exit()); } void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) { Register string = ToRegister(instr->string()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ mov(result, Operand(0)); PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); __ push(string); // Push the index as a smi. This is safe because of the checks in // DoStringCharCodeAt above. if (instr->index()->IsConstantOperand()) { int const_index = ToInteger32(LConstantOperand::cast(instr->index())); __ mov(scratch, Operand(Smi::FromInt(const_index))); __ push(scratch); } else { Register index = ToRegister(instr->index()); __ SmiTag(index); __ push(index); } CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2, instr); if (FLAG_debug_code) { __ AbortIfNotSmi(r0); } __ SmiUntag(r0); __ StoreToSafepointRegisterSlot(r0, result); } void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) { class DeferredStringCharFromCode: public LDeferredCode { public: DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); } private: LStringCharFromCode* instr_; }; DeferredStringCharFromCode* deferred = new DeferredStringCharFromCode(this, instr); ASSERT(instr->hydrogen()->value()->representation().IsInteger32()); Register char_code = ToRegister(instr->char_code()); Register result = ToRegister(instr->result()); ASSERT(!char_code.is(result)); __ cmp(char_code, Operand(String::kMaxAsciiCharCode)); __ b(hi, deferred->entry()); __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex); __ add(result, result, Operand(char_code, LSL, kPointerSizeLog2)); __ ldr(result, FieldMemOperand(result, FixedArray::kHeaderSize)); __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ cmp(result, ip); __ b(eq, deferred->entry()); __ bind(deferred->exit()); } void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) { Register char_code = ToRegister(instr->char_code()); Register result = ToRegister(instr->result()); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ mov(result, Operand(0)); PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); __ SmiTag(char_code); __ push(char_code); CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr); __ StoreToSafepointRegisterSlot(r0, result); } void LCodeGen::DoStringLength(LStringLength* instr) { Register string = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); __ ldr(result, FieldMemOperand(string, String::kLengthOffset)); } void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) { LOperand* input = instr->InputAt(0); ASSERT(input->IsRegister() || input->IsStackSlot()); LOperand* output = instr->result(); ASSERT(output->IsDoubleRegister()); SwVfpRegister single_scratch = double_scratch0().low(); if (input->IsStackSlot()) { Register scratch = scratch0(); __ ldr(scratch, ToMemOperand(input)); __ vmov(single_scratch, scratch); } else { __ vmov(single_scratch, ToRegister(input)); } __ vcvt_f64_s32(ToDoubleRegister(output), single_scratch); } void LCodeGen::DoNumberTagI(LNumberTagI* instr) { class DeferredNumberTagI: public LDeferredCode { public: DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredNumberTagI(instr_); } private: LNumberTagI* instr_; }; LOperand* input = instr->InputAt(0); ASSERT(input->IsRegister() && input->Equals(instr->result())); Register reg = ToRegister(input); DeferredNumberTagI* deferred = new DeferredNumberTagI(this, instr); __ SmiTag(reg, SetCC); __ b(vs, deferred->entry()); __ bind(deferred->exit()); } void LCodeGen::DoDeferredNumberTagI(LNumberTagI* instr) { Label slow; Register reg = ToRegister(instr->InputAt(0)); DoubleRegister dbl_scratch = d0; SwVfpRegister flt_scratch = s0; // Preserve the value of all registers. PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); // There was overflow, so bits 30 and 31 of the original integer // disagree. Try to allocate a heap number in new space and store // the value in there. If that fails, call the runtime system. Label done; __ SmiUntag(reg); __ eor(reg, reg, Operand(0x80000000)); __ vmov(flt_scratch, reg); __ vcvt_f64_s32(dbl_scratch, flt_scratch); if (FLAG_inline_new) { __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(r5, r3, r4, r6, &slow); if (!reg.is(r5)) __ mov(reg, r5); __ b(&done); } // Slow case: Call the runtime system to do the number allocation. __ bind(&slow); // TODO(3095996): Put