//===- InstCombineCalls.cpp -----------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the visitCall and visitInvoke functions. // //===----------------------------------------------------------------------===// #include "InstCombine.h" #include "llvm/IntrinsicInst.h" #include "llvm/Support/CallSite.h" #include "llvm/Target/TargetData.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/Transforms/Utils/BuildLibCalls.h" #include "llvm/Transforms/Utils/Local.h" using namespace llvm; /// getPromotedType - Return the specified type promoted as it would be to pass /// though a va_arg area. static Type *getPromotedType(Type *Ty) { if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) { if (ITy->getBitWidth() < 32) return Type::getInt32Ty(Ty->getContext()); } return Ty; } Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) { unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), TD); unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), TD); unsigned MinAlign = std::min(DstAlign, SrcAlign); unsigned CopyAlign = MI->getAlignment(); if (CopyAlign < MinAlign) { MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), MinAlign, false)); return MI; } // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with // load/store. ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2)); if (MemOpLength == 0) return 0; // Source and destination pointer types are always "i8*" for intrinsic. See // if the size is something we can handle with a single primitive load/store. // A single load+store correctly handles overlapping memory in the memmove // case. unsigned Size = MemOpLength->getZExtValue(); if (Size == 0) return MI; // Delete this mem transfer. if (Size > 8 || (Size&(Size-1))) return 0; // If not 1/2/4/8 bytes, exit. // Use an integer load+store unless we can find something better. unsigned SrcAddrSp = cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace(); unsigned DstAddrSp = cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace(); IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3); Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp); Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp); // Memcpy forces the use of i8* for the source and destination. That means // that if you're using memcpy to move one double around, you'll get a cast // from double* to i8*. We'd much rather use a double load+store rather than // an i64 load+store, here because this improves the odds that the source or // dest address will be promotable. See if we can find a better type than the // integer datatype. Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts(); if (StrippedDest != MI->getArgOperand(0)) { Type *SrcETy = cast<PointerType>(StrippedDest->getType()) ->getElementType(); if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) { // The SrcETy might be something like {{{double}}} or [1 x double]. Rip // down through these levels if so. while (!SrcETy->isSingleValueType()) { if (StructType *STy = dyn_cast<StructType>(SrcETy)) { if (STy->getNumElements() == 1) SrcETy = STy->getElementType(0); else break; } else if (ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) { if (ATy->getNumElements() == 1) SrcETy = ATy->getElementType(); else break; } else break; } if (SrcETy->isSingleValueType()) { NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp); NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp); } } } // If the memcpy/memmove provides better alignment info than we can // infer, use it. SrcAlign = std::max(SrcAlign, CopyAlign); DstAlign = std::max(DstAlign, CopyAlign); Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy); Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy); LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile()); L->setAlignment(SrcAlign); StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile()); S->setAlignment(DstAlign); // Set the size of the copy to 0, it will be deleted on the next iteration. MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType())); return MI; } Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) { unsigned Alignment = getKnownAlignment(MI->getDest(), TD); if (MI->getAlignment() < Alignment) { MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Alignment, false)); return MI; } // Extract the length and alignment and fill if they are constant. ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength()); ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue()); if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8)) return 0; uint64_t Len = LenC->getZExtValue(); Alignment = MI->getAlignment(); // If the length is zero, this is a no-op if (Len == 0) return MI; // memset(d,c,0,a) -> noop // memset(s,c,n) -> store s, c (for n=1,2,4,8) if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) { Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8. Value *Dest = MI->getDest(); unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace(); Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp); Dest = Builder->CreateBitCast(Dest, NewDstPtrTy); // Alignment 0 is identity for alignment 1 for memset, but not store. if (Alignment == 0) Alignment = 1; // Extract the fill value and store. uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL; StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest, MI->isVolatile()); S->setAlignment(Alignment); // Set the size of the copy to 0, it will be deleted on the next