/* crypto/bn/bn_asm.c */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #ifndef BN_DEBUG # undef NDEBUG /* avoid conflicting definitions */ # define NDEBUG #endif #include <stdio.h> #include <assert.h> #include "cryptlib.h" #include "bn_lcl.h" #if defined(BN_LLONG) || defined(BN_UMULT_HIGH) BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG c1=0; assert(num >= 0); if (num <= 0) return(c1); #ifndef OPENSSL_SMALL_FOOTPRINT while (num&~3) { mul_add(rp[0],ap[0],w,c1); mul_add(rp[1],ap[1],w,c1); mul_add(rp[2],ap[2],w,c1); mul_add(rp[3],ap[3],w,c1); ap+=4; rp+=4; num-=4; } #endif while (num) { mul_add(rp[0],ap[0],w,c1); ap++; rp++; num--; } return(c1); } BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG c1=0; assert(num >= 0); if (num <= 0) return(c1); #ifndef OPENSSL_SMALL_FOOTPRINT while (num&~3) { mul(rp[0],ap[0],w,c1); mul(rp[1],ap[1],w,c1); mul(rp[2],ap[2],w,c1); mul(rp[3],ap[3],w,c1); ap+=4; rp+=4; num-=4; } #endif while (num) { mul(rp[0],ap[0],w,c1); ap++; rp++; num--; } return(c1); } void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) { assert(n >= 0); if (n <= 0) return; #ifndef OPENSSL_SMALL_FOOTPRINT while (n&~3) { sqr(r[0],r[1],a[0]); sqr(r[2],r[3],a[1]); sqr(r[4],r[5],a[2]); sqr(r[6],r[7],a[3]); a+=4; r+=8; n-=4; } #endif while (n) { sqr(r[0],r[1],a[0]); a++; r+=2; n--; } } #else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */ BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG c=0; BN_ULONG bl,bh; assert(num >= 0); if (num <= 0) return((BN_ULONG)0); bl=LBITS(w); bh=HBITS(w); #ifndef OPENSSL_SMALL_FOOTPRINT while (num&~3) { mul_add(rp[0],ap[0],bl,bh,c); mul_add(rp[1],ap[1],bl,bh,c); mul_add(rp[2],ap[2],bl,bh,c); mul_add(rp[3],ap[3],bl,bh,c); ap+=4; rp+=4; num-=4; } #endif while (num) { mul_add(rp[0],ap[0],bl,bh,c); ap++; rp++; num--; } return(c); } BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG carry=0; BN_ULONG bl,bh; assert(num >= 0); if (num <= 0) return((BN_ULONG)0); bl=LBITS(w); bh=HBITS(w); #ifndef OPENSSL_SMALL_FOOTPRINT while (num&~3) { mul(rp[0],ap[0],bl,bh,carry); mul(rp[1],ap[1],bl,bh,carry); mul(rp[2],ap[2],bl,bh,carry); mul(rp[3],ap[3],bl,bh,carry); ap+=4; rp+=4; num-=4; } #endif while (num) { mul(rp[0],ap[0],bl,bh,carry); ap++; rp++; num--; } return(carry); } void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) { assert(n >= 0); if (n <= 0) return; #ifndef OPENSSL_SMALL_FOOTPRINT while (n&~3) { sqr64(r[0],r[1],a[0]); sqr64(r[2],r[3],a[1]); sqr64(r[4],r[5],a[2]); sqr64(r[6],r[7],a[3]); a+=4; r+=8; n-=4; } #endif while (n) { sqr64(r[0],r[1],a[0]); a++; r+=2; n--; } } #endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */ #if defined(BN_LLONG) && defined(BN_DIV2W) BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) { return((BN_ULONG)(((((BN_ULLONG)h)<<BN_BITS2)|l)/(BN_ULLONG)d)); } #else /* Divide h,l by d and return the result. */ /* I need to test this some more :-( */ BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) { BN_ULONG dh,dl,q,ret=0,th,tl,t; int i,count=2; if (d == 0) return(BN_MASK2); i=BN_num_bits_word(d); assert((i == BN_BITS2) || (h <= (BN_ULONG)1<<i)); i=BN_BITS2-i; if (h >= d) h-=d; if (i) { d<<=i; h=(h<<i)|(l>>(BN_BITS2-i)); l<<=i; } dh=(d&BN_MASK2h)>>BN_BITS4; dl=(d&BN_MASK2l); for (;;) { if ((h>>BN_BITS4) == dh) q=BN_MASK2l; else q=h/dh; th=q*dh; tl=dl*q; for (;;) { t=h-th; if ((t&BN_MASK2h) || ((tl) <= ( (t<<BN_BITS4)| ((l&BN_MASK2h)>>BN_BITS4)))) break; q--; th-=dh; tl-=dl; } t=(tl>>BN_BITS4); tl=(tl<<BN_BITS4)&BN_MASK2h; th+=t; if (l < tl) th++; l-=tl; if (h < th) { h+=d; q--; } h-=th; if (--count == 0) break; ret=q<<BN_BITS4; h=((h<<BN_BITS4)|(l>>BN_BITS4))&BN_MASK2; l=(l&BN_MASK2l)<<BN_BITS4; } ret|=q; return(ret); } #endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */ #ifdef BN_LLONG BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) { BN_ULLONG ll=0; assert(n >= 0); if (n <= 0) return((BN_ULONG)0); #ifndef OPENSSL_SMALL_FOOTPRINT while (n&~3) { ll+=(BN_ULLONG)a[0]+b[0]; r[0]=(BN_ULONG)ll&BN_MASK2; ll>>=BN_BITS2; ll+=(BN_ULLONG)a[1]+b[1]; r[1]=(BN_ULONG)ll&BN_MASK2; ll>>=BN_BITS2; ll+=(BN_ULLONG)a[2]+b[2]; r[2]=(BN_ULONG)ll&BN_MASK2; ll>>=BN_BITS2; ll+=(BN_ULLONG)a[3]+b[3]; r[3]=(BN_ULONG)ll&BN_MASK2; ll>>=BN_BITS2; a+=4; b+=4; r+=4; n-=4; } #endif while (n) { ll+=(BN_ULLONG)a[0]+b[0]; r[0]=(BN_ULONG)ll&BN_MASK2; ll>>=BN_BITS2; a++; b++; r++; n--; } return((BN_ULONG)ll); } #else /* !BN_LLONG */ BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) { BN_ULONG c,l,t; assert(n >= 0); if (n <= 0) return((BN_ULONG)0); c=0; #ifndef OPENSSL_SMALL_FOOTPRINT while (n&~3) { t=a[0]; t=(t+c)&BN_MASK2; c=(t < c); l=(t+b[0])&BN_MASK2; c+=(l < t); r[0]=l; t=a[1]; t=(t+c)&BN_MASK2; c=(t < c); l=(t+b[1])&BN_MASK2; c+=(l < t); r[1]=l; t=a[2]; t=(t+c)&BN_MASK2; c=(t < c); l=(t+b[2])&BN_MASK2; c+=(l < t); r[2]=l; t=a[3]; t=(t+c)&BN_MASK2; c=(t < c); l=(t+b[3])&BN_MASK2; c+=(l < t); r[3]=l; a+=4; b+=4; r+=4; n-=4; } #endif while(n) { t=a[0]; t=(t+c)&BN_MASK2; c=(t < c); l=(t+b[0])&BN_MASK2; c+=(l < t); r[0]=l; a++; b++; r++; n--; } return((BN_ULONG)c); } #endif /* !BN_LLONG */ BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) { BN_ULONG t1,t2; int c=0; assert(n >= 0); if (n <= 0) return((BN_ULONG)0); #ifndef OPENSSL_SMALL_FOOTPRINT while (n&~3) { t1=a[0]; t2=b[0]; r[0]=(t1-t2-c)&BN_MASK2; if (t1 != t2) c=(t1 < t2); t1=a[1]; t2=b[1]; r[1]=(t1-t2-c)&BN_MASK2; if (t1 != t2) c=(t1 < t2); t1=a[2]; t2=b[2]; r[2]=(t1-t2-c)&BN_MASK2; if (t1 != t2) c=(t1 < t2); t1=a[3]; t2=b[3]; r[3]=(t1-t2-c)&BN_MASK2; if (t1 != t2) c=(t1 < t2); a+=4; b+=4; r+=4; n-=4; } #endif while (n) { t1=a[0]; t2=b[0]; r[0]=(t1-t2-c)&BN_MASK2; if (t1 != t2) c=(t1 < t2); a++; b++; r++; n--; } return(c); } #if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT) #undef bn_mul_comba8 #undef bn_mul_comba4 #undef bn_sqr_comba8 #undef bn_sqr_comba4 /* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */ /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */ /* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */ /* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */ #ifdef BN_LLONG #define mul_add_c(a,b,c0,c1,c2) \ t=(BN_ULLONG)a*b; \ t1=(BN_ULONG)Lw(t); \ t2=(BN_ULONG)Hw(t); \ c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \ c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; #define mul_add_c2(a,b,c0,c1,c2) \ t=(BN_ULLONG)a*b; \ tt=(t+t)&BN_MASK; \ if (tt < t) c2++; \ t1=(BN_ULONG)Lw(tt); \ t2=(BN_ULONG)Hw(tt); \ c0=(c0+t1)&BN_MASK2; \ if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \ c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; #define sqr_add_c(a,i,c0,c1,c2) \ t=(BN_ULLONG)a[i]*a[i]; \ t1=(BN_ULONG)Lw(t); \ t2=(BN_ULONG)Hw(t); \ c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \ c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; #define sqr_add_c2(a,i,j,c0,c1,c2) \ mul_add_c2((a)[i],(a)[j],c0,c1,c2) #elif defined(BN_UMULT_LOHI) #define mul_add_c(a,b,c0,c1,c2) { \ BN_ULONG ta=(a),tb=(b); \ BN_UMULT_LOHI(t1,t2,ta,tb); \ c0 += t1; t2 += (c0<t1)?1:0; \ c1 += t2; c2 += (c1<t2)?1:0; \ } #define mul_add_c2(a,b,c0,c1,c2) { \ BN_ULONG ta=(a),tb=(b),t0; \ BN_UMULT_LOHI(t0,t1,ta,tb); \ t2 = t1+t1; c2 += (t2<t1)?1:0; \ t1 = t0+t0; t2 += (t1<t0)?1:0; \ c0 += t1; t2 += (c0<t1)?1:0; \ c1 += t2; c2 += (c1<t2)?1:0; \ } #define sqr_add_c(a,i,c0,c1,c2) { \ BN_ULONG ta=(a)[i]; \ BN_UMULT_LOHI(t1,t2,ta,ta); \ c0 += t1; t2 += (c0<t1)?1:0; \ c1 += t2; c2 += (c1<t2)?1:0; \ } #define sqr_add_c2(a,i,j,c0,c1,c2) \ mul_add_c2((a)[i],(a)[j],c0,c1,c2) #elif defined(BN_UMULT_HIGH) #define mul_add_c(a,b,c0,c1,c2) { \ BN_ULONG ta=(a),tb=(b); \ t1 = ta * tb; \ t2 = BN_UMULT_HIGH(ta,tb); \ c0 += t1; t2 += (c0<t1)?1:0; \ c1 += t2; c2 += (c1<t2)?1:0; \ } #define mul_add_c2(a,b,c0,c1,c2) { \ BN_ULONG ta=(a),tb=(b),t0; \ t1 = BN_UMULT_HIGH(ta,tb); \ t0 = ta * tb; \ t2 = t1+t1; c2 += (t2<t1)?1:0; \ t1 = t0+t0; t2 += (t1<t0)?1:0; \ c0 += t1; t2 += (c0<t1)?1:0; \ c1 += t2; c2 += (c1<t2)?1:0; \ } #define