a valid pointer value in the stack slot where the result // register is stored, as this register is in the pointer map, but contains an // integer value. __ mov(ip, Operand(0)); __ StoreToSafepointRegisterSlot(ip, reg); CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr); if (!reg.is(r0)) __ mov(reg, r0); // Done. Put the value in dbl_scratch into the value of the allocated heap // number. __ bind(&done); __ sub(ip, reg, Operand(kHeapObjectTag)); __ vstr(dbl_scratch, ip, HeapNumber::kValueOffset); __ StoreToSafepointRegisterSlot(reg, reg); } void LCodeGen::DoNumberTagD(LNumberTagD* instr) { class DeferredNumberTagD: public LDeferredCode { public: DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); } private: LNumberTagD* instr_; }; DoubleRegister input_reg = ToDoubleRegister(instr->InputAt(0)); Register scratch = scratch0(); Register reg = ToRegister(instr->result()); Register temp1 = ToRegister(instr->TempAt(0)); Register temp2 = ToRegister(instr->TempAt(1)); DeferredNumberTagD* deferred = new DeferredNumberTagD(this, instr); if (FLAG_inline_new) { __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry()); } else { __ jmp(deferred->entry()); } __ bind(deferred->exit()); __ sub(ip, reg, Operand(kHeapObjectTag)); __ vstr(input_reg, ip, HeapNumber::kValueOffset); } void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. Register reg = ToRegister(instr->result()); __ mov(reg, Operand(0)); PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr); __ StoreToSafepointRegisterSlot(r0, reg); } void LCodeGen::DoSmiTag(LSmiTag* instr) { LOperand* input = instr->InputAt(0); ASSERT(input->IsRegister() && input->Equals(instr->result())); ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow)); __ SmiTag(ToRegister(input)); } void LCodeGen::DoSmiUntag(LSmiUntag* instr) { LOperand* input = instr->InputAt(0); ASSERT(input->IsRegister() && input->Equals(instr->result())); if (instr->needs_check()) { __ tst(ToRegister(input), Operand(kSmiTagMask)); DeoptimizeIf(ne, instr->environment()); } __ SmiUntag(ToRegister(input)); } void LCodeGen::EmitNumberUntagD(Register input_reg, DoubleRegister result_reg, bool deoptimize_on_undefined, LEnvironment* env) { Register scratch = scratch0(); SwVfpRegister flt_scratch = s0; ASSERT(!result_reg.is(d0)); Label load_smi, heap_number, done; // Smi check. __ tst(input_reg, Operand(kSmiTagMask)); __ b(eq, &load_smi); // Heap number map check. __ ldr(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); __ cmp(scratch, Operand(ip)); if (deoptimize_on_undefined) { DeoptimizeIf(ne, env); } else { Label heap_number; __ b(eq, &heap_number); __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ cmp(input_reg, Operand(ip)); DeoptimizeIf(ne, env); // Convert undefined to NaN. __ LoadRoot(ip, Heap::kNanValueRootIndex); __ sub(ip, ip, Operand(kHeapObjectTag)); __ vldr(result_reg, ip, HeapNumber::kValueOffset); __ jmp(&done); __ bind(&heap_number); } // Heap number to double register conversion. __ sub(ip, input_reg, Operand(kHeapObjectTag)); __ vldr(result_reg, ip, HeapNumber::kValueOffset); __ jmp(&done); // Smi to double register conversion __ bind(&load_smi); __ SmiUntag(input_reg); // Untag smi before converting to float. __ vmov(flt_scratch, input_reg); __ vcvt_f64_s32(result_reg, flt_scratch); __ SmiTag(input_reg); // Retag smi. __ bind(&done); } class DeferredTaggedToI: public LDeferredCode { public: DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_); } private: LTaggedToI* instr_; }; void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) { Register input_reg = ToRegister(instr->InputAt(0)); Register scratch1 = scratch0(); Register scratch2 = ToRegister(instr->TempAt(0)); DwVfpRegister double_scratch = double_scratch0(); SwVfpRegister single_scratch = double_scratch.low(); ASSERT(!scratch1.is(input_reg) && !scratch1.is(scratch2)); ASSERT(!scratch2.is(input_reg) && !scratch2.is(scratch1)); Label done; // Heap number map check. __ ldr(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); __ cmp(scratch1, Operand(ip)); if (instr->truncating()) { Register scratch3 = ToRegister(instr->TempAt(1)); DwVfpRegister double_scratch2 = ToDoubleRegister(instr->TempAt(2)); ASSERT(!scratch3.is(input_reg) && !scratch3.is(scratch1) && !scratch3.is(scratch2)); // Performs