iteration. MI->setLength(Constant::getNullValue(LenC->getType())); return MI; } return 0; } /// visitCallInst - CallInst simplification. This mostly only handles folding /// of intrinsic instructions. For normal calls, it allows visitCallSite to do /// the heavy lifting. /// Instruction *InstCombiner::visitCallInst(CallInst &CI) { if (isFreeCall(&CI)) return visitFree(CI); if (isMalloc(&CI)) return visitMalloc(CI); // If the caller function is nounwind, mark the call as nounwind, even if the // callee isn't. if (CI.getParent()->getParent()->doesNotThrow() && !CI.doesNotThrow()) { CI.setDoesNotThrow(); return &CI; } IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI); if (!II) return visitCallSite(&CI); // Intrinsics cannot occur in an invoke, so handle them here instead of in // visitCallSite. if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) { bool Changed = false; // memmove/cpy/set of zero bytes is a noop. if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) { if (NumBytes->isNullValue()) return EraseInstFromFunction(CI); if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) if (CI->getZExtValue() == 1) { // Replace the instruction with just byte operations. We would // transform other cases to loads/stores, but we don't know if // alignment is sufficient. } } // No other transformations apply to volatile transfers. if (MI->isVolatile()) return 0; // If we have a memmove and the source operation is a constant global, // then the source and dest pointers can't alias, so we can change this // into a call to memcpy. if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) { if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource())) if (GVSrc->isConstant()) { Module *M = CI.getParent()->getParent()->getParent(); Intrinsic::ID MemCpyID = Intrinsic::memcpy; Type *Tys[3] = { CI.getArgOperand(0)->getType(), CI.getArgOperand(1)->getType(), CI.getArgOperand(2)->getType() }; CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys)); Changed = true; } } if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove(x,x,size) -> noop. if (MTI->getSource() == MTI->getDest()) return EraseInstFromFunction(CI); } // If we can determine a pointer alignment that is bigger than currently // set, update the alignment. if (isa<MemTransferInst>(MI)) { if (Instruction *I = SimplifyMemTransfer(MI)) return I; } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) { if (Instruction *I = SimplifyMemSet(MSI)) return I; } if (Changed) return II; } switch (II->getIntrinsicID()) { default: break; case Intrinsic::objectsize: { // We need target data for just about everything so depend on it. if (!TD) break; Type *ReturnTy = CI.getType(); uint64_t DontKnow = II->getArgOperand(1) == Builder->getTrue() ? 0 : -1ULL; // Get to the real allocated thing and offset as fast as possible. Value *Op1 = II->getArgOperand(0)->stripPointerCasts(); uint64_t Offset = 0; uint64_t Size = -1ULL; // Try to look through constant GEPs. if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) { if (!GEP->hasAllConstantIndices()) break; // Get the current byte offset into the thing. Use the original // operand in case we're looking through a bitcast. SmallVector<Value*, 8> Ops(GEP->idx_begin(), GEP->idx_end()); Offset = TD->getIndexedOffset(GEP->getPointerOperandType(), Ops); Op1 = GEP->getPointerOperand()->stripPointerCasts(); // Make sure we're not a constant offset from an external // global. if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1)) if (!GV->hasDefinitiveInitializer()) break; } // If we've stripped down to a single global variable that we // can know the size of then just return that. if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1)) { if (GV->hasDefinitiveInitializer()) { Constant *C = GV->getInitializer(); Size = TD->getTypeAllocSize(C->getType()); } else { // Can't determine size of the GV. Constant *RetVal = ConstantInt::get(ReturnTy, DontKnow); return ReplaceInstUsesWith(CI, RetVal); } } else if (AllocaInst *AI = dyn_cast<AllocaInst>(Op1)) { // Get alloca size. if (AI->getAllocatedType()->isSized()) { Size = TD->getTypeAllocSize(AI->getAllocatedType()); if (AI->isArrayAllocation()) { const ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize()); if (!C) break; Size *= C->getZExtValue(); } } } else if (CallInst *MI = extractMallocCall(Op1)) { // Get allocation size. Type* MallocType = getMallocAllocatedType(MI); if (MallocType && MallocType->isSized()) if (Value *NElems = getMallocArraySize(MI, TD, true)) if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) Size = NElements->getZExtValue() * TD->getTypeAllocSize(MallocType); } // Do not return "I don't know" here. Later optimization passes could // make it possible to evaluate objectsize to a constant. if (Size == -1ULL) break; if (Size < Offset) { // Out of bound reference? Negative index normalized to large // index? Just return "I don't know". return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, DontKnow)); } return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, Size-Offset)); } case Intrinsic::bswap: // bswap(bswap(x)) -> x if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) if (Operand->getIntrinsicID() == Intrinsic::bswap) return ReplaceInstUsesWith(CI, Operand->getArgOperand(0)); // bswap(trunc(bswap(x))) -> trunc(lshr(x, c)) if (TruncInst *TI = dyn_cast<TruncInst>(II->getArgOperand(0))) { if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0))) if (Operand->getIntrinsicID() == Intrinsic::bswap) { unsigned C = Operand->getType()->getPrimitiveSizeInBits() - TI->getType()->getPrimitiveSizeInBits(); Value *CV = ConstantInt::get(Operand->getType(), C); Value *V = Builder->CreateLShr(Operand->getArgOperand(0), CV); return new TruncInst(V, TI->getType()); } } break; case Intrinsic::powi: if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) { // powi(x, 0) -> 1.0 if (Power->isZero()) return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0)); // powi(x, 1) -> x if (Power->isOne()) return ReplaceInstUsesWith(CI, II->getArgOperand(0)); // powi(x, -1) -> 1/x if (Power->isAllOnesValue()) return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0), II->getArgOperand(0)); } break; case Intrinsic::cttz: { // If all bits below the first known one are known zero, // this value is constant. IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType()); // FIXME: Try to simplify vectors of integers. if (!IT) break; uint32_t BitWidth = IT->getBitWidth(); APInt KnownZero(BitWidth, 0); APInt KnownOne(BitWidth, 0); ComputeMaskedBits(II->getArgOperand(0), APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne); unsigned TrailingZeros = KnownOne.countTrailingZeros(); APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros)); if ((Mask & KnownZero) == Mask) return ReplaceInstUsesWith(CI, ConstantInt::get(IT, APInt(BitWidth, TrailingZeros))); } break; case Intrinsic::ctlz: { // If all bits above the first known one are known zero, // this value is constant. IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType()); // FIXME: Try to simplify vectors of integers. if (!IT) break; uint32_t BitWidth = IT->getBitWidth(); APInt KnownZero(BitWidth, 0); APInt KnownOne(BitWidth, 0); ComputeMaskedBits(II->getArgOperand(0), APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne); unsigned LeadingZeros = KnownOne.countLeadingZeros(); APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros)); if ((Mask & KnownZero) == Mask) return ReplaceInstUsesWith(CI, ConstantInt::get(IT, APInt(BitWidth, LeadingZeros))); } break; case Intrinsic::uadd_with_overflow: { Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType()); uint32_t BitWidth = IT->getBitWidth(); APInt Mask = APInt::getSignBit(BitWidth); APInt LHSKnownZero(BitWidth, 0); APInt LHSKnownOne(BitWidth, 0); ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne); bool LHSKnownNegative = LHSKnownOne[BitWidth - 1]; bool LHSKnownPositive = LHSKnownZero[BitWidth - 1]; if (LHSKnownNegative || LHSKnownPositive) { APInt RHSKnownZero(BitWidth, 0); APInt RHSKnownOne(BitWidth, 0); ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne); bool RHSKnownNegative = RHSKnownOne[BitWidth - 1]; bool RHSKnownPositive = RHSKnownZero[BitWidth - 1]; if (LHSKnownNegative && RHSKnownNegative) { // The sign bit is set in both cases: this MUST overflow. // Create a simple add instruction, and insert it into the struct. Value *Add = Builder->CreateAdd(LHS, RHS); Add->takeName(&CI); Constant *V[] = { UndefValue::get(LHS->getType()), ConstantInt::getTrue(II->getContext()) }; StructType *ST = cast<StructType>(II->getType()); Constant *Struct = ConstantStruct::get(ST, V); return InsertValueInst::Create(Struct, Add, 0); } if (LHSKnownPositive && RHSKnownPositive) { // The sign bit is clear in both cases: this CANNOT overflow. // Create a simple add instruction, and insert it into the struct. Value *Add = Builder->CreateNUWAdd(LHS, RHS); Add->takeName(&CI); Constant *V[] = { UndefValue::get(LHS->getType()), ConstantInt::getFalse(II->getContext()) }; StructType *ST = cast<StructType>(II->getType()); Constant *Struct = ConstantStruct::get(ST, V); return InsertValueInst::Create(Struct, Add, 0); } } } // FALL THROUGH uadd into sadd case Intrinsic::sadd_with_overflow: // Canonicalize constants into the RHS. if (isa<Constant>(II->getArgOperand(0)) && !isa<Constant>(II->getArgOperand(1))) { Value *LHS = II->getArgOperand(0); II->setArgOperand(0, II->getArgOperand(1)); II->setArgOperand(1, LHS); return II; } // X + undef -> undef if (isa<UndefValue>(II->getArgOperand(1))) return ReplaceInstUsesWith(CI, UndefValue::get(II->getType())); if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) { // X + 0 -> {X, false} if (RHS->isZero()) { Constant *V[] = { UndefValue::get(II->getArgOperand(0)->getType()), ConstantInt::getFalse(II->getContext()) }; Constant *Struct = ConstantStruct::get(cast<StructType>(II->getType()), V); return InsertValueInst::Create(Struct, II->getArgOperand(0), 0); } } break; case Intrinsic::usub_with_overflow: case Intrinsic::ssub_with_overflow: // undef - X -> undef // X - undef -> undef if (isa<UndefValue>(II->getArgOperand(0)) || isa<UndefValue>(II->getArgOperand(1))) return ReplaceInstUsesWith(CI, UndefValue::get(II->getType())); if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) { // X - 0 -> {X, false} if (RHS->isZero()) { Constant *V[] = { UndefValue::get(II->getArgOperand(0)->getType()), ConstantInt::getFalse(II->getContext()) }; Constant *Struct = ConstantStruct::get(cast<StructType>(II->getType()), V); return InsertValueInst::Create(Struct, II->getArgOperand(0), 0); } } break; case Intrinsic::umul_with_overflow: { Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); unsigned BitWidth = cast<IntegerType>(LHS->getType())->getBitWidth(); APInt Mask = APInt::getAllOnesValue(BitWidth); APInt LHSKnownZero(BitWidth, 