#!/usr/bin/env perl # ==================================================================== # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # January 2009 # # Provided that UltraSPARC VIS instructions are pipe-lined(*) and # pairable(*) with IALU ones, offloading of Xupdate to the UltraSPARC # Graphic Unit would make it possible to achieve higher instruction- # level parallelism, ILP, and thus higher performance. It should be # explicitly noted that ILP is the keyword, and it means that this # code would be unsuitable for cores like UltraSPARC-Tx. The idea is # not really novel, Sun had VIS-powered implementation for a while. # Unlike Sun's implementation this one can process multiple unaligned # input blocks, and as such works as drop-in replacement for OpenSSL # sha1_block_data_order. Performance improvement was measured to be # 40% over pure IALU sha1-sparcv9.pl on UltraSPARC-IIi, but 12% on # UltraSPARC-III. See below for discussion... # # The module does not present direct interest for OpenSSL, because # it doesn't provide better performance on contemporary SPARCv9 CPUs, # UltraSPARC-Tx and SPARC64-V[II] to be specific. Those who feel they # absolutely must score on UltraSPARC-I-IV can simply replace # crypto/sha/asm/sha1-sparcv9.pl with this module. # # (*) "Pipe-lined" means that even if it takes several cycles to # complete, next instruction using same functional unit [but not # depending on the result of the current instruction] can start # execution without having to wait for the unit. "Pairable" # means that two [or more] independent instructions can be # issued at the very same time. $bits=32; for (@ARGV) { $bits=64 if (/\-m64/ || /\-xarch\=v9/); } if ($bits==64) { $bias=2047; $frame=192; } else { $bias=0; $frame=112; } $output=shift; open STDOUT,">$output"; $ctx="%i0"; $inp="%i1"; $len="%i2"; $tmp0="%i3"; $tmp1="%i4"; $tmp2="%i5"; $tmp3="%g5"; $base="%g1"; $align="%g4"; $Xfer="%o5"; $nXfer=$tmp3; $Xi="%o7"; $A="%l0"; $B="%l1"; $C="%l2"; $D="%l3"; $E="%l4"; @V=($A,$B,$C,$D,$E); $Actx="%o0"; $Bctx="%o1"; $Cctx="%o2"; $Dctx="%o3"; $Ectx="%o4"; $fmul="%f32"; $VK_00_19="%f34"; $VK_20_39="%f36"; $VK_40_59="%f38"; $VK_60_79="%f40"; @VK=($VK_00_19,$VK_20_39,$VK_40_59,$VK_60_79); @X=("%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", "%f8", "%f9","%f10","%f11","%f12","%f13","%f14","%f15","%f16"); # This is reference 2x-parallelized VIS-powered Xupdate procedure. It # covers even K_NN_MM addition... sub Xupdate { my ($i)=@_; my $K=@VK[($i+16)/20]; my $j=($i+16)%16; # [ provided that GSR.alignaddr_offset is 5, $mul contains # 0x100ULL<<32|0x100 value and K_NN_MM are pre-loaded to # chosen registers... ] $code.=<<___; fxors @X[($j+13)%16],@X[$j],@X[$j] !