/* libs/graphics/sgl/SkScan_Path.cpp ** ** Copyright 2006, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #include "SkScanPriv.h" #include "SkBlitter.h" #include "SkEdge.h" #include "SkGeometry.h" #include "SkPath.h" #include "SkQuadClipper.h" #include "SkRegion.h" #include "SkTemplates.h" #define USE_NEW_BUILDER #define kEDGE_HEAD_Y SK_MinS32 #define kEDGE_TAIL_Y SK_MaxS32 #ifdef SK_DEBUG static void validate_sort(const SkEdge* edge) { int y = kEDGE_HEAD_Y; while (edge->fFirstY != SK_MaxS32) { edge->validate(); SkASSERT(y <= edge->fFirstY); y = edge->fFirstY; edge = edge->fNext; } } #else #define validate_sort(edge) #endif static inline void remove_edge(SkEdge* edge) { edge->fPrev->fNext = edge->fNext; edge->fNext->fPrev = edge->fPrev; } static inline void swap_edges(SkEdge* prev, SkEdge* next) { SkASSERT(prev->fNext == next && next->fPrev == prev); // remove prev from the list prev->fPrev->fNext = next; next->fPrev = prev->fPrev; // insert prev after next prev->fNext = next->fNext; next->fNext->fPrev = prev; next->fNext = prev; prev->fPrev = next; } static void backward_insert_edge_based_on_x(SkEdge* edge SkDECLAREPARAM(int, curr_y)) { SkFixed x = edge->fX; for (;;) { SkEdge* prev = edge->fPrev; // add 1 to curr_y since we may have added new edges (built from curves) // that start on the next scanline SkASSERT(prev && prev->fFirstY <= curr_y + 1); if (prev->fX <= x) { break; } swap_edges(prev, edge); } } static void insert_new_edges(SkEdge* newEdge, int curr_y) { SkASSERT(newEdge->fFirstY >= curr_y); while (newEdge->fFirstY == curr_y) { SkEdge* next = newEdge->fNext; backward_insert_edge_based_on_x(newEdge SkPARAM(curr_y)); newEdge = next; } } #ifdef SK_DEBUG static void validate_edges_for_y(const SkEdge* edge, int curr_y) { while (edge->fFirstY <= curr_y) { SkASSERT(edge->fPrev && edge->fNext); SkASSERT(edge->fPrev->fNext == edge); SkASSERT(edge->fNext->fPrev == edge); SkASSERT(edge->fFirstY <= edge->fLastY); SkASSERT(edge->fPrev->fX <= edge->fX); edge = edge->fNext; } } #else #define validate_edges_for_y(edge, curr_y) #endif #if defined _WIN32 && _MSC_VER >= 1300 // disable warning : local variable used without having been initialized #pragma warning ( push ) #pragma warning ( disable : 4701 ) #endif typedef void (*PrePostProc)(SkBlitter* blitter, int y, bool isStartOfScanline); #define PREPOST_START true #define PREPOST_END false static void walk_edges(SkEdge* prevHead, SkPath::FillType fillType, SkBlitter* blitter, int start_y, int stop_y, PrePostProc proc) { validate_sort(prevHead->fNext); int curr_y = start_y; // returns 1 for evenodd, -1 for winding, regardless of inverse-ness int windingMask = (fillType & 1) ? 1 : -1; for (;;) { int w = 0; int left SK_INIT_TO_AVOID_WARNING; bool in_interval = false; SkEdge* currE = prevHead->fNext; SkFixed prevX = prevHead->fX; validate_edges_for_y(currE, curr_y); if (proc) { proc(blitter, curr_y, PREPOST_START); // pre-proc } while (currE->fFirstY <= curr_y) { SkASSERT(currE->fLastY >= curr_y); int x = (currE->fX + SK_Fixed1/2) >> 16; w += currE->fWinding; if ((w & windingMask) == 0) { // we finished an interval SkASSERT(in_interval); int width = x - left; SkASSERT(width >= 0); if (width) blitter->blitH(left, curr_y, width); in_interval = false; } else if (!in_interval) { left = x; in_interval = true; } SkEdge* next = currE->fNext; SkFixed newX; if (currE->fLastY == curr_y) { // are we done with this edge? if (currE->fCurveCount < 0) { if (((SkCubicEdge*)currE)->updateCubic()) { SkASSERT(currE->fFirstY == curr_y + 1); newX = currE->fX; goto NEXT_X; } } else if (currE->fCurveCount > 0) { if (((SkQuadraticEdge*)currE)->updateQuadratic()) { newX = currE->fX; goto NEXT_X; } } remove_edge(currE); } else { SkASSERT(currE->fLastY > curr_y); newX = currE->fX + currE->fDX; currE->fX = newX; NEXT_X: if (newX < prevX) { // ripple currE backwards until it is x-sorted backward_insert_edge_based_on_x(currE SkPARAM(curr_y)); } else { prevX = newX; } } currE = next; SkASSERT(currE); } if (proc) { proc(blitter, curr_y, PREPOST_END); // post-proc } curr_y += 1; if (curr_y >= stop_y) { break; } // now currE points to the first edge with a Yint larger than curr_y insert_new_edges(currE, curr_y); } } /////////////////////////////////////////////////////////////////////////////// // this guy overrides blitH, and will call its proxy blitter with the inverse // of the spans it is given (clipped to the left/right of the cliprect) // // used to implement inverse filltypes on paths // class InverseBlitter : public SkBlitter { public: void setBlitter(SkBlitter* blitter, const SkIRect& clip, int shift) { fBlitter = blitter; fFirstX = clip.fLeft << shift; fLastX = clip.fRight << shift; } void prepost(int y, bool isStart) { if (isStart) { fPrevX = fFirstX; } else { int invWidth = fLastX - fPrevX; if (invWidth > 0) { fBlitter->blitH(fPrevX, y, invWidth); } } } // overrides virtual void blitH(int x, int y, int width) { int invWidth = x - fPrevX; if (invWidth > 0) { fBlitter->blitH(fPrevX, y, invWidth); } fPrevX = x + width; } // we do not expect to get called with these entrypoints virtual void blitAntiH(int, int, const SkAlpha[], const int16_t runs[]) { SkASSERT(!"blitAntiH unexpected"); } virtual void blitV(int x, int y, int height, SkAlpha alpha) { SkASSERT(!"blitV unexpected"); } virtual void blitRect(int x, int y, int width, int height) { SkASSERT(!"blitRect unexpected"); } virtual void blitMask(const SkMask&, const SkIRect& clip) { SkASSERT(!"blitMask unexpected"); } virtual const SkBitmap* justAnOpaqueColor(uint32_t* value) { SkASSERT(!"justAnOpaqueColor unexpected"); return NULL; } private: SkBlitter* fBlitter; int fFirstX, fLastX, fPrevX; }; static void PrePostInverseBlitterProc(SkBlitter* blitter, int y, bool isStart) { ((InverseBlitter*)blitter)->prepost(y, isStart); } /////////////////////////////////////////////////////////////////////////////// #if defined _WIN32 && _MSC_VER >= 1300 #pragma warning ( pop ) #endif #ifdef USE_NEW_BUILDER #include "SkEdgeBuilder.h" #else static int build_edges(SkEdge edge[], const SkPath& path, const SkIRect* clipRect, SkEdge* list[], int shiftUp) { SkEdge** start = list; SkPath::Iter iter(path, true); SkPoint pts[4]; SkPath::Verb verb; SkQuadClipper qclipper; if (clipRect) { SkIRect r; r.set(clipRect->fLeft >> shiftUp, clipRect->fTop >> shiftUp, clipRect->fRight >> shiftUp, clipRect->fBottom >> shiftUp); qclipper.setClip(r); } while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { switch (verb) { case SkPath::kLine_Verb: if (edge->setLine(pts[0], pts[1], clipRect, shiftUp)) { *list++ = edge; edge = (SkEdge*)((char*)edge + sizeof(SkEdge)); } break; case SkPath::kQuad_Verb: { SkPoint tmp[5], clippedPts[3]; SkPoint* p = tmp; int