0); APInt LHSKnownOne(BitWidth, 0); ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne); APInt RHSKnownZero(BitWidth, 0); APInt RHSKnownOne(BitWidth, 0); ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne); // Get the largest possible values for each operand. APInt LHSMax = ~LHSKnownZero; APInt RHSMax = ~RHSKnownZero; // If multiplying the maximum values does not overflow then we can turn // this into a plain NUW mul. bool Overflow; LHSMax.umul_ov(RHSMax, Overflow); if (!Overflow) { Value *Mul = Builder->CreateNUWMul(LHS, RHS, "umul_with_overflow"); Constant *V[] = { UndefValue::get(LHS->getType()), Builder->getFalse() }; Constant *Struct = ConstantStruct::get(cast<StructType>(II->getType()),V); return InsertValueInst::Create(Struct, Mul, 0); } } // FALL THROUGH case Intrinsic::smul_with_overflow: // Canonicalize constants into the RHS. if (isa<Constant>(II->getArgOperand(0)) && !isa<Constant>(II->getArgOperand(1))) { Value *LHS = II->getArgOperand(0); II->setArgOperand(0, II->getArgOperand(1)); II->setArgOperand(1, LHS); return II; } // X * undef -> undef if (isa<UndefValue>(II->getArgOperand(1))) return ReplaceInstUsesWith(CI, UndefValue::get(II->getType())); if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getArgOperand(1))) { // X*0 -> {0, false} if (RHSI->isZero()) return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType())); // X * 1 -> {X, false} if (RHSI->equalsInt(1)) { Constant *V[] = { UndefValue::get(II->getArgOperand(0)->getType()), ConstantInt::getFalse(II->getContext()) }; Constant *Struct = ConstantStruct::get(cast<StructType>(II->getType()), V); return InsertValueInst::Create(Struct, II->getArgOperand(0), 0); } } break; case Intrinsic::ppc_altivec_lvx: case Intrinsic::ppc_altivec_lvxl: // Turn PPC lvx -> load if the pointer is known aligned. if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) { Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), PointerType::getUnqual(II->getType())); return new LoadInst(Ptr); } break; case Intrinsic::ppc_altivec_stvx: case Intrinsic::ppc_altivec_stvxl: // Turn stvx -> store if the pointer is known aligned. if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, TD) >= 16) { Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType()); Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy); return new StoreInst(II->getArgOperand(0), Ptr); } break; case Intrinsic::x86_sse_storeu_ps: case Intrinsic::x86_sse2_storeu_pd: case Intrinsic::x86_sse2_storeu_dq: // Turn X86 storeu -> store if the pointer is known aligned. if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) { Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(1)->getType()); Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy); return new StoreInst(II->getArgOperand(1), Ptr); } break; case Intrinsic::x86_sse_cvtss2si: case Intrinsic::x86_sse_cvtss2si64: case Intrinsic::x86_sse_cvttss2si: case Intrinsic::x86_sse_cvttss2si64: case Intrinsic::x86_sse2_cvtsd2si: case Intrinsic::x86_sse2_cvtsd2si64: case Intrinsic::x86_sse2_cvttsd2si: case Intrinsic::x86_sse2_cvttsd2si64: { // These intrinsics only demand the 0th element of their input vectors. If // we can simplify the input based on that, do so now. unsigned VWidth = cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements(); APInt DemandedElts(VWidth, 1); APInt UndefElts(VWidth, 0); if (Value *V = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, UndefElts)) { II->setArgOperand(0, V); return II; } break; } case Intrinsic::x86_sse41_pmovsxbw: case Intrinsic::x86_sse41_pmovsxwd: case Intrinsic::x86_sse41_pmovsxdq: case Intrinsic::x86_sse41_pmovzxbw: case Intrinsic::x86_sse41_pmovzxwd: case Intrinsic::x86_sse41_pmovzxdq: { // pmov{s|z}x ignores the upper half of their input vectors. unsigned VWidth = cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements(); unsigned LowHalfElts = VWidth / 2; APInt InputDemandedElts(APInt::getBitsSet(VWidth, 0, LowHalfElts)); APInt UndefElts(VWidth, 0); if (Value *TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), InputDemandedElts, UndefElts)) { II->setArgOperand(0, TmpV); return II; } break; } case Intrinsic::ppc_altivec_vperm: // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant. if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getArgOperand(2))) { assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!"); // Check that all of the elements are integer constants or undefs. bool AllEltsOk = true; for (unsigned i = 0; i != 16; ++i) { if (!isa<ConstantInt>(Mask->getOperand(i)) && !isa<UndefValue>(Mask->getOperand(i))) { AllEltsOk = false; break; } } if (AllEltsOk) { // Cast the input vectors to byte vectors. Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0), Mask->getType()); Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1), Mask->getType()); Value *Result = UndefValue::get(Op0->getType()); // Only extract each element once. Value *ExtractedElts[32]; memset(ExtractedElts, 0, sizeof(ExtractedElts)); for (unsigned i = 0; i != 16; ++i) { if (isa<UndefValue>(Mask->getOperand(i))) continue; unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue(); Idx &= 31; // Match the hardware behavior. if (ExtractedElts[Idx] == 0) { ExtractedElts[Idx] = Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1, ConstantInt::get(Type::getInt32Ty(II->getContext()), Idx&15, false), "tmp"); } // Insert this value into the result vector. Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx], ConstantInt::get(Type::getInt32Ty(II->getContext()), i, false), "tmp"); } return CastInst::Create(Instruction::BitCast, Result, CI.getType()); } } break; case Intrinsic::arm_neon_vld1: case Intrinsic::arm_neon_vld2: case Intrinsic::arm_neon_vld3: case Intrinsic::arm_neon_vld4: case Intrinsic::arm_neon_vld2lane: case Intrinsic::arm_neon_vld3lane: case Intrinsic::arm_neon_vld4lane: case Intrinsic::arm_neon_vst1: case Intrinsic::arm_neon_vst2: case Intrinsic::arm_neon_vst3: case Intrinsic::arm_neon_vst4: case Intrinsic::arm_neon_vst2lane: case Intrinsic::arm_neon_vst3lane: case Intrinsic::arm_neon_vst4lane: { unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), TD); unsigned AlignArg = II->getNumArgOperands() - 1; ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg)); if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) { II->setArgOperand(AlignArg, ConstantInt::get(Type::getInt32Ty(II->getContext()), MemAlign, false)); return II; } break; } case Intrinsic::stackrestore: { // If the save is right next to the restore, remove the restore. This can // happen when variable allocas are DCE'd. if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) { if (SS->getIntrinsicID() == Intrinsic::stacksave) { BasicBlock::iterator BI = SS; if (&*++BI == II) return EraseInstFromFunction(CI); } } // Scan down this block to see if there is another stack restore in the // same block without an intervening call/alloca. BasicBlock::iterator BI = II; TerminatorInst *TI = II->getParent()->getTerminator(); bool CannotRemove = false; for (++BI; &*BI != TI; ++BI) { if (isa<AllocaInst>(BI) || isMalloc(BI)) { CannotRemove = true; break; } if (CallInst *BCI = dyn_cast<CallInst>(BI)) { if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) { // If there is a stackrestore below this one, remove this one. if (II->getIntrinsicID() == Intrinsic::stackrestore) return EraseInstFromFunction(CI); // Otherwise, ignore the intrinsic. } else { // If we found a non-intrinsic call, we can't remove the stack // restore. CannotRemove = true; break; } } } // If the stack restore is in a return/unwind block and if there are no // allocas or calls between the restore and the return, nuke the restore. if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI))) return EraseInstFromFunction(CI); break; } } return visitCallSite(II); } // InvokeInst simplification // Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) { return visitCallSite(&II); } /// isSafeToEliminateVarargsCast - If this cast does not affect the value /// passed through the varargs area, we can eliminate the use of the cast. static bool isSafeToEliminateVarargsCast(const CallSite CS, const CastInst * const CI, const TargetData * const TD, const int ix) { if (!CI->isLosslessCast()) return false; // The size of ByVal arguments is derived from the type, so we // can't change to a type with a different size. If the size were // passed explicitly we could avoid this check. if (!CS.paramHasAttr(ix, Attribute::ByVal)) return true; Type* SrcTy = cast<PointerType>(CI->getOperand(0)->getType())->getElementType(); Type* DstTy = cast<PointerType>(CI->getType())->getElementType(); if (!SrcTy->isSized() || !DstTy->isSized()) return false; if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy)) return false; return true; } namespace { class InstCombineFortifiedLibCalls : public SimplifyFortifiedLibCalls { InstCombiner *IC; protected: void replaceCall(Value *With) { NewInstruction = IC->ReplaceInstUsesWith(*CI, With); } bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const { if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp)) return true; if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) { if (SizeCI->isAllOnesValue()) return true; if (isString) { uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp)); // If the length is 0 we don't know how long it is and so we can't // remove the check. if (Len == 0) return false; return SizeCI->getZExtValue() >= Len; } if (ConstantInt *Arg = dyn_cast<ConstantInt>( CI->getArgOperand(SizeArgOp))) return SizeCI->getZExtValue() >= Arg->getZExtValue(); } return false; } public: InstCombineFortifiedLibCalls(InstCombiner *IC) : IC(IC), NewInstruction(0) { } Instruction *NewInstruction; }; } // end anonymous namespace // Try to fold some different type of calls here. // Currently we're only working with the checking functions, memcpy_chk, // mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk, // strcat_chk and strncat_chk. Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const TargetData *TD) { if (CI->getCalledFunction() == 0) return 0; InstCombineFortifiedLibCalls Simplifier(this); Simplifier.fold(CI, TD); return Simplifier.NewInstruction; } // visitCallSite - Improvements for call and invoke instructions. // Instruction *InstCombiner::visitCallSite(CallSite CS) { bool Changed = false; // If the callee is a pointer to a function, attempt to move any casts to the // arguments of the call/invoke. Value *Callee = CS.getCalledValue(); if (!isa<Function>(Callee) && transformConstExprCastCall(CS)) return 0; if (Function *CalleeF = dyn_cast<Function>(Callee)) // If the call and callee calling conventions don't match, this call must // be unreachable, as the call is undefined. if (CalleeF->getCallingConv() != CS.getCallingConv() && // Only do this for calls to a function with a body. A prototype