a truncating conversion of a floating point number as used by // the JS bitwise operations. Label heap_number; __ b(eq, &heap_number); // Check for undefined. Undefined is converted to zero for truncating // conversions. __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ cmp(input_reg, Operand(ip)); DeoptimizeIf(ne, instr->environment()); __ mov(input_reg, Operand(0)); __ b(&done); __ bind(&heap_number); __ sub(scratch1, input_reg, Operand(kHeapObjectTag)); __ vldr(double_scratch2, scratch1, HeapNumber::kValueOffset); __ EmitECMATruncate(input_reg, double_scratch2, single_scratch, scratch1, scratch2, scratch3); } else { CpuFeatures::Scope scope(VFP3); // Deoptimize if we don't have a heap number. DeoptimizeIf(ne, instr->environment()); __ sub(ip, input_reg, Operand(kHeapObjectTag)); __ vldr(double_scratch, ip, HeapNumber::kValueOffset); __ EmitVFPTruncate(kRoundToZero, single_scratch, double_scratch, scratch1, scratch2, kCheckForInexactConversion); DeoptimizeIf(ne, instr->environment()); // Load the result. __ vmov(input_reg, single_scratch); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ cmp(input_reg, Operand(0)); __ b(ne, &done); __ vmov(scratch1, double_scratch.high()); __ tst(scratch1, Operand(HeapNumber::kSignMask)); DeoptimizeIf(ne, instr->environment()); } } __ bind(&done); } void LCodeGen::DoTaggedToI(LTaggedToI* instr) { LOperand* input = instr->InputAt(0); ASSERT(input->IsRegister()); ASSERT(input->Equals(instr->result())); Register input_reg = ToRegister(input); DeferredTaggedToI* deferred = new DeferredTaggedToI(this, instr); // Smi check. __ tst(input_reg, Operand(kSmiTagMask)); __ b(ne, deferred->entry()); // Smi to int32 conversion __ SmiUntag(input_reg); // Untag smi. __ bind(deferred->exit()); } void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { LOperand* input = instr->InputAt(0); ASSERT(input->IsRegister()); LOperand* result = instr->result(); ASSERT(result->IsDoubleRegister()); Register input_reg = ToRegister(input); DoubleRegister result_reg = ToDoubleRegister(result); EmitNumberUntagD(input_reg, result_reg, instr->hydrogen()->deoptimize_on_undefined(), instr->environment()); } void LCodeGen::DoDoubleToI(LDoubleToI* instr) { Register result_reg = ToRegister(instr->result()); Register scratch1 = scratch0(); Register scratch2 = ToRegister(instr->TempAt(0)); DwVfpRegister double_input = ToDoubleRegister(instr->InputAt(0)); DwVfpRegister double_scratch = double_scratch0(); SwVfpRegister single_scratch = double_scratch0().low(); Label done; if (instr->truncating()) { Register scratch3 = ToRegister(instr->TempAt(1)); __ EmitECMATruncate(result_reg, double_input, single_scratch, scratch1, scratch2, scratch3); } else { VFPRoundingMode rounding_mode = kRoundToMinusInf; __ EmitVFPTruncate(rounding_mode, single_scratch, double_input, scratch1, scratch2, kCheckForInexactConversion); // Deoptimize if we had a vfp invalid exception, // including inexact operation. DeoptimizeIf(ne, instr->environment()); // Retrieve the result. __ vmov(result_reg, single_scratch); } __ bind(&done); } void LCodeGen::DoCheckSmi(LCheckSmi* instr) { LOperand* input = instr->InputAt(0); __ tst(ToRegister(input), Operand(kSmiTagMask)); DeoptimizeIf(ne, instr->environment()); } void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { LOperand* input = instr->InputAt(0); __ tst(ToRegister(input), Operand(kSmiTagMask)); DeoptimizeIf(eq, instr->environment()); } void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { Register input = ToRegister(instr->InputAt(0)); Register scratch = scratch0(); InstanceType first = instr->hydrogen()->first(); InstanceType last = instr->hydrogen()->last(); __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); __ cmp(scratch, Operand(first)); // If there is only one type in the interval check for equality. if (first == last) { DeoptimizeIf(ne, instr->environment()); } else { DeoptimizeIf(lo, instr->environment()); // Omit check for the last type. if (last != LAST_TYPE) { __ cmp(scratch, Operand(last)); DeoptimizeIf(hi, instr->environment()); } } } void LCodeGen::DoCheckFunction(LCheckFunction* instr) { ASSERT(instr->InputAt(0)->IsRegister()); Register reg = ToRegister(instr->InputAt(0)); __ cmp(reg, Operand(instr->hydrogen()->target())); DeoptimizeIf(ne, instr->environment()); } void LCodeGen::DoCheckMap(LCheckMap* instr) { Register scratch = scratch0(); LOperand* input = instr->InputAt(0); ASSERT(input->IsRegister()); Register reg = ToRegister(input); __ ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset)); __ cmp(scratch, Operand(instr->hydrogen()->map())); DeoptimizeIf(ne, instr->environment()); } void LCodeGen::LoadHeapObject(Register result, Handle<HeapObject> object) { if (heap()->InNewSpace(*object)) { Handle<JSGlobalPropertyCell> cell = factory()->NewJSGlobalPropertyCell(object); __ mov(result, Operand(cell)); __ ldr(result, FieldMemOperand(result, JSGlobalPropertyCell::kValueOffset)); } else { __ mov(result, Operand(object)); } } void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) { Register temp1 = ToRegister(instr->TempAt(0)); Register temp2 = ToRegister(instr->TempAt(1)); Handle<JSObject> holder = instr->holder(); Handle<JSObject> current_prototype = instr->prototype(); // Load prototype object. LoadHeapObject(temp1, current_prototype); // Check prototype maps up to the holder. while (!current_prototype.is_identical_to(holder)) { __ ldr(temp2, FieldMemOperand(temp1, HeapObject::kMapOffset)); __ cmp(temp2, Operand(Handle<Map>(current_prototype->map()))); DeoptimizeIf(ne, instr->environment()); current_prototype = Handle<JSObject>(JSObject::cast(current_prototype->GetPrototype())); // Load next prototype object. LoadHeapObject(temp1, current_prototype); } // Check the holder map. __ ldr(temp2, FieldMemOperand(temp1, HeapObject::kMapOffset)); __ cmp(temp2, Operand(Handle<Map>(current_prototype->map()))); DeoptimizeIf(ne, instr->environment()); } void LCodeGen::DoArrayLiteral(LArrayLiteral* instr) { __ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ ldr(r3, FieldMemOperand(r3, JSFunction::kLiteralsOffset)); __ mov(r2, Operand(Smi::FromInt(instr->hydrogen()->literal_index()))); __ mov(r1, Operand(instr->hydrogen()->constant_elements())); __ Push(r3, r2, r1); // Pick the right runtime function or stub to call. int length = instr->hydrogen()->length(); if (instr->hydrogen()->IsCopyOnWrite()) { ASSERT(instr->hydrogen()->depth() == 1); FastCloneShallowArrayStub::Mode mode = FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS; FastCloneShallowArrayStub stub(mode, length); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } else if (instr->hydrogen()->depth() > 1) { CallRuntime(Runtime::kCreateArrayLiteral, 3, instr); } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) { CallRuntime(Runtime::kCreateArrayLiteralShallow, 3, instr); } else { FastCloneShallowArrayStub::Mode mode = FastCloneShallowArrayStub::CLONE_ELEMENTS; FastCloneShallowArrayStub stub(mode, length); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } } void LCodeGen::DoObjectLiteral(LObjectLiteral* instr) { __ ldr(r4, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ ldr(r4, FieldMemOperand(r4, JSFunction::kLiteralsOffset)); __ mov(r3, Operand(Smi::FromInt(instr->hydrogen()->literal_index()))); __ mov(r2, Operand(instr->hydrogen()->constant_properties())); __ mov(r1, Operand(Smi::FromInt(instr->hydrogen()->fast_elements() ? 1 : 0))); __ Push(r4, r3, r2, r1); // Pick the right runtime function to call. if (instr->hydrogen()->depth() > 1) { CallRuntime(Runtime::kCreateObjectLiteral, 4, instr); } else { CallRuntime(Runtime::kCreateObjectLiteralShallow, 4, instr); } } void LCodeGen::DoToFastProperties(LToFastProperties* instr) { ASSERT(ToRegister(instr->InputAt(0)).is(r0)); __ push(r0); CallRuntime(Runtime::kToFastProperties, 1, instr); } void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) { Label materialized; // Registers will be used as follows: // r3 = JS function. // r7 = literals array. // r1 = regexp literal. // r0 = regexp literal clone. // r2 and r4-r6 are used as temporaries. __ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ ldr(r7, FieldMemOperand(r3, JSFunction::kLiteralsOffset)); int literal_offset = FixedArray::kHeaderSize + instr->hydrogen()->literal_index() * kPointerSize; __ ldr(r1, FieldMemOperand(r7, literal_offset)); __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ cmp(r1, ip); __ b(ne, &materialized); // Create