-1/-1/-1:X[0]^=X[13] fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14] fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9] fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9] faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24 fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1 fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1 ![fxors %f15,%f2,%f2] for %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp ![fxors %f0,%f3,%f3] !10/17/12:X[0] dependency fpadd32 $K,@X[$j],%f20 std %f20,[$Xfer+`4*$j`] ___ # The numbers delimited with slash are the earliest possible dispatch # cycles for given instruction assuming 1 cycle latency for simple VIS # instructions, such as on UltraSPARC-I&II, 3 cycles latency, such as # on UltraSPARC-III&IV, and 2 cycles latency(*), respectively. Being # 2x-parallelized the procedure is "worth" 5, 8.5 or 6 ticks per SHA1 # round. As [long as] FPU/VIS instructions are perfectly pairable with # IALU ones, the round timing is defined by the maximum between VIS # and IALU timings. The latter varies from round to round and averages # out at 6.25 ticks. This means that USI&II should operate at IALU # rate, while USIII&IV - at VIS rate. This explains why performance # improvement varies among processors. Well, given that pure IALU # sha1-sparcv9.pl module exhibits virtually uniform performance of # ~9.3 cycles per SHA1 round. Timings mentioned above are theoretical # lower limits. Real-life performance was measured to be 6.6 cycles # per SHA1 round on USIIi and 8.3 on USIII. The latter is lower than # half-round VIS timing, because there are 16 Xupdate-free rounds, # which "push down" average theoretical timing to 8 cycles... # (*) SPARC64-V[II] was originally believed to have 2 cycles VIS # latency. Well, it might have, but it doesn't have dedicated # VIS-unit. Instead, VIS instructions are executed by other # functional units, ones used here - by IALU. This doesn't # improve effective ILP... } # The reference Xupdate procedure is then "strained" over *pairs* of # BODY_NN_MM and kind of modulo-scheduled in respect to X[n]^=X[n+13] # and K_NN_MM addition. It's "running" 15 rounds ahead, which leaves # plenty of room to amortize for read-after-write hazard, as well as # to fetch and align input for the next spin. The VIS instructions are # scheduled for latency of 2 cycles, because there are not enough IALU # instructions to schedule for latency of 3, while scheduling for 1 # would give no gain on USI&II anyway. sub BODY_00_19 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i&~1; my $k=($j+16+2)%16; # ahead reference my $l=($j+16-2)%16; # behind reference my $K=@VK[($j+16-2)/20]; $j=($j+16)%16; $code.=<<___ if (!($i&1)); sll $a,5,$tmp0 !! $i and $c,$b,$tmp3 ld [$Xfer+`4*($i%16)`],$Xi fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14] srl $a,27,$tmp1 add $tmp0,$e,$e fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9] sll $b,30,$tmp2 add $tmp1,$e,$e andn $d,$b,$tmp1 add $Xi,$e,$e fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9] srl $b,2,$b or $tmp1,$tmp3,$tmp1 or $tmp2,$b,$b add $tmp1,$e,$e faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24 ___ $code.