sqr_add_c(a,i,c0,c1,c2) { \ BN_ULONG ta=(a)[i]; \ t1 = ta * ta; \ t2 = BN_UMULT_HIGH(ta,ta); \ c0 += t1; t2 += (c0<t1)?1:0; \ c1 += t2; c2 += (c1<t2)?1:0; \ } #define sqr_add_c2(a,i,j,c0,c1,c2) \ mul_add_c2((a)[i],(a)[j],c0,c1,c2) #else /* !BN_LLONG */ #define mul_add_c(a,b,c0,c1,c2) \ t1=LBITS(a); t2=HBITS(a); \ bl=LBITS(b); bh=HBITS(b); \ mul64(t1,t2,bl,bh); \ c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \ c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; #define mul_add_c2(a,b,c0,c1,c2) \ t1=LBITS(a); t2=HBITS(a); \ bl=LBITS(b); bh=HBITS(b); \ mul64(t1,t2,bl,bh); \ if (t2 & BN_TBIT) c2++; \ t2=(t2+t2)&BN_MASK2; \ if (t1 & BN_TBIT) t2++; \ t1=(t1+t1)&BN_MASK2; \ c0=(c0+t1)&BN_MASK2; \ if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \ c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; #define sqr_add_c(a,i,c0,c1,c2) \ sqr64(t1,t2,(a)[i]); \ c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \ c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; #define sqr_add_c2(a,i,j,c0,c1,c2) \ mul_add_c2((a)[i],(a)[j],c0,c1,c2) #endif /* !BN_LLONG */ void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) { #ifdef BN_LLONG BN_ULLONG t; #else BN_ULONG bl,bh; #endif BN_ULONG t1,t2; BN_ULONG c1,c2,c3; c1=0; c2=0; c3=0; mul_add_c(a[0],b[0],c1,c2,c3); r[0]=c1; c1=0; mul_add_c(a[0],b[1],c2,c3,c1); mul_add_c(a[1],b[0],c2,c3,c1); r[1]=c2; c2=0; mul_add_c(a[2],b[0],c3,c1,c2); mul_add_c(a[1],b[1],c3,c1,c2); mul_add_c(a[0],b[2],c3,c1,c2); r[2]=c3; c3=0; mul_add_c(a[0],b[3],c1,c2,c3); mul_add_c(a[1],b[2],c1,c2,c3); mul_add_c(a[2],b[1],c1,c2,c3); mul_add_c(a[3],b[0],c1,c2,c3); r[3]=c1; c1=0; mul_add_c(a[4],b[0],c2,c3,c1); mul_add_c(a[3],b[1],c2,c3,c1); mul_add_c(a[2],b[2],c2,c3,c1); mul_add_c(a[1],b[3],c2,c3,c1); mul_add_c(a[0],b[4],c2,c3,c1); r[4]=c2; c2=0; mul_add_c(a[0],b[5],c3,c1,c2); mul_add_c(a[1],b[4],c3,c1,c2); mul_add_c(a[2],b[3],c3,c1,c2); mul_add_c(a[3],b[2],c3,c1,c2); mul_add_c(a[4],b[1],c3,c1,c2); mul_add_c(a[5],b[0],c3,c1,c2); r[5]=c3; c3=0; mul_add_c(a[6],b[0],c1,c2,c3); mul_add_c(a[5],b[1],c1,c2,c3); mul_add_c(a[4],b[2],c1,c2,c3); mul_add_c(a[3],b[3],c1,c2,c3); mul_add_c(a[2],b[4],c1,c2,c3); mul_add_c(a[1],b[5],c1,c2,c3); mul_add_c(a[0],b[6],c1,c2,c3); r[6]=c1; c1=0; mul_add_c(a[0],b[7],c2,c3,c1); mul_add_c(a[1],b[6],c2,c3,c1); mul_add_c(a[2],b[5],c2,c3,c1); mul_add_c(a[3],b[4],c2,c3,c1); mul_add_c(a[4],b[3],c2,c3,c1); mul_add_c(a[5],b[2],c2,c3,c1); mul_add_c(a[6],b[1],c2,c3,c1); mul_add_c(a[7],b[0],c2,c3,c1); r[7]=c2; c2=0; mul_add_c(a[7],b[1],c3,c1,c2); mul_add_c(a[6],b[2],c3,c1,c2); mul_add_c(a[5],b[3],c3,c1,c2); mul_add_c(a[4],b[4],c3,c1,c2); mul_add_c(a[3],b[5],c3,c1,c2); mul_add_