regexp literal using runtime function // Result will be in r0. __ mov(r6, Operand(Smi::FromInt(instr->hydrogen()->literal_index()))); __ mov(r5, Operand(instr->hydrogen()->pattern())); __ mov(r4, Operand(instr->hydrogen()->flags())); __ Push(r7, r6, r5, r4); CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr); __ mov(r1, r0); __ bind(&materialized); int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; Label allocated, runtime_allocate; __ AllocateInNewSpace(size, r0, r2, r3, &runtime_allocate, TAG_OBJECT); __ jmp(&allocated); __ bind(&runtime_allocate); __ mov(r0, Operand(Smi::FromInt(size))); __ Push(r1, r0); CallRuntime(Runtime::kAllocateInNewSpace, 1, instr); __ pop(r1); __ bind(&allocated); // Copy the content into the newly allocated memory. // (Unroll copy loop once for better throughput). for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) { __ ldr(r3, FieldMemOperand(r1, i)); __ ldr(r2, FieldMemOperand(r1, i + kPointerSize)); __ str(r3, FieldMemOperand(r0, i)); __ str(r2, FieldMemOperand(r0, i + kPointerSize)); } if ((size % (2 * kPointerSize)) != 0) { __ ldr(r3, FieldMemOperand(r1, size - kPointerSize)); __ str(r3, FieldMemOperand(r0, size - kPointerSize)); } } void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) { // Use the fast case closure allocation code that allocates in new // space for nested functions that don't need literals cloning. Handle<SharedFunctionInfo> shared_info = instr->shared_info(); bool pretenure = instr->hydrogen()->pretenure(); if (!pretenure && shared_info->num_literals() == 0) { FastNewClosureStub stub( shared_info->strict_mode() ? kStrictMode : kNonStrictMode); __ mov(r1, Operand(shared_info)); __ push(r1); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } else { __ mov(r2, Operand(shared_info)); __ mov(r1, Operand(pretenure ? factory()->true_value() : factory()->false_value())); __ Push(cp, r2, r1); CallRuntime(Runtime::kNewClosure, 3, instr); } } void LCodeGen::DoTypeof(LTypeof* instr) { Register input = ToRegister(instr->InputAt(0)); __ push(input); CallRuntime(Runtime::kTypeof, 1, instr); } void LCodeGen::DoTypeofIs(LTypeofIs* instr) { Register input = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); Label true_label; Label false_label; Label done; Condition final_branch_condition = EmitTypeofIs(&true_label, &false_label, input, instr->type_literal()); __ b(final_branch_condition, &true_label); __ bind(&false_label); __ LoadRoot(result, Heap::kFalseValueRootIndex); __ b(&done); __ bind(&true_label); __ LoadRoot(result, Heap::kTrueValueRootIndex); __ bind(&done); } void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) { Register input = ToRegister(instr->InputAt(0)); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Label* true_label = chunk_->GetAssemblyLabel(true_block); Label* false_label = chunk_->GetAssemblyLabel(false_block); Condition final_branch_condition = EmitTypeofIs(true_label, false_label, input, instr->type_literal()); EmitBranch(true_block, false_block, final_branch_condition); } Condition LCodeGen::EmitTypeofIs(Label* true_label, Label* false_label, Register input, Handle<String> type_name) { Condition final_branch_condition = kNoCondition; Register scratch = scratch0(); if (type_name->Equals(heap()->number_symbol())) { __ JumpIfSmi(input, true_label); __ ldr(input, FieldMemOperand(input, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); __ cmp(input, Operand(ip)); final_branch_condition = eq; } else if (type_name->Equals(heap()->string_symbol())) { __ JumpIfSmi(input, false_label); __ CompareObjectType(input, input, scratch, FIRST_NONSTRING_TYPE); __ b(ge, false_label); __ ldrb(ip, FieldMemOperand(input, Map::kBitFieldOffset)); __ tst(ip, Operand(1 << Map::kIsUndetectable)); final_branch_condition = eq; } else if (type_name->Equals(heap()->boolean_symbol())) { __ CompareRoot(input, Heap::kTrueValueRootIndex); __ b(eq, true_label); __ CompareRoot(input, Heap::kFalseValueRootIndex); final_branch_condition = eq; } else if (type_name->Equals(heap()->undefined_symbol())) { __ CompareRoot(input, Heap::kUndefinedValueRootIndex); __ b(eq, true_label); __ JumpIfSmi(input, false_label); // Check for undetectable objects => true. __ ldr(input, FieldMemOperand(input, HeapObject::kMapOffset)); __ ldrb(ip, FieldMemOperand(input, Map::kBitFieldOffset)); __ tst(ip, Operand(1 << Map::kIsUndetectable)); final_branch_condition = ne; } else if (type_name->Equals(heap()->function_symbol())) { __ JumpIfSmi(input, false_label); __ CompareObjectType(input, input, scratch, FIRST_FUNCTION_CLASS_TYPE); final_branch_condition = ge; } else if (type_name->Equals(heap()->object_symbol())) { __ JumpIfSmi(input, false_label); __ CompareRoot(input, Heap::kNullValueRootIndex); __ b(eq, true_label); __ CompareObjectType(input, input, scratch, FIRST_JS_OBJECT_TYPE); __ b(lo, false_label); __ CompareInstanceType(input, scratch, FIRST_FUNCTION_CLASS_TYPE); __ b(hs, false_label); // Check for undetectable objects => false. __ ldrb(ip, FieldMemOperand(input, Map::kBitFieldOffset)); __ tst(ip, Operand(1 << Map::kIsUndetectable)); final_branch_condition = eq; } else { final_branch_condition = ne; __ b(false_label); // A dead branch instruction will be generated after this point. } return final_branch_condition; } void LCodeGen::DoIsConstructCall(LIsConstructCall* instr) { Register result = ToRegister(instr->result()); Label true_label; Label false_label; Label done; EmitIsConstructCall(result, scratch0()); __ b(eq, &true_label); __ LoadRoot(result, Heap::kFalseValueRootIndex); __ b(&done); __ bind(&true_label); __ LoadRoot(result, Heap::kTrueValueRootIndex); __ bind(&done); } void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) { Register temp1 = ToRegister(instr->TempAt(0)); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); EmitIsConstructCall(temp1, scratch0()); EmitBranch(true_block, false_block, eq); } void LCodeGen::EmitIsConstructCall(Register temp1, Register temp2) { ASSERT(!temp1.is(temp2)); // Get the frame pointer for the calling frame. __ ldr(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); // Skip the arguments adaptor frame if it exists. Label check_frame_marker; __ ldr(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset)); __ cmp(temp2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ b(ne, &check_frame_marker); __ ldr(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset)); // Check the marker in the calling frame. __ bind(&check_frame_marker); __ ldr(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset)); __ cmp(temp1, Operand(Smi::FromInt(StackFrame::CONSTRUCT))); } void LCodeGen::DoLazyBailout(LLazyBailout* instr) { // No code for lazy bailout instruction. Used to capture environment after a // call for populating the safepoint data with deoptimization data. } void LCodeGen::DoDeoptimize(LDeoptimize* instr) { DeoptimizeIf(al, instr->environment()); } void LCodeGen::DoDeleteProperty(LDeleteProperty* instr) { Register object = ToRegister(instr->object()); Register key = ToRegister(instr->key()); Register strict = scratch0(); __ mov(strict, Operand(Smi::FromInt(strict_mode_flag()))); __ Push(object, key, strict); ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment()); LPointerMap* pointers = instr->pointer_map(); LEnvironment* env = instr->deoptimization_environment(); RecordPosition(pointers->position()); RegisterEnvironmentForDeoptimization(env); SafepointGenerator safepoint_generator(this, pointers, env->deoptimization_index()); __ InvokeBuiltin(Builtins::DELETE, CALL_JS, &safepoint_generator); } void LCodeGen::DoStackCheck(LStackCheck* instr) { // Perform stack overflow check. Label ok; __ LoadRoot(ip, Heap::kStackLimitRootIndex); __ cmp(sp, Operand(ip)); __ b(hs, &ok); StackCheckStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); __ bind(&ok); } void LCodeGen::DoOsrEntry(LOsrEntry* instr) { // This is a pseudo-instruction that ensures that the environment here is // properly registered for deoptimization and records the assembler's PC // offset. LEnvironment* environment = instr->environment(); environment->SetSpilledRegisters(instr->SpilledRegisterArray(), instr->SpilledDoubleRegisterArray()); // If the environment were already registered, we would have no way of // backpatching it with the spill slot operands. ASSERT(!environment->HasBeenRegistered()); RegisterEnvironmentForDeoptimization(environment); ASSERT(osr_pc_offset_ == -1); osr_pc_offset_ = masm()->pc_offset(); } #undef __ } } // namespace v8::internal