may // not actually end up matching the implementation's calling conv for a // variety of reasons (e.g. it may be written in assembly). !CalleeF->isDeclaration()) { Instruction *OldCall = CS.getInstruction(); new StoreInst(ConstantInt::getTrue(Callee->getContext()), UndefValue::get(Type::getInt1PtrTy(Callee->getContext())), OldCall); // If OldCall dues not return void then replaceAllUsesWith undef. // This allows ValueHandlers and custom metadata to adjust itself. if (!OldCall->getType()->isVoidTy()) ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType())); if (isa<CallInst>(OldCall)) return EraseInstFromFunction(*OldCall); // We cannot remove an invoke, because it would change the CFG, just // change the callee to a null pointer. cast<InvokeInst>(OldCall)->setCalledFunction( Constant::getNullValue(CalleeF->getType())); return 0; } if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { // This instruction is not reachable, just remove it. We insert a store to // undef so that we know that this code is not reachable, despite the fact // that we can't modify the CFG here. new StoreInst(ConstantInt::getTrue(Callee->getContext()), UndefValue::get(Type::getInt1PtrTy(Callee->getContext())), CS.getInstruction()); // If CS does not return void then replaceAllUsesWith undef. // This allows ValueHandlers and custom metadata to adjust itself. if (!CS.getInstruction()->getType()->isVoidTy()) ReplaceInstUsesWith(*CS.getInstruction(), UndefValue::get(CS.getInstruction()->getType())); if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { // Don't break the CFG, insert a dummy cond branch. BranchInst::Create(II->getNormalDest(), II->getUnwindDest(), ConstantInt::getTrue(Callee->getContext()), II); } return EraseInstFromFunction(*CS.getInstruction()); } if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee)) if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0))) if (In->getIntrinsicID() == Intrinsic::init_trampoline) return transformCallThroughTrampoline(CS); PointerType *PTy = cast<PointerType>(Callee->getType()); FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); if (FTy->isVarArg()) { int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1); // See if we can optimize any arguments passed through the varargs area of // the call. for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(), E = CS.arg_end(); I != E; ++I, ++ix) { CastInst *CI = dyn_cast<CastInst>(*I); if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) { *I = CI->getOperand(0); Changed = true; } } } if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) { // Inline asm calls cannot throw - mark them 'nounwind'. CS.setDoesNotThrow(); Changed = true; } // Try to optimize the call if possible, we require TargetData for most of // this. None of these calls are seen as possibly dead so go ahead and // delete the instruction now. if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) { Instruction *I = tryOptimizeCall(CI, TD); // If we changed something return the result, etc. Otherwise let // the fallthrough check. if (I) return EraseInstFromFunction(*I); } return Changed ? CS.getInstruction() : 0; } // transformConstExprCastCall - If the callee is a constexpr cast of a function, // attempt to move the cast to the arguments of the call/invoke. // bool InstCombiner::transformConstExprCastCall(CallSite CS) { Function *Callee = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts()); if (Callee == 0) return false; Instruction *Caller = CS.getInstruction(); const AttrListPtr &CallerPAL = CS.getAttributes(); // Okay, this is a cast from a function to a different type. Unless doing so // would cause a type conversion of one of our arguments, change this call to // be a direct call with arguments casted to the appropriate types. // FunctionType *FT = Callee->getFunctionType(); Type *OldRetTy = Caller->getType(); Type *NewRetTy = FT->getReturnType(); if (NewRetTy->isStructTy()) return false; // TODO: Handle multiple return values. // Check to see if we are changing the return type... if (OldRetTy != NewRetTy) { if (Callee->isDeclaration() && // Conversion is ok if changing from one pointer type to another or from // a pointer to an integer of the same size. !((OldRetTy->isPointerTy() || !TD || OldRetTy == TD->getIntPtrType(Caller->getContext())) && (NewRetTy->isPointerTy() || !TD || NewRetTy == TD->getIntPtrType(Caller->getContext())))) return false; // Cannot transform this return value. if (!Caller->use_empty() && // void -> non-void is handled specially !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy)) return false; // Cannot transform this return value. if (!CallerPAL.isEmpty() && !Caller->use_empty()) { Attributes RAttrs = CallerPAL.getRetAttributes(); if (RAttrs & Attribute::typeIncompatible(NewRetTy)) return false; // Attribute not compatible with transformed value. } // If the callsite is an invoke instruction, and the return value is used by // a PHI node in a successor, we cannot change the return type of the call // because there is no place to put the cast instruction (without breaking // the critical edge). Bail out in this case. if (!Caller->use_empty()) if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) for (Value::use_iterator UI = II->use_begin(), E = II->use_end(); UI != E; ++UI) if (PHINode *PN = dyn_cast<PHINode>(*UI)) if (PN->getParent() == II->getNormalDest() || PN->getParent() == II->getUnwindDest()) return false; } unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin()); unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); CallSite::arg_iterator AI = CS.arg_begin(); for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { Type *ParamTy = FT->getParamType(i); Type *ActTy = (*AI)->getType(); if (!CastInst::isCastable(ActTy, ParamTy)) return false; // Cannot transform this parameter value. unsigned Attrs = CallerPAL.getParamAttributes(i + 1); if (Attrs & Attribute::typeIncompatible(ParamTy)) return false; // Attribute not compatible with transformed value. // If the parameter is passed as a byval argument, then we have to have a // sized type and the sized type has to have the same size as the old type. if (ParamTy != ActTy && (Attrs & Attribute::ByVal)) { PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy); if (ParamPTy == 0 || !ParamPTy->getElementType()->isSized() || TD == 0) return false; Type *CurElTy = cast<PointerType>(ActTy)->getElementType(); if (TD->getTypeAllocSize(CurElTy) != TD->getTypeAllocSize(ParamPTy->getElementType())) return false; } // Converting from one pointer type to another or between a pointer and an // integer of the same size is safe even if we do not have a body. bool isConvertible = ActTy == ParamTy || (TD && ((ParamTy->isPointerTy() || ParamTy == TD->getIntPtrType(Caller->getContext())) && (ActTy->isPointerTy() || ActTy == TD->getIntPtrType(Caller->getContext())))); if (Callee->isDeclaration() && !isConvertible) return false; } if (Callee->isDeclaration()) { // Do not delete arguments unless we have a function body. if (FT->getNumParams() < NumActualArgs && !FT->isVarArg()) return false; // If the callee is just a declaration, don't change the varargsness of the // call. We don't want to introduce a varargs call where one doesn't // already exist. PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType()); if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg()) return false; } if (FT->getNumParams() < NumActualArgs && FT->isVarArg() && !CallerPAL.isEmpty()) // In this case we have more arguments than the new function type, but we // won't be dropping them. Check that these extra arguments have attributes // that are compatible with being a vararg call argument. for (unsigned i = CallerPAL.getNumSlots(); i; --i) { if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams()) break; Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs; if (PAttrs & Attribute::VarArgsIncompatible) return false; } // Okay, we decided that this is a safe thing to do: go ahead and start // inserting cast instructions as necessary. std::vector<Value*> Args; Args.reserve(NumActualArgs); SmallVector<AttributeWithIndex, 8> attrVec; attrVec.reserve(NumCommonArgs); // Get any return attributes. Attributes RAttrs = CallerPAL.getRetAttributes(); // If the return value is not being used, the type may not be compatible // with the existing attributes. Wipe out any problematic attributes. RAttrs &= ~Attribute::typeIncompatible(NewRetTy); // Add the new return attributes. if (RAttrs) attrVec.push_back(AttributeWithIndex::get(0, RAttrs)); AI = CS.arg_begin(); for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { Type *ParamTy = FT->getParamType(i); if ((*AI)->getType() == ParamTy) { Args.push_back(*AI); } else { Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false, ParamTy, false); Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp")); } // Add any parameter attributes. if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1)) attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs)); } // If the function takes more arguments than the call was taking, add them // now. for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) Args.push_back(Constant::getNullValue(FT->getParamType(i))); // If we are removing arguments to the function, emit an obnoxious warning. if (FT->getNumParams() < NumActualArgs) { if (!FT->isVarArg()) { errs() << "WARNING: While resolving call to function '" << Callee->getName() << "' arguments were dropped!\n"; } else { // Add all of the arguments in their promoted form to the arg list. for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { Type *PTy = getPromotedType((*AI)->getType()); if (PTy != (*AI)->getType()) { // Must promote to pass through va_arg area! Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false, PTy, false); Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp")); } else { Args.push_back(*AI); } // Add any parameter attributes. if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1)) attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs)); } } } if (Attributes FnAttrs = CallerPAL.getFnAttributes()) attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs)); if (NewRetTy->isVoidTy()) Caller->setName(""); // Void type should not have a name. const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(), attrVec.end()); Instruction *NC; if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { NC = Builder->CreateInvoke(Callee, II->getNormalDest(), II->getUnwindDest(), Args); NC->takeName(II); cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv()); cast<InvokeInst>(NC)->setAttributes(NewCallerPAL); } else { CallInst *CI = cast<CallInst>(Caller); NC = Builder->CreateCall(Callee, Args); NC->takeName(CI); if (CI->isTailCall()) cast<CallInst>(NC)->setTailCall(); cast<CallInst>(NC)->setCallingConv(CI->getCallingConv()); cast<CallInst>(NC)->setAttributes(NewCallerPAL); } // Insert