count = SkChopQuadAtYExtrema(pts, tmp); do { const SkPoint* qpts = p; if (clipRect) { if (!qclipper.clipQuad(p, clippedPts)) { goto NEXT_CHOPPED_QUAD; } qpts = clippedPts; } if (((SkQuadraticEdge*)edge)->setQuadratic(qpts, shiftUp)) { *list++ = edge; edge = (SkEdge*)((char*)edge + sizeof(SkQuadraticEdge)); } NEXT_CHOPPED_QUAD: p += 2; } while (--count >= 0); break; } case SkPath::kCubic_Verb: { SkPoint tmp[10]; SkPoint* p = tmp; int count = SkChopCubicAtYExtrema(pts, tmp); SkASSERT(count >= 0 && count <= 2); do { if (((SkCubicEdge*)edge)->setCubic(p, clipRect, shiftUp)) { *list++ = edge; edge = (SkEdge*)((char*)edge + sizeof(SkCubicEdge)); } p += 3; } while (--count >= 0); break; } default: break; } } return (int)(list - start); } #ifdef SK_DEBUG /* 'quick' computation of the max sized needed to allocated for our edgelist. */ static int worst_case_edge_count(const SkPath& path, size_t* storage) { size_t size = 0; int edgeCount = 0; SkPath::Iter iter(path, true); SkPath::Verb verb; while ((verb = iter.next(NULL)) != SkPath::kDone_Verb) { switch (verb) { case SkPath::kLine_Verb: edgeCount += 1; size += sizeof(SkQuadraticEdge); // treat line like Quad (in case its > 512) break; case SkPath::kQuad_Verb: edgeCount += 2; // might need 2 edges when we chop on Y extrema size += 2 * sizeof(SkQuadraticEdge); break; case SkPath::kCubic_Verb: edgeCount += 3; // might need 3 edges when we chop on Y extrema size += 3 * sizeof(SkCubicEdge); break; default: break; } } SkASSERT(storage); *storage = size; return edgeCount; } #endif /* Much faster than worst_case_edge_count, but over estimates even more */ static int cheap_worst_case_edge_count(const SkPath& path, size_t* storage) { int ptCount = path.getPoints(NULL, 0); // worst case is curve, close, curve, close, as that is // 2 lines per pt, or : pts * 2 // 2 quads + 1 line per 2 pts, or : pts * 3 / 2 // 3 cubics + 1 line per 3 pts : pts * 4 / 3 int edgeCount = ptCount << 1; // worst storage, due to relative size of different edge types, is // quads * 3 / 2 size_t quadSize = (ptCount * 3 >> 1) * sizeof(SkQuadraticEdge); #if 0 size_t lineSize = (ptCount << 1) * sizeof(SkEdge); size_t cubicSize = (ptCount * 3 / 4) * sizeof(SkCubicEdge); SkASSERT(lineSize <= quadSize); SkASSERT(cubicSize <= quadSize); #endif *storage = quadSize; return edgeCount; } #endif /////////////////////////////////////////////////////////////////////////////// extern "C" { static int edge_compare(const void* a, const void* b) { const SkEdge* edgea = *(const SkEdge**)a; const SkEdge* edgeb = *(const SkEdge**)b; int valuea = edgea->fFirstY; int valueb = edgeb->fFirstY; if (valuea == valueb) { valuea = edgea->fX; valueb = edgeb->fX; } // this overflows if valuea >>> valueb or vice-versa // return valuea - valueb; // do perform the slower but safe compares return (valuea < valueb) ? -1 : (valuea > valueb); } } static SkEdge* sort_edges(SkEdge* list[], int count, SkEdge** last) { qsort(list, count, sizeof(SkEdge*), edge_compare); // now make the edges linked in sorted order for (int i = 1; i < count; i++) { list[i - 1]->fNext = list[i]; list[i]->fPrev = list[i - 1]; } *last = list[count - 1]; return list[0]; } // clipRect may be null, even though we always have a clip. This indicates that // the path is contained in the clip, and so we can ignore it during the blit // // clipRect (if no null) has