c(a[2],b[6],c3,c1,c2); mul_add_c(a[1],b[7],c3,c1,c2); r[8]=c3; c3=0; mul_add_c(a[2],b[7],c1,c2,c3); mul_add_c(a[3],b[6],c1,c2,c3); mul_add_c(a[4],b[5],c1,c2,c3); mul_add_c(a[5],b[4],c1,c2,c3); mul_add_c(a[6],b[3],c1,c2,c3); mul_add_c(a[7],b[2],c1,c2,c3); r[9]=c1; c1=0; mul_add_c(a[7],b[3],c2,c3,c1); mul_add_c(a[6],b[4],c2,c3,c1); mul_add_c(a[5],b[5],c2,c3,c1); mul_add_c(a[4],b[6],c2,c3,c1); mul_add_c(a[3],b[7],c2,c3,c1); r[10]=c2; c2=0; mul_add_c(a[4],b[7],c3,c1,c2); mul_add_c(a[5],b[6],c3,c1,c2); mul_add_c(a[6],b[5],c3,c1,c2); mul_add_c(a[7],b[4],c3,c1,c2); r[11]=c3; c3=0; mul_add_c(a[7],b[5],c1,c2,c3); mul_add_c(a[6],b[6],c1,c2,c3); mul_add_c(a[5],b[7],c1,c2,c3); r[12]=c1; c1=0; mul_add_c(a[6],b[7],c2,c3,c1); mul_add_c(a[7],b[6],c2,c3,c1); r[13]=c2; c2=0; mul_add_c(a[7],b[7],c3,c1,c2); r[14]=c3; r[15]=c1; } void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) { #ifdef BN_LLONG BN_ULLONG t; #else BN_ULONG bl,bh; #endif BN_ULONG t1,t2; BN_ULONG c1,c2,c3; c1=0; c2=0; c3=0; mul_add_c(a[0],b[0],c1,c2,c3); r[0]=c1; c1=0; mul_add_c(a[0],b[1],c2,c3,c1); mul_add_c(a[1],b[0],c2,c3,c1); r[1]=c2; c2=0; mul_add_c(a[2],b[0],c3,c1,c2); mul_add_c(a[1],b[1],c3,c1,c2); mul_add_c(a[0],b[2],c3,c1,c2); r[2]=c3; c3=0; mul_add_c(a[0],b[3],c1,c2,c3); mul_add_c(a[1],b[2],c1,c2,c3); mul_add_c(a[2],b[1],c1,c2,c3); mul_add_c(a[3],b[0],c1,c2,c3); r[3]=c1; c1=0; mul_add_c(a[3],b[1],c2,c3,c1); mul_add_c(a[2],b[2],c2,c3,c1); mul_add_c(a[1],b[3],c2,c3,c1); r[4]=c2; c2=0; mul_add_c(a[2],b[3],c3,c1,c2); mul_add_c(a[3],b[2],c3,c1,c2); r[5]=c3; c3=0; mul_add_c(a[3],b[3],c1,c2,c3); r[6]=c1; r[7]=c2; } void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) { #ifdef BN_LLONG BN_ULLONG t,tt; #else BN_ULONG bl,bh; #endif BN_ULONG t1,t2; BN_ULONG c1,c2,c3; c1=0; c2=0; c3=0; sqr_add_c(a,0,c1,c2,c3); r[0]=c1; c1=0; sqr_add_c2(a,1,0,c2,c3,c1); r[1]=c2; c2=0; sqr_add_c(a,1,c3,c1,c2); sqr_add_c2(a,2,0,c3,c1,c2); r[2]=c3; c3=0; sqr_add_c2(a,3,0,c1,c2,c3); sqr_add_c2(a,2,1,c1,c2,c3); r[3]=c1; c1=0; sqr_add_c(a,2,c2,c3,c1); sqr_add_c2(a,3,1,c2,c3,c1); sqr_add_c2(a,4,0,c2,c3,c1); r[4]=c2; c2=0; sqr_add_c2(a,5,0,c3,c1,c2); sqr_add_c2(a,4,1,c3,c1,c2); sqr_add_c2(a,3,2,c3,c1,c2); r[5]=c3; c3=0; sqr_add_c(a,3,c1,c2,c3); sqr_add_c2(a,4,2,c1,c2,c3); sqr_add_c2(a,5,1,c1,c2,c3); sqr_add_c2(a,6,0,c1,c2,c3); r[6]=c1; c1=0; sqr_add_c2(a,7,0,c2,c3,c1); sqr_add_c2(a,6,1,c2,c3,c1); sqr_add_c2(a,5,2,c2,c3,c1); sqr_add_c2(a,4,3,c2,c3,c1); r[7]=c2; c2=0; sqr_add_c(a,4,c3,c1,c2); sqr_add_c2(a,5,3,c3,c1,c2); sqr_add_c2(a,6,2,c3,c1,c2); sqr_add_c2(a,7,1,c3,c1,c2); r[8]=c3; c3=0; sqr_add_c2(a,7,2,c1,c2,c3); sqr_add_c2(a,6,3,c1,c2,c3); sqr_add_c2(a,5,4,c1,c2,c3