=<<___ if ($i&1); sll $a,5,$tmp0 !! $i and $c,$b,$tmp3 ld [$Xfer+`4*($i%16)`],$Xi fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1 srl $a,27,$tmp1 add $tmp0,$e,$e fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1 sll $b,30,$tmp2 add $tmp1,$e,$e fpadd32 $K,@X[$l],%f20 ! andn $d,$b,$tmp1 add $Xi,$e,$e fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13] srl $b,2,$b or $tmp1,$tmp3,$tmp1 fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp or $tmp2,$b,$b add $tmp1,$e,$e ___ $code.=<<___ if ($i&1 && $i>=2); std %f20,[$Xfer+`4*$l`] ! ___ } sub BODY_20_39 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i&~1; my $k=($j+16+2)%16; # ahead reference my $l=($j+16-2)%16; # behind reference my $K=@VK[($j+16-2)/20]; $j=($j+16)%16; $code.=<<___ if (!($i&1) && $i<64); sll $a,5,$tmp0 !! $i ld [$Xfer+`4*($i%16)`],$Xi fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14] srl $a,27,$tmp1 add $tmp0,$e,$e fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9] xor $c,$b,$tmp0 add $tmp1,$e,$e sll $b,30,$tmp2 xor $d,$tmp0,$tmp1 fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9] srl $b,2,$b add $tmp1,$e,$e or $tmp2,$b,$b add $Xi,$e,$e faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24 ___ $code.=<<___ if ($i&1 && $i<64); sll $a,5,$tmp0 !! $i ld [$Xfer+`4*($i%16)`],$Xi fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1 srl $a,27,$tmp1 add $tmp0,$e,$e fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1 xor $c,$b,$tmp0 add $tmp1,$e,$e fpadd32 $K,@X[$l],%f20 ! sll $b,30,$tmp2 xor $d,$tmp0,$tmp1 fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13] srl $b,2,$b add $tmp1,$e,$e fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp or $tmp2,$b,$b add $Xi,$e,$e std %f20,[$Xfer+`4*$l`] ! ___ $code.=<<___ if ($i==64); sll $a,5,$tmp0 !! $i ld [$Xfer+`4*($i%16)`],$Xi fpadd32 $K,@X[$l],%f20 srl $a,27,$tmp1 add $tmp0,$e,$e xor $c,$b,$tmp0 add $tmp1,$e,$e sll $b,30,$tmp2 xor $d,$tmp0,$tmp1 std %f20,[$Xfer+`4*$l`] srl $b,2,$b add $tmp1,$e,$e or $tmp2,$b,$b add $Xi,$e,$e ___ $code.=<<___ if ($i>64); sll $a,5,$tmp0 !! $i ld [$Xfer+`4*($i%16)`],$Xi srl $a,27,$tmp1 add $tmp0,$e,$e xor $c,$b,$tmp0 add $tmp1,$e,$e sll $b,30,$tmp2 xor $d,$tmp0,$tmp1 srl $b,2,$b add $tmp1,$e,$e or $tmp2,$b,$b add $Xi,$e,$e ___ } sub BODY_40_59 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i&~1; my $k=($j+16+2)%16; # ahead reference my $l=($j+16-2)%16; # behind reference my $K=@VK[($j+16-2)/20]; $j=($j+16)%16; $code.=<<___ if (!($i&1)); sll $a,5,$tmp0 !! $i ld [$Xfer+`4*($i%16)`],$Xi fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14] srl $a,27,$tmp1 add $tmp0,$e,$e fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9] and $c,$b,$tmp0 add $tmp1,$e,$e sll $b,30,$tmp2 or $c,$b,$tmp1 fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9] srl $b,2,$b and $d,$tmp1,$tmp1 add $Xi,$e,$e or $tmp1,$tmp0,$tmp1 faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24 or $tmp2,$b,$b add $tmp1,$e,$e fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1 ___ $code.