already been shifted up // void sk_fill_path(const SkPath& path, const SkIRect* clipRect, SkBlitter* blitter, int start_y, int stop_y, int shiftEdgesUp, const SkRegion& clipRgn) { SkASSERT(&path && blitter); #ifdef USE_NEW_BUILDER SkEdgeBuilder builder; int count = builder.build(path, clipRect, shiftEdgesUp); SkEdge** list = builder.edgeList(); #else size_t size; int maxCount = cheap_worst_case_edge_count(path, &size); #ifdef SK_DEBUG { size_t size2; int maxCount2 = worst_case_edge_count(path, &size2); SkASSERT(maxCount >= maxCount2 && size >= size2); } #endif SkAutoMalloc memory(maxCount * sizeof(SkEdge*) + size); SkEdge** list = (SkEdge**)memory.get(); SkEdge* initialEdge = (SkEdge*)(list + maxCount); int count = build_edges(initialEdge, path, clipRect, list, shiftEdgesUp); SkASSERT(count <= maxCount); #endif if (count < 2) { if (path.isInverseFillType()) { const SkIRect& clipRect = clipRgn.getBounds(); blitter->blitRect(clipRect.fLeft << shiftEdgesUp, clipRect.fTop << shiftEdgesUp, clipRect.width() << shiftEdgesUp, clipRect.height() << shiftEdgesUp); } return; } SkEdge headEdge, tailEdge, *last; // this returns the first and last edge after they're sorted into a dlink list SkEdge* edge = sort_edges(list, count, &last); headEdge.fPrev = NULL; headEdge.fNext = edge; headEdge.fFirstY = kEDGE_HEAD_Y; headEdge.fX = SK_MinS32; edge->fPrev = &headEdge; tailEdge.fPrev = last; tailEdge.fNext = NULL; tailEdge.fFirstY = kEDGE_TAIL_Y; last->fNext = &tailEdge; // now edge is the head of the sorted linklist start_y <<= shiftEdgesUp; stop_y <<= shiftEdgesUp; if (clipRect && start_y < clipRect->fTop) { start_y = clipRect->fTop; } if (clipRect && stop_y > clipRect->fBottom) { stop_y = clipRect->fBottom; } InverseBlitter ib; PrePostProc proc = NULL; if (path.isInverseFillType()) { ib.setBlitter(blitter, clipRgn.getBounds(), shiftEdgesUp); blitter = &ib; proc = PrePostInverseBlitterProc; } walk_edges(&headEdge, path.getFillType(), blitter, start_y, stop_y, proc); } void sk_blit_above(SkBlitter* blitter, const SkIRect& ir, const SkRegion& clip) { const SkIRect& cr = clip.getBounds(); SkIRect tmp; tmp.fLeft = cr.fLeft; tmp.fRight = cr.fRight; tmp.fTop = cr.fTop; tmp.fBottom = ir.fTop; if (!tmp.isEmpty()) { blitter->blitRectRegion(tmp, clip); } } void sk_blit_below(SkBlitter* blitter, const SkIRect& ir, const SkRegion& clip) { const SkIRect& cr = clip.getBounds(); SkIRect tmp; tmp.fLeft = cr.fLeft; tmp.fRight = cr.fRight; tmp.fTop = ir.fBottom; tmp.fBottom = cr.fBottom; if (!tmp.isEmpty()) { blitter->blitRectRegion(tmp, clip); } } /////////////////////////////////////////////////////////////////////////////// SkScanClipper::SkScanClipper(SkBlitter* blitter, const SkRegion* clip, const SkIRect& ir) { fBlitter = NULL; // null means blit nothing fClipRect = NULL; if (clip) { fClipRect = &clip->getBounds(); if (!SkIRect::Intersects(*fClipRect, ir)) { // completely clipped out return; } if (clip->isRect()) { if (fClipRect->contains(ir)) { fClipRect = NULL; } else { // only need a wrapper blitter if we're horizontally clipped if (fClipRect->fLeft > ir.fLeft || fClipRect->fRight < ir.fRight) { fRectBlitter.init(blitter, *fClipRect); blitter = &fRectBlitter; } } } else { fRgnBlitter.init(blitter, clip); blitter = &fRgnBlitter; } } fBlitter = blitter; } /////////////////////////////////////////////////////////////////////////////// static