a cast of the return type as necessary. Value *NV = NC; if (OldRetTy != NV->getType() && !Caller->use_empty()) { if (!NV->getType()->isVoidTy()) { Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false, OldRetTy, false); NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp"); NC->setDebugLoc(Caller->getDebugLoc()); // If this is an invoke instruction, we should insert it after the first // non-phi, instruction in the normal successor block. if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI(); InsertNewInstBefore(NC, *I); } else { // Otherwise, it's a call, just insert cast right after the call. InsertNewInstBefore(NC, *Caller); } Worklist.AddUsersToWorkList(*Caller); } else { NV = UndefValue::get(Caller->getType()); } } if (!Caller->use_empty()) ReplaceInstUsesWith(*Caller, NV); EraseInstFromFunction(*Caller); return true; } // transformCallThroughTrampoline - Turn a call to a function created by the // init_trampoline intrinsic into a direct call to the underlying function. // Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) { Value *Callee = CS.getCalledValue(); PointerType *PTy = cast<PointerType>(Callee->getType()); FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); const AttrListPtr &Attrs = CS.getAttributes(); // If the call already has the 'nest' attribute somewhere then give up - // otherwise 'nest' would occur twice after splicing in the chain. if (Attrs.hasAttrSomewhere(Attribute::Nest)) return 0; IntrinsicInst *Tramp = cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0)); Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts()); PointerType *NestFPTy = cast<PointerType>(NestF->getType()); FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType()); const AttrListPtr &NestAttrs = NestF->getAttributes(); if (!NestAttrs.isEmpty()) { unsigned NestIdx = 1; Type *NestTy = 0; Attributes NestAttr = Attribute::None; // Look for a parameter marked with the 'nest' attribute. for (FunctionType::param_iterator I = NestFTy->param_begin(), E = NestFTy->param_end(); I != E; ++NestIdx, ++I) if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) { // Record the parameter type and any other attributes. NestTy = *I; NestAttr = NestAttrs.getParamAttributes(NestIdx); break; } if (NestTy) { Instruction *Caller = CS.getInstruction(); std::vector<Value*> NewArgs; NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1); SmallVector<AttributeWithIndex, 8> NewAttrs; NewAttrs.reserve(Attrs.getNumSlots() + 1); // Insert the nest argument into the call argument list, which may // mean appending it. Likewise for attributes. // Add any result attributes. if (Attributes Attr = Attrs.getRetAttributes()) NewAttrs.push_back(AttributeWithIndex::get(0, Attr)); { unsigned Idx = 1; CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); do { if (Idx == NestIdx) { // Add the chain argument and attributes. Value *NestVal = Tramp->getArgOperand(2); if (NestVal->getType() != NestTy) NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest"); NewArgs.push_back(NestVal); NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr)); } if (I == E) break; // Add the original argument and attributes. NewArgs.push_back(*I); if (Attributes Attr = Attrs.getParamAttributes(Idx)) NewAttrs.push_back (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr)); ++Idx, ++I; } while (1); } // Add any function attributes. if (Attributes Attr = Attrs.getFnAttributes()) NewAttrs.push_back(AttributeWithIndex::get(~0, Attr)); // The trampoline may have been bitcast to a bogus type (FTy). // Handle this by synthesizing a new function type, equal to FTy // with the chain parameter inserted. std::vector<Type*> NewTypes; NewTypes.reserve(FTy->getNumParams()+1); // Insert the chain's type into the list of parameter types, which may // mean appending it. { unsigned Idx = 1; FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end(); do { if (Idx == NestIdx) // Add the chain's type. NewTypes.push_back(NestTy); if (I == E) break; // Add the original type. NewTypes.push_back(*I); ++Idx, ++I; } while (1); } // Replace the trampoline call with a direct call. Let the generic // code sort out any function type mismatches. FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg()); Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ? NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy)); const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(), NewAttrs.end()); Instruction *NewCaller; if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { NewCaller = InvokeInst::Create(NewCallee, II->getNormalDest(), II->getUnwindDest(), NewArgs); cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv()); cast<InvokeInst>(NewCaller)->setAttributes(NewPAL); } else { NewCaller = CallInst::Create(NewCallee, NewArgs); if (cast<CallInst>(Caller)->isTailCall()) cast<CallInst>(NewCaller)->setTailCall(); cast<CallInst>(NewCaller)-> setCallingConv(cast<CallInst>(Caller)->getCallingConv()); cast<CallInst>(NewCaller)->setAttributes(NewPAL); } return NewCaller; } } // Replace the trampoline call with a direct call. Since there is no 'nest' // parameter, there is no need to adjust the argument list. Let the generic // code sort out any function type mismatches. Constant *NewCallee = NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy); CS.setCalledFunction(NewCallee); return CS.getInstruction(); }