); r[9]=c1; c1=0; sqr_add_c(a,5,c2,c3,c1); sqr_add_c2(a,6,4,c2,c3,c1); sqr_add_c2(a,7,3,c2,c3,c1); r[10]=c2; c2=0; sqr_add_c2(a,7,4,c3,c1,c2); sqr_add_c2(a,6,5,c3,c1,c2); r[11]=c3; c3=0; sqr_add_c(a,6,c1,c2,c3); sqr_add_c2(a,7,5,c1,c2,c3); r[12]=c1; c1=0; sqr_add_c2(a,7,6,c2,c3,c1); r[13]=c2; c2=0; sqr_add_c(a,7,c3,c1,c2); r[14]=c3; r[15]=c1; } void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) { #ifdef BN_LLONG BN_ULLONG t,tt; #else BN_ULONG bl,bh; #endif BN_ULONG t1,t2; BN_ULONG c1,c2,c3; c1=0; c2=0; c3=0; sqr_add_c(a,0,c1,c2,c3); r[0]=c1; c1=0; sqr_add_c2(a,1,0,c2,c3,c1); r[1]=c2; c2=0; sqr_add_c(a,1,c3,c1,c2); sqr_add_c2(a,2,0,c3,c1,c2); r[2]=c3; c3=0; sqr_add_c2(a,3,0,c1,c2,c3); sqr_add_c2(a,2,1,c1,c2,c3); r[3]=c1; c1=0; sqr_add_c(a,2,c2,c3,c1); sqr_add_c2(a,3,1,c2,c3,c1); r[4]=c2; c2=0; sqr_add_c2(a,3,2,c3,c1,c2); r[5]=c3; c3=0; sqr_add_c(a,3,c1,c2,c3); r[6]=c1; r[7]=c2; } #ifdef OPENSSL_NO_ASM #ifdef OPENSSL_BN_ASM_MONT #include <alloca.h> /* * This is essentially reference implementation, which may or may not * result in performance improvement. E.g. on IA-32 this routine was * observed to give 40% faster rsa1024 private key operations and 10% * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a * reference implementation, one to be used as starting point for * platform-specific assembler. Mentioned numbers apply to compiler * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and * can vary not only from platform to platform, but even for compiler * versions. Assembler vs. assembler improvement coefficients can * [and are known to] differ and are to be documented elsewhere. */ int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num) { BN_ULONG c0,c1,ml,*tp,n0; #ifdef mul64 BN_ULONG mh; #endif volatile BN_ULONG *vp; int i=0,j; #if 0 /* template for platform-specific implementation */ if (ap==bp) return bn_sqr_mont(rp,ap,np,n0p,num); #endif vp = tp = alloca((num+2)*sizeof(BN_ULONG)); n0 = *n0p; c0 = 0; ml = bp[0]; #ifdef mul64 mh = HBITS(ml); ml = LBITS(ml); for (j=0;j<num;++j) mul(tp[j],ap[j],ml,mh,c0); #else for (j=0;j<num;++j) mul(tp[j],ap[j],ml,c0); #endif tp[num] = c0; tp[num+1] = 0; goto enter; for(i=0;i<num;i++) { c0 = 0; ml = bp[i]; #ifdef mul64 mh = HBITS(ml); ml = LBITS(ml); for (j=0;j<num;++j) mul_add(tp[j],ap[j],ml,mh,c0); #else for (j=0;j<num;++j) mul_add(tp[j],ap[j],ml,c0); #endif c1 = (tp[num] + c0)&BN_MASK2; tp[num] = c1; tp[num+1] = (c1<c0?1:0); enter: c1 = tp[0]; ml = (c1*n0)&BN_MASK2; c0 = 0; #ifdef mul64 mh = HBITS(ml); ml = LBITS(ml); mul_add(c1,np[0],ml,mh,c0); #else mul_add(c1,ml,np[0],c0); #endif for(j=1;j<num;j++) { c1 = tp[j]; #ifdef mul64 mul_add(c1,np[j],ml,mh,c0); #else mul_add(c1,ml,np[j],c0); #endif tp[j-1] = c1&BN_MASK2; } c1 = (tp[num] + c0)&BN_MASK2; tp[num-1] = c1; tp[num] = tp[num+1] + (c1<c0?1:0); } if (tp[num]!