bool clip_to_limit(const SkRegion& orig, SkRegion* reduced) { const int32_t limit = 32767; SkIRect limitR; limitR.set(-limit, -limit, limit, limit); if (limitR.contains(orig.getBounds())) { return false; } reduced->op(orig, limitR, SkRegion::kIntersect_Op); return true; } void SkScan::FillPath(const SkPath& path, const SkRegion& origClip, SkBlitter* blitter) { if (origClip.isEmpty()) { return; } // Our edges are fixed-point, and don't like the bounds of the clip to // exceed that. Here we trim the clip just so we don't overflow later on const SkRegion* clipPtr = &origClip; SkRegion finiteClip; if (clip_to_limit(origClip, &finiteClip)) { if (finiteClip.isEmpty()) { return; } clipPtr = &finiteClip; } // don't reference "origClip" any more, just use clipPtr SkIRect ir; path.getBounds().round(&ir); if (ir.isEmpty()) { if (path.isInverseFillType()) { blitter->blitRegion(*clipPtr); } return; } SkScanClipper clipper(blitter, clipPtr, ir); blitter = clipper.getBlitter(); if (blitter) { // we have to keep our calls to blitter in sorted order, so we // must blit the above section first, then the middle, then the bottom. if (path.isInverseFillType()) { sk_blit_above(blitter, ir, *clipPtr); } sk_fill_path(path, clipper.getClipRect(), blitter, ir.fTop, ir.fBottom, 0, *clipPtr); if (path.isInverseFillType()) { sk_blit_below(blitter, ir, *clipPtr); } } else { // what does it mean to not have a blitter if path.isInverseFillType??? } } /////////////////////////////////////////////////////////////////////////////// static int build_tri_edges(SkEdge edge[], const SkPoint pts[], const SkIRect* clipRect, SkEdge* list[]) { SkEdge** start = list; if (edge->setLine(pts[0], pts[1], clipRect, 0)) { *list++ = edge; edge = (SkEdge*)((char*)edge + sizeof(SkEdge)); } if (edge->setLine(pts[1], pts[2], clipRect, 0)) { *list++ = edge; edge = (SkEdge*)((char*)edge + sizeof(SkEdge)); } if (edge->setLine(pts[2], pts[0], clipRect, 0)) { *list++ = edge; } return (int)(list - start); } static void sk_fill_triangle(const SkPoint pts[], const SkIRect* clipRect, SkBlitter* blitter, const SkIRect& ir) { SkASSERT(pts && blitter); SkEdge edgeStorage[3]; SkEdge* list[3]; int count = build_tri_edges(edgeStorage, pts, clipRect, list); if (count < 2) { return; } SkEdge headEdge, tailEdge, *last; // this returns the first and last edge after they're sorted into a dlink list SkEdge* edge = sort_edges(list, count, &last); headEdge.fPrev = NULL; headEdge.fNext = edge; headEdge.fFirstY = kEDGE_HEAD_Y; headEdge.fX = SK_MinS32; edge->fPrev = &headEdge; tailEdge.fPrev = last; tailEdge.fNext = NULL; tailEdge.fFirstY = kEDGE_TAIL_Y; last->fNext = &tailEdge; // now edge is the head of the sorted linklist int stop_y = ir.fBottom; if (clipRect && stop_y > clipRect->fBottom) { stop_y = clipRect->fBottom; } int start_y = ir.fTop; if (clipRect && start_y < clipRect->fTop) { start_y = clipRect->fTop; } walk_edges(&headEdge, SkPath::kEvenOdd_FillType, blitter, start_y, stop_y, NULL); } void SkScan::FillTriangle(const SkPoint pts[], const SkRegion* clip, SkBlitter* blitter) { if (clip && clip->isEmpty()) { return; } SkRect r; SkIRect ir; r.set(pts, 3); r.round(&ir); if (ir.isEmpty()) { return; } SkScanClipper clipper(blitter, clip, ir); blitter = clipper.getBlitter(); if (NULL != blitter) { sk_fill_triangle(pts, clipper.getClipRect(), blitter, ir); } }