=<<___ if ($i&1); sll $a,5,$tmp0 !! $i ld [$Xfer+`4*($i%16)`],$Xi srl $a,27,$tmp1 add $tmp0,$e,$e fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1 and $c,$b,$tmp0 add $tmp1,$e,$e fpadd32 $K,@X[$l],%f20 ! sll $b,30,$tmp2 or $c,$b,$tmp1 fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13] srl $b,2,$b and $d,$tmp1,$tmp1 fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp add $Xi,$e,$e or $tmp1,$tmp0,$tmp1 or $tmp2,$b,$b add $tmp1,$e,$e std %f20,[$Xfer+`4*$l`] ! ___ } # If there is more data to process, then we pre-fetch the data for # next iteration in last ten rounds... sub BODY_70_79 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i&~1; my $m=($i%8)*2; $j=($j+16)%16; $code.=<<___ if ($i==70); sll $a,5,$tmp0 !! $i ld [$Xfer+`4*($i%16)`],$Xi srl $a,27,$tmp1 add $tmp0,$e,$e ldd [$inp+64],@X[0] xor $c,$b,$tmp0 add $tmp1,$e,$e sll $b,30,$tmp2 xor $d,$tmp0,$tmp1 srl $b,2,$b add $tmp1,$e,$e or $tmp2,$b,$b add $Xi,$e,$e and $inp,-64,$nXfer inc 64,$inp and $nXfer,255,$nXfer alignaddr %g0,$align,%g0 add $base,$nXfer,$nXfer ___ $code.=<<___ if ($i==71); sll $a,5,$tmp0 !! $i ld [$Xfer+`4*($i%16)`],$Xi srl $a,27,$tmp1 add $tmp0,$e,$e xor $c,$b,$tmp0 add $tmp1,$e,$e sll $b,30,$tmp2 xor $d,$tmp0,$tmp1 srl $b,2,$b add $tmp1,$e,$e or $tmp2,$b,$b add $Xi,$e,$e ___ $code.=<<___ if ($i>=72); faligndata @X[$m],@X[$m+2],@X[$m] sll $a,5,$tmp0 !! $i ld [$Xfer+`4*($i%16)`],$Xi srl $a,27,$tmp1 add $tmp0,$e,$e xor $c,$b,$tmp0 add $tmp1,$e,$e fpadd32 $VK_00_19,@X[$m],%f20 sll $b,30,$tmp2 xor $d,$tmp0,$tmp1 srl $b,2,$b add $tmp1,$e,$e or $tmp2,$b,$b add $Xi,$e,$e ___ $code.=<<___ if ($i<77); ldd [$inp+`8*($i+1-70)`],@X[2*($i+1-70)] ___ $code.=<<___ if ($i==77); # redundant if $inp was aligned add $align,63,$tmp0 and $tmp0,-8,$tmp0 ldd [$inp+$tmp0],@X[16] ___ $code.=<<___ if ($i>=72); std %f20,[$nXfer+`4*$m`] ___ } $code.=<<___; .section ".text",#alloc,#execinstr .align 64 vis_const: .long 0x5a827999,0x5a827999 ! K_00_19 .long 0x6ed9eba1,0x6ed9eba1 ! K_20_39 .long 0x8f1bbcdc,0x8f1bbcdc ! K_40_59 .long 0xca62c1d6,0xca62c1d6 ! K_60_79 .long 0x00000100,0x00000100 .align 64 .type vis_const,#object .size vis_const,(.-vis_const) .globl sha1_block_data_order sha1_block_data_order: save %sp,-$frame,%sp add %fp,$bias-256,$base 1: call .+8 add %o7,vis_const-1b,$tmp0 ldd [$tmp0+0],$VK_00_19 ldd [$tmp0+8],$VK_20_39 ldd [$tmp0+16],$VK_40_59 ldd [$tmp0+24],$VK_60_79 ldd [$tmp0+32],$fmul ld [$ctx+0],$Actx and $base,-256,$base ld [$ctx+4],$Bctx sub $base,$bias+$frame,%sp ld [$ctx+8],$Cctx and $inp,7,$align ld [$ctx+12],$Dctx and $inp,-8,$inp ld [$ctx+16],$Ectx ! X[16] is maintained in FP register bank alignaddr %g0,$align,%g0 ldd [$inp+0],@X[0] sub $inp,-64,$Xfer ldd [$inp+8],@X[2] and $Xfer,-64,$Xfer ldd [$inp+16],@X[4] and $Xfer,255,$Xfer ldd [$inp+24],@X[6] add $base,$Xfer,$Xfer ldd [$inp+32],@X[8] ldd [$inp+40],@X[10] ldd [$inp+48],@X[12] brz,pt $align,.Laligned ldd [$inp+56],@X[14] ldd [$inp+64],@X[16] faligndata @X[0],@X[2],@X[0] faligndata @X[2],@X[4],@X[2] faligndata @X[4],@X[6],@X[4] faligndata @X[6],@X[8],@X[6] faligndata @X[8],@X[10],@X[8] faligndata @X[10],@X[12],@X[10] faligndata @X[12],@X[14],@X[12] faligndata @X[14],@X[16],@X[14] .Laligned: mov 5,$tmp0 dec 1,$len alignaddr %g0,$tmp0,%g0 fpadd32 $VK_00_19,@X[0],%f16 fpadd32 $VK_00_19,@X[2],%f18 fpadd32 $VK_00_19,@X[4],%f20 fpadd32 $VK_00_19,@X[6],%f22 fpadd32 $VK_00_19,@X[8],%f24 fpadd32 $VK_00_19,@X[10],%f26 fpadd32 $VK_00_19,@X[12],%f28 fpadd32 $VK_00_19,@X[14],%f30 std %f16,[$Xfer+0] mov $Actx,$A std %f18,[$Xfer+8] mov $Bctx,$B std %f20,[$Xfer+16] mov $Cctx,$C std %f22,[$Xfer+24] mov $Dctx,$D std %f24,[$Xfer+32] mov $Ectx,$E std %f26,[$Xfer+40] fxors @X[13],@X[0],@X[0] std %f28,[$Xfer+48] ba .Loop std %f30,[$Xfer+56] .align 32 .Loop: ___ for ($i=0;$i<20;$i++) { &BODY_00_19($i,@V); unshift(@V,pop(@V)); } for (;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } for (;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); } for (;$i<70;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } $code.=<<___; tst $len bz,pn `$bits==32?"%icc":"%xcc"`,.Ltail nop ___ for (;$i<80;$i++) { &BODY_70_79($i,@V); unshift(@V,pop(@V)); } $code.=<<___; add $A,$Actx,$Actx add $B,$Bctx,$Bctx add $C,$Cctx,$Cctx add $D,$Dctx,$Dctx add $E,$Ectx,$Ectx mov 5,$tmp0 fxors @X[13],@X[0],@X[0] mov $Actx,$A mov $Bctx,$B mov $Cctx,$C mov $Dctx,$D mov $Ectx,$E alignaddr %g0,$tmp0,%g0 dec 1,$len ba .Loop mov $nXfer,$Xfer .align 32 .Ltail: ___ for($i=70;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } $code.=<<___; add $A,$Actx,$Actx add $B,$Bctx,$Bctx add $C,$Cctx,$Cctx add $D,$Dctx,$Dctx add $E,$Ectx,$Ectx st $Actx,[$ctx+0] st $Bctx,[$ctx+4] st $Cctx,[$ctx+8] st $Dctx,[$ctx+12] st $Ectx,[$ctx+16] ret restore .type sha1_block_data_order,#function .size sha1_block_data_order,(.-sha1_block_data_order) .asciz "SHA1 block transform for SPARCv9a, CRYPTOGAMS by <appro\@openssl.org>" .align 4 ___ # Purpose of these subroutines is to explicitly encode VIS instructions, # so that one can compile the module without having to specify VIS # extentions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a. # Idea is to reserve for option to produce "universal" binary and let # programmer detect if current CPU is VIS capable at run-time. sub unvis { my ($mnemonic,$rs1,$rs2,$rd)=@_; my $ref,$opf; my %visopf = ( "fmul8ulx16" => 0x037, "faligndata" => 0x048, "fpadd32" => 0x052, "fxor" => 0x06c, "fxors" => 0x06d ); $ref = "$mnemonic\t$rs1,$rs2,$rd"; if ($opf=$visopf{$mnemonic}) { foreach ($rs1,$rs2,$rd) { return $ref if (!/%f([0-9]{1,2})/); $_=$1; if ($1>=32) { return $ref if ($1&1); # re-encode for upper double register addressing $_=($1|$1>>5)&31; } } return sprintf ".word\t0x%08x !%s", 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2, $ref; } else { return $ref; } } sub unalignaddr { my ($mnemonic,$rs1,$rs2,$rd)=@_; my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 ); my $ref="$mnemonic\t$rs1,$rs2,$rd"; foreach ($rs1,$rs2,$rd) { if (/%([goli])([0-7])/) { $_=$bias{$1}+$2; } else { return $ref; } } return sprintf ".word\t0x%08x !%s", 0x81b00300|$rd<<25|$rs1<<14|$rs2, $ref; } $code =~ s/\`([^\`]*)\`/eval $1/gem; $code =~ s/\b(f[^\s]*)\s+(%f[0-9]{1,2}),(%f[0-9]{1,2}),(%f[0-9]{1,2})/ &unvis($1,$2,$3,$4) /gem; $code =~ s/\b(alignaddr)\s+(%[goli][0-7]),(%[goli][0-7]),(%[goli][0-7])/ &unalignaddr($1,$2,$3,$4) /gem; print $code; close STDOUT;