=0 || tp[num-1]>=np[num-1]) { c0 = bn_sub_words(rp,tp,np,num); if (tp[num]!=0 || c0==0) { for(i=0;i<num+2;i++) vp[i] = 0; return 1; } } for(i=0;i<num;i++) rp[i] = tp[i], vp[i] = 0; vp[num] = 0; vp[num+1] = 0; return 1; } #else /* * Return value of 0 indicates that multiplication/convolution was not * performed to signal the caller to fall down to alternative/original * code-path. */ int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num) { return 0; } #endif /* OPENSSL_BN_ASM_MONT */ #endif #else /* !BN_MUL_COMBA */ /* hmm... is it faster just to do a multiply? */ #undef bn_sqr_comba4 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) { BN_ULONG t[8]; bn_sqr_normal(r,a,4,t); } #undef bn_sqr_comba8 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) { BN_ULONG t[16]; bn_sqr_normal(r,a,8,t); } void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) { r[4]=bn_mul_words( &(r[0]),a,4,b[0]); r[5]=bn_mul_add_words(&(r[1]),a,4,b[1]); r[6]=bn_mul_add_words(&(r[2]),a,4,b[2]); r[7]=bn_mul_add_words(&(r[3]),a,4,b[3]); } void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) { r[ 8]=bn_mul_words( &(r[0]),a,8,b[0]); r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]); r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]); r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]); r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]); r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]); r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]); r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]); } #ifdef OPENSSL_NO_ASM #ifdef OPENSSL_BN_ASM_MONT #include <alloca.h> int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num) { BN_ULONG c0,c1,*tp,n0=*n0p; volatile BN_ULONG *vp; int i=0,j; vp = tp = alloca((num+2)*sizeof(BN_ULONG)); for(i=0;i<=num;i++) tp[i]=0; for(i=0;i<num;i++) { c0 = bn_mul_add_words(tp,ap,num,bp[i]); c1 = (tp[num] + c0)&BN_MASK2; tp[num] = c1; tp[num+1] = (c1<c0?1:0); c0 = bn_mul_add_words(tp,np,num,tp[0]*n0); c1 = (tp[num] + c0)&BN_MASK2; tp[num] = c1; tp[num+1] += (c1<c0?1:0); for(j=0;j<=num;j++) tp[j]=tp[j+1]; } if (tp[num]!=0 || tp[num-1]>=np[num-1]) { c0 = bn_sub_words(rp,tp,np,num); if (tp[num]!=0 || c0==0) { for(i=0;i<num+2;i++) vp[i] = 0; return 1; } } for(i=0;i<num;i++) rp[i] = tp[i], vp[i] = 0; vp[num] = 0; vp[num+1] = 0; return 1; } #else int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num) { return 0; } #endif /* OPENSSL_BN_ASM_MONT */ #endif #